code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = name UpperCamelCase : Dict = val def __str__( self ): """simple docstring""" return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.val < other.val class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} UpperCamelCase : int = {} UpperCamelCase : Optional[Any] = self.build_heap(snake_case__ ) def __getitem__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.get_value(snake_case__ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return (idx - 1) // 2 def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return idx * 2 + 1 def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return idx * 2 + 2 def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.heap_dict[key] def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = len(snake_case__ ) - 1 UpperCamelCase : int = self.get_parent_idx(snake_case__ ) for idx, i in enumerate(snake_case__ ): UpperCamelCase : str = idx UpperCamelCase : Dict = i.val for i in range(snake_case__ , -1 , -1 ): self.sift_down(snake_case__ , snake_case__ ) return array def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" while True: UpperCamelCase : Union[str, Any] = self.get_left_child_idx(snake_case__ ) # noqa: E741 UpperCamelCase : Union[str, Any] = self.get_right_child_idx(snake_case__ ) UpperCamelCase : Dict = idx if l < len(snake_case__ ) and array[l] < array[idx]: UpperCamelCase : Optional[int] = l if r < len(snake_case__ ) and array[r] < array[smallest]: UpperCamelCase : Optional[int] = r if smallest != idx: UpperCamelCase , UpperCamelCase : Tuple = array[smallest], array[idx] ( ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[Any] = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) UpperCamelCase : Tuple = smallest else: break def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.get_parent_idx(snake_case__ ) while p >= 0 and self.heap[p] > self.heap[idx]: UpperCamelCase , UpperCamelCase : Dict = self.heap[idx], self.heap[p] UpperCamelCase , UpperCamelCase : int = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) UpperCamelCase : List[str] = p UpperCamelCase : Dict = self.get_parent_idx(snake_case__ ) def _lowercase ( self ): """simple docstring""" return self.heap[0] def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Optional[Any] = self.heap[-1], self.heap[0] UpperCamelCase , UpperCamelCase : Dict = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) UpperCamelCase : Optional[Any] = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.heap.append(snake_case__ ) UpperCamelCase : List[str] = len(self.heap ) - 1 UpperCamelCase : Optional[Any] = node.val self.sift_up(len(self.heap ) - 1 ) def _lowercase ( self ): """simple docstring""" return len(self.heap ) == 0 def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" UpperCamelCase : Dict = new_value UpperCamelCase : Any = new_value self.sift_up(self.idx_of_element[node] ) __UpperCAmelCase : Any = Node("R", -1) __UpperCAmelCase : Union[str, Any] = Node("B", 6) __UpperCAmelCase : str = Node("A", 3) __UpperCAmelCase : List[Any] = Node("X", 1) __UpperCAmelCase : str = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __UpperCAmelCase : Any = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Any = RemBertConfig.from_json_file(lowerCAmelCase_ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase_ ) ) ) UpperCamelCase : List[Any] = RemBertModel(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase_ ) ) torch.save(model.state_dict() , lowerCAmelCase_ ) if __name__ == "__main__": __UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : str = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(">=", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __UpperCAmelCase : Dict = get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCamelCase : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase : Optional[Any] = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCamelCase : int = os.path.join(_snake_case , _snake_case ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(_snake_case , _snake_case ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase : List[Any] = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCamelCase : List[str] = os.path.join(_snake_case , _snake_case ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(_snake_case , _snake_case ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase : Dict = os.path.join(_snake_case , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(F"""Saving model to {ckpt_dir}""" ) UpperCamelCase : int = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=_snake_case , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_snake_case ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return UpperCamelCase : int = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" UpperCamelCase : Union[str, Any] = os.path.join(_snake_case , _snake_case ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCamelCase : int = torch.load(_snake_case ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: UpperCamelCase : Tuple = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) UpperCamelCase : List[str] = os.path.join(_snake_case , _snake_case ) logger.info(F"""Loading model from {input_model_file}""" ) UpperCamelCase : Any = torch.load(_snake_case ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: UpperCamelCase : Optional[Any] = ( os.path.join(_snake_case , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) UpperCamelCase : int = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=_snake_case , storage_reader=dist_cp.FileSystemReader(_snake_case ) , planner=DefaultLoadPlanner() , ) UpperCamelCase : Optional[int] = state_dict['''model'''] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(_snake_case ) def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str]=0 ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): UpperCamelCase : Union[str, Any] = FSDP.optim_state_dict(_snake_case , _snake_case ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: UpperCamelCase : Union[str, Any] = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCamelCase : Union[str, Any] = os.path.join(_snake_case , _snake_case ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(_snake_case , _snake_case ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: UpperCamelCase : Tuple = os.path.join(_snake_case , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(_snake_case ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]=0 ): """simple docstring""" accelerator.wait_for_everyone() with FSDP.state_dict_type( _snake_case , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: UpperCamelCase : Union[str, Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: UpperCamelCase : int = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) UpperCamelCase : Optional[int] = os.path.join(_snake_case , _snake_case ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) UpperCamelCase : Tuple = torch.load(_snake_case ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: UpperCamelCase : Any = ( os.path.join(_snake_case , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) UpperCamelCase : Tuple = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(_snake_case ) , ) UpperCamelCase : int = optim_state['''optimizer'''] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) UpperCamelCase : Union[str, Any] = FSDP.optim_state_dict_to_load(_snake_case , _snake_case , _snake_case ) optimizer.load_state_dict(_snake_case )
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Any = { 'configuration_megatron_bert': ['MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegatronBertConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = [ 'MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegatronBertForCausalLM', 'MegatronBertForMaskedLM', 'MegatronBertForMultipleChoice', 'MegatronBertForNextSentencePrediction', 'MegatronBertForPreTraining', 'MegatronBertForQuestionAnswering', 'MegatronBertForSequenceClassification', 'MegatronBertForTokenClassification', 'MegatronBertModel', 'MegatronBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys __UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets __UpperCAmelCase : Optional[int] = datasets.logging.get_logger(__name__) __UpperCAmelCase : Tuple = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' __UpperCAmelCase : List[str] = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' __UpperCAmelCase : Optional[Any] = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' __UpperCAmelCase : Any = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): '''simple docstring''' def _lowercase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) UpperCamelCase : str = '''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: UpperCamelCase : str = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: UpperCamelCase : Optional[Any] = self.config_name.upper() else: raise KeyError( f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" ) # download the model checkpoint specified by self.config_name and set up the scorer UpperCamelCase : List[str] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) UpperCamelCase : Union[str, Any] = score.BleurtScorer(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = self.scorer.score(references=UpperCamelCase__ , candidates=UpperCamelCase__ ) return {"scores": scores}
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase : str = 250004 __UpperCAmelCase : int = 250020 @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( snake_case__, unittest.TestCase): __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[str] = MBartTokenizerFast __UpperCamelCase : Dict = True __UpperCamelCase : Any = True def _lowercase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase : Optional[int] = MBartTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = MBartTokenizer(_A , keep_accents=_A ) UpperCamelCase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase : Optional[int] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCamelCase : str = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase : Dict = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _lowercase ( self ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) UpperCamelCase : str = self.tokenizer_class.from_pretrained(_A , **_A ) UpperCamelCase : List[Any] = tempfile.mkdtemp() UpperCamelCase : Dict = tokenizer_r.save_pretrained(_A ) UpperCamelCase : Tuple = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCamelCase : Optional[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCamelCase : Tuple = tokenizer_r.from_pretrained(_A ) UpperCamelCase : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True UpperCamelCase : Optional[Any] = tempfile.mkdtemp() UpperCamelCase : Tuple = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCamelCase : Union[str, Any] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way UpperCamelCase : int = tokenizer_r.from_pretrained(_A ) UpperCamelCase : str = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False UpperCamelCase : List[str] = tempfile.mkdtemp() UpperCamelCase : Optional[Any] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) UpperCamelCase : Dict = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase : List[str] = tokenizer_r.from_pretrained(_A ) UpperCamelCase : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase_ ( unittest.TestCase): __UpperCamelCase : str = '''facebook/mbart-large-en-ro''' __UpperCamelCase : List[str] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __UpperCamelCase : Tuple = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __UpperCamelCase : Dict = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def _lowercase ( cls ): """simple docstring""" UpperCamelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) UpperCamelCase : Union[str, Any] = 1 return cls def _lowercase ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250_020 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def _lowercase ( self ): """simple docstring""" self.assertIn(_A , self.tokenizer.all_special_ids ) UpperCamelCase : Tuple = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] UpperCamelCase : int = self.tokenizer.decode(_A , skip_special_tokens=_A ) UpperCamelCase : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , _A ) UpperCamelCase : Optional[Any] = 10 UpperCamelCase : int = self.tokenizer(_A , max_length=_A , truncation=_A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , _A ) self.assertEqual(len(_A ) , _A ) def _lowercase ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250_026, 250_001] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = tempfile.mkdtemp() UpperCamelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_A ) UpperCamelCase : Any = MBartTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _A ) @require_torch def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='''pt''' ) UpperCamelCase : Union[str, Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_A , truncation=_A , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) UpperCamelCase : Tuple = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(_A , _A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.tokenizer(self.src_text , padding=_A , truncation=_A , max_length=3 , return_tensors='''pt''' ) UpperCamelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=_A , truncation=_A , max_length=10 , return_tensors='''pt''' ) UpperCamelCase : int = targets['input_ids'] UpperCamelCase : Optional[Any] = shift_tokens_right(_A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(_A ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3_034, 2, 250_004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250_001, } , )
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "sew-d" def __init__( self , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=("p2c", "c2p") , __SCREAMING_SNAKE_CASE="layer_norm" , __SCREAMING_SNAKE_CASE="gelu_python" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-7 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE="group" , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __SCREAMING_SNAKE_CASE=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __SCREAMING_SNAKE_CASE=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.05 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="mean" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) UpperCamelCase : List[Any] = hidden_size UpperCamelCase : str = feat_extract_norm UpperCamelCase : Tuple = feat_extract_activation UpperCamelCase : List[Any] = list(__a ) UpperCamelCase : Optional[int] = list(__a ) UpperCamelCase : Any = list(__a ) UpperCamelCase : Any = conv_bias UpperCamelCase : Tuple = num_conv_pos_embeddings UpperCamelCase : int = num_conv_pos_embedding_groups UpperCamelCase : int = len(self.conv_dim ) UpperCamelCase : int = num_hidden_layers UpperCamelCase : Dict = intermediate_size UpperCamelCase : Tuple = squeeze_factor UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = position_buckets UpperCamelCase : Dict = share_att_key UpperCamelCase : Optional[Any] = relative_attention UpperCamelCase : Union[str, Any] = norm_rel_ebd UpperCamelCase : Optional[Any] = list(__a ) UpperCamelCase : Tuple = hidden_act UpperCamelCase : str = num_attention_heads UpperCamelCase : Tuple = hidden_dropout UpperCamelCase : str = attention_dropout UpperCamelCase : Optional[Any] = activation_dropout UpperCamelCase : Optional[Any] = feat_proj_dropout UpperCamelCase : Optional[int] = final_dropout UpperCamelCase : Dict = layer_norm_eps UpperCamelCase : Any = feature_layer_norm_eps UpperCamelCase : Tuple = initializer_range UpperCamelCase : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase : int = apply_spec_augment UpperCamelCase : Optional[Any] = mask_time_prob UpperCamelCase : Optional[int] = mask_time_length UpperCamelCase : Optional[int] = mask_time_min_masks UpperCamelCase : Dict = mask_feature_prob UpperCamelCase : str = mask_feature_length UpperCamelCase : int = mask_feature_min_masks # ctc loss UpperCamelCase : Any = ctc_loss_reduction UpperCamelCase : Union[str, Any] = ctc_zero_infinity # sequence classification UpperCamelCase : int = use_weighted_layer_sum UpperCamelCase : Union[str, Any] = classifier_proj_size @property def _lowercase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
import math def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( SCREAMING_SNAKE_CASE_ : List[str] = 1_0_0_0_1 ): """simple docstring""" try: UpperCamelCase : Tuple = int(lowerCamelCase_ ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) UpperCamelCase : list[int] = [] UpperCamelCase : Dict = 2 while len(lowerCamelCase_ ) < nth: if is_prime(lowerCamelCase_ ): primes.append(lowerCamelCase_ ) num += 1 else: num += 1 return primes[len(lowerCamelCase_ ) - 1] if __name__ == "__main__": print(f'''{solution() = }''')
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class UpperCAmelCase_ ( __lowerCamelCase): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Union[str, Any] = {} UpperCamelCase : Optional[Any] = {} if prompt is not None: UpperCamelCase : List[str] = prompt if generate_kwargs is not None: UpperCamelCase : List[Any] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: UpperCamelCase : int = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,''' ''' please use only one''' ) UpperCamelCase : Any = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Tuple = load_image(UpperCamelCase_ ) if prompt is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( f"""Received an invalid text input, got - {type(UpperCamelCase_ )} - but expected a single string. """ '''Note also that one single text can be provided for conditional image to text generation.''' ) UpperCamelCase : Union[str, Any] = self.model.config.model_type if model_type == "git": UpperCamelCase : Any = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) UpperCamelCase : Any = self.tokenizer(text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ).input_ids UpperCamelCase : Optional[int] = [self.tokenizer.cls_token_id] + input_ids UpperCamelCase : List[str] = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) model_inputs.update({'''input_ids''': input_ids} ) elif model_type == "pix2struct": UpperCamelCase : Union[str, Any] = self.image_processor(images=UpperCamelCase_ , header_text=UpperCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation UpperCamelCase : Any = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) UpperCamelCase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) else: raise ValueError(f"""Model type {model_type} does not support conditional text generation""" ) else: UpperCamelCase : List[Any] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: UpperCamelCase : int = None return model_inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs['''input_ids'''] , UpperCamelCase_ ) and all(x is None for x in model_inputs['''input_ids'''] ) ): UpperCamelCase : List[str] = None if generate_kwargs is None: UpperCamelCase : Dict = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. UpperCamelCase : List[Any] = model_inputs.pop(self.model.main_input_name ) UpperCamelCase : List[Any] = self.model.generate(UpperCamelCase_ , **UpperCamelCase_ , **UpperCamelCase_ ) return model_outputs def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for output_ids in model_outputs: UpperCamelCase : Optional[int] = { '''generated_text''': self.tokenizer.decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , ) } records.append(UpperCamelCase_ ) return records
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase_ ( _UpperCamelCase, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = DiTPipeline __UpperCamelCase : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __UpperCamelCase : str = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } __UpperCamelCase : int = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __UpperCamelCase : Optional[Any] = False def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__SCREAMING_SNAKE_CASE , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = AutoencoderKL() UpperCamelCase : Any = DDIMScheduler() UpperCamelCase : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): UpperCamelCase : Union[str, Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : List[str] = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = "cpu" UpperCamelCase : str = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCamelCase : Tuple = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) UpperCamelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-3 ) def _lowercase ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=__SCREAMING_SNAKE_CASE , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowercase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = torch.manual_seed(0 ) UpperCamelCase : Dict = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) UpperCamelCase : Tuple = ["vase", "umbrella", "white shark", "white wolf"] UpperCamelCase : Optional[Any] = pipe.get_label_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = pipe(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = load_numpy( f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-2 def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) UpperCamelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) UpperCamelCase : Dict = ["vase", "umbrella"] UpperCamelCase : Any = pipe.get_label_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = torch.manual_seed(0 ) UpperCamelCase : str = pipe(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' f"""/dit/{word}_512.npy""" ) assert np.abs((expected_image - image).max() ) < 1e-1
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = {} def _lowercase ( self ): """simple docstring""" print(self.vertex ) for i in self.vertex: print(lowercase_ , ''' -> ''' , ''' -> '''.join([str(lowercase_ ) for j in self.vertex[i]] ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if from_vertex in self.vertex: self.vertex[from_vertex].append(lowercase_ ) else: # else make a new vertex UpperCamelCase : Union[str, Any] = [to_vertex] def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = True print(lowercase_ , end=''' ''' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowercase_ , lowercase_ ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("DFS:") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCAmelCase : int = logging.get_logger(__name__) class UpperCAmelCase_ ( __lowerCAmelCase): '''simple docstring''' __UpperCamelCase : List[Any] = ['''pixel_values'''] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 255 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) UpperCamelCase : Union[str, Any] = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase : Dict = get_size_dict(lowerCAmelCase_ ) UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase : Dict = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name='''crop_size''' ) UpperCamelCase : str = do_resize UpperCamelCase : Any = do_rescale UpperCamelCase : str = do_normalize UpperCamelCase : Optional[Any] = do_center_crop UpperCamelCase : List[Any] = crop_size UpperCamelCase : List[Any] = size UpperCamelCase : Any = resample UpperCamelCase : str = rescale_factor UpperCamelCase : Optional[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCamelCase : List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Tuple = get_size_dict(lowerCAmelCase_ ) if "shortest_edge" in size: UpperCamelCase : Optional[Any] = get_resize_output_image_size(lowerCAmelCase_ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCamelCase : Optional[Any] = (size['''height'''], size['''width''']) else: raise ValueError(f"""Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}""" ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Any = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : str = crop_size if crop_size is not None else self.crop_size UpperCamelCase : Dict = get_size_dict(lowerCAmelCase_ , param_name='''crop_size''' , default_to_square=lowerCAmelCase_ ) UpperCamelCase : Any = resample if resample is not None else self.resample UpperCamelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : str = image_std if image_std is not None else self.image_std UpperCamelCase : Optional[int] = size if size is not None else self.size UpperCamelCase : List[Any] = get_size_dict(lowerCAmelCase_ ) if not is_batched(lowerCAmelCase_ ): UpperCamelCase : Optional[Any] = [images] if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. UpperCamelCase : int = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: UpperCamelCase : Optional[int] = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: UpperCamelCase : Any = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: UpperCamelCase : Optional[int] = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: UpperCamelCase : Any = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] UpperCamelCase : int = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] UpperCamelCase : Any = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase : Dict = logging.get_logger(__name__) # General docstring __UpperCAmelCase : int = 'RegNetConfig' # Base docstring __UpperCAmelCase : Optional[int] = 'facebook/regnet-y-040' __UpperCAmelCase : Dict = [1, 1088, 7, 7] # Image classification docstring __UpperCAmelCase : Any = 'facebook/regnet-y-040' __UpperCAmelCase : Dict = 'tabby, tabby cat' __UpperCAmelCase : int = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "relu" , ): """simple docstring""" super().__init__() a_ : Tuple = nn.Convad( UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=UpperCAmelCase__ , stride=UpperCAmelCase__ , padding=kernel_size // 2 , groups=UpperCAmelCase__ , bias=UpperCAmelCase__ , ) a_ : Dict = nn.BatchNormad(UpperCAmelCase__ ) a_ : Union[str, Any] = ACTaFN[activation] if activation is not None else nn.Identity() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : Optional[int] = self.convolution(UpperCAmelCase__ ) a_ : Tuple = self.normalization(UpperCAmelCase__ ) a_ : Optional[int] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() a_ : Tuple = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) a_ : Optional[int] = config.num_channels def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : Tuple = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) a_ : str = self.embedder(UpperCAmelCase__ ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 ): """simple docstring""" super().__init__() a_ : Optional[int] = nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , stride=UpperCAmelCase__ , bias=UpperCAmelCase__ ) a_ : str = nn.BatchNormad(UpperCAmelCase__ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : int = self.convolution(UpperCAmelCase__ ) a_ : List[Any] = self.normalization(UpperCAmelCase__ ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() a_ : Dict = nn.AdaptiveAvgPoolad((1, 1) ) a_ : Union[str, Any] = nn.Sequential( nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , nn.ReLU() , nn.Convad(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 ) , nn.Sigmoid() , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : Tuple = self.pooler(UpperCAmelCase__ ) a_ : str = self.attention(UpperCAmelCase__ ) a_ : Tuple = hidden_state * attention return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() a_ : str = in_channels != out_channels or stride != 1 a_ : str = max(1 , out_channels // config.groups_width ) a_ : Dict = ( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) a_ : Dict = nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) a_ : Optional[int] = ACTaFN[config.hidden_act] def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : str = hidden_state a_ : int = self.layer(UpperCAmelCase__ ) a_ : Dict = self.shortcut(UpperCAmelCase__ ) hidden_state += residual a_ : List[Any] = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() a_ : Dict = in_channels != out_channels or stride != 1 a_ : Tuple = max(1 , out_channels // config.groups_width ) a_ : str = ( RegNetShortCut(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) a_ : List[Any] = nn.Sequential( RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , groups=UpperCAmelCase__ , activation=config.hidden_act ) , RegNetSELayer(UpperCAmelCase__ , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(UpperCAmelCase__ , UpperCAmelCase__ , kernel_size=1 , activation=UpperCAmelCase__ ) , ) a_ : Union[str, Any] = ACTaFN[config.hidden_act] def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : List[Any] = hidden_state a_ : int = self.layer(UpperCAmelCase__ ) a_ : Union[str, Any] = self.shortcut(UpperCAmelCase__ ) hidden_state += residual a_ : str = self.activation(UpperCAmelCase__ ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 2 , ): """simple docstring""" super().__init__() a_ : int = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer a_ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , stride=UpperCAmelCase__ , ) , *[layer(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) for _ in range(depth - 1 )] , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : str = self.layers(UpperCAmelCase__ ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() a_ : Any = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( UpperCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) a_ : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(UpperCAmelCase__ , config.depths[1:] ): self.stages.append(RegNetStage(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , depth=UpperCAmelCase__ ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True ): """simple docstring""" a_ : List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: a_ : List[Any] = hidden_states + (hidden_state,) a_ : Optional[int] = stage_module(UpperCAmelCase__ ) if output_hidden_states: a_ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase__ , hidden_states=UpperCAmelCase__ ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = RegNetConfig __UpperCamelCase : Tuple = 'regnet' __UpperCamelCase : str = 'pixel_values' __UpperCamelCase : Union[str, Any] = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(UpperCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(UpperCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): a_ : str = value __UpperCAmelCase : str = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCAmelCase : Optional[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top.", _a, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(UpperCAmelCase__ ) a_ : Dict = config a_ : int = RegNetEmbeddings(UpperCAmelCase__ ) a_ : int = RegNetEncoder(UpperCAmelCase__ ) a_ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" a_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a_ : str = return_dict if return_dict is not None else self.config.use_return_dict a_ : List[str] = self.embedder(UpperCAmelCase__ ) a_ : List[str] = self.encoder( UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) a_ : str = encoder_outputs[0] a_ : Optional[int] = self.pooler(UpperCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=UpperCAmelCase__ , pooler_output=UpperCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", _a, ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(UpperCAmelCase__ ) a_ : List[str] = config.num_labels a_ : Optional[Any] = RegNetModel(UpperCAmelCase__ ) # classification head a_ : Optional[Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" a_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict a_ : List[str] = self.regnet(UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , return_dict=UpperCAmelCase__ ) a_ : Optional[int] = outputs.pooler_output if return_dict else outputs[1] a_ : str = self.classifier(UpperCAmelCase__ ) a_ : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: a_ : int = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): a_ : List[str] = '''single_label_classification''' else: a_ : List[str] = '''multi_label_classification''' if self.config.problem_type == "regression": a_ : List[Any] = MSELoss() if self.num_labels == 1: a_ : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: a_ : int = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) elif self.config.problem_type == "single_label_classification": a_ : Optional[int] = CrossEntropyLoss() a_ : List[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": a_ : int = BCEWithLogitsLoss() a_ : Tuple = loss_fct(UpperCAmelCase__ , UpperCAmelCase__ ) if not return_dict: a_ : List[str] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase__ , logits=UpperCAmelCase__ , hidden_states=outputs.hidden_states )
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
__UpperCAmelCase : List[Any] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase : List[str] = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] __UpperCAmelCase : Union[str, Any] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" assert len(str(SCREAMING_SNAKE_CASE_ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 1_2, "month should be between 1 to 12" assert 1 <= day <= 3_1, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase : Tuple = year // 1_0_0 UpperCamelCase : Union[str, Any] = (5 * (century % 4) + 2) % 7 UpperCamelCase : List[str] = year % 1_0_0 UpperCamelCase : Union[str, Any] = centurian % 1_2 UpperCamelCase : Dict = ( (centurian // 1_2) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase : Any = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_0_0) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase : List[str] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( __lowerCamelCase, unittest.TestCase): '''simple docstring''' __UpperCamelCase : int = CLIPTokenizer __UpperCamelCase : int = CLIPTokenizerFast __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = {} __UpperCamelCase : str = False def _lowercase ( self ): """simple docstring""" super().setUp() # fmt: off UpperCamelCase : Optional[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase : List[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase : str = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] UpperCamelCase : str = {'''unk_token''': '''<unk>'''} UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = '''lower newer''' UpperCamelCase : Tuple = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase : int = '''lower newer''' UpperCamelCase : List[str] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] UpperCamelCase : str = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) @require_ftfy def _lowercase ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' UpperCamelCase : Optional[Any] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCamelCase : Optional[Any] = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' UpperCamelCase : List[Any] = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on unicode of space type UpperCamelCase : Union[str, Any] = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCamelCase : int = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on unicode of line break type UpperCamelCase : List[Any] = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCamelCase : Any = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase : List[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase : Any = f"""{text_of_1_token} {text_of_1_token}""" UpperCamelCase : str = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase : Tuple = f""" {text}""" UpperCamelCase : Any = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) def _lowercase ( self ): """simple docstring""" with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def _lowercase ( self ): """simple docstring""" super().test_tokenization_python_rust_equals() def _lowercase ( self ): """simple docstring""" pass
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" return EnvironmentCommand() class UpperCAmelCase_ ( _snake_case): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = parser.add_parser('''env''' ) download_parser.set_defaults(func=snake_case_ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = huggingface_hub.__version__ UpperCamelCase : int = "not installed" UpperCamelCase : Tuple = "NA" if is_torch_available(): import torch UpperCamelCase : int = torch.__version__ UpperCamelCase : int = torch.cuda.is_available() UpperCamelCase : List[str] = "not installed" if is_transformers_available(): import transformers UpperCamelCase : Optional[Any] = transformers.__version__ UpperCamelCase : Tuple = "not installed" if is_accelerate_available(): import accelerate UpperCamelCase : Optional[int] = accelerate.__version__ UpperCamelCase : List[str] = "not installed" if is_xformers_available(): import xformers UpperCamelCase : Any = xformers.__version__ UpperCamelCase : int = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(snake_case_ ) ) return info @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE="divided_space_time" , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : int = parent UpperCamelCase : Tuple = batch_size UpperCamelCase : Optional[Any] = image_size UpperCamelCase : Tuple = num_channels UpperCamelCase : List[str] = patch_size UpperCamelCase : str = num_frames UpperCamelCase : Tuple = is_training UpperCamelCase : List[str] = use_labels UpperCamelCase : int = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : List[str] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : List[Any] = attention_type UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Dict = scope UpperCamelCase : Dict = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCamelCase : List[str] = (image_size // patch_size) ** 2 UpperCamelCase : Union[str, Any] = (num_frames) * self.num_patches_per_frame + 1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Union[str, Any] = None if self.use_labels: UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase : int = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) UpperCamelCase : int = self.num_labels return config def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = TimesformerModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase : int = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = TimesformerForVideoClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() UpperCamelCase : List[str] = model(UpperCAmelCase__ ) # verify the logits shape UpperCamelCase : Union[str, Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , UpperCAmelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.prepare_config_and_inputs() UpperCamelCase : Any = config_and_inputs UpperCamelCase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase__, lowercase__, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __UpperCamelCase : Optional[Any] = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Dict = False __UpperCamelCase : List[str] = False __UpperCamelCase : Any = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TimesformerModelTester(self ) UpperCamelCase : str = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase : int = copy.deepcopy(UpperCAmelCase__ ) if return_labels: if model_class in get_values(UpperCAmelCase__ ): UpperCamelCase : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''TimeSformer does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Any = model_class(UpperCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase__ , nn.Linear ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : int = model_class(UpperCAmelCase__ ) UpperCamelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[str] = [*signature.parameters.keys()] UpperCamelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*UpperCAmelCase__ ) @slow def _lowercase ( self ): """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = TimesformerModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self ): """simple docstring""" if not self.has_attentions: pass else: UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Optional[Any] = True for model_class in self.all_model_classes: UpperCamelCase : List[Any] = self.model_tester.seq_length UpperCamelCase : List[Any] = self.model_tester.num_frames UpperCamelCase : Dict = True UpperCamelCase : int = False UpperCamelCase : Optional[Any] = True UpperCamelCase : Optional[int] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase : Any = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) UpperCamelCase : Any = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase : Optional[int] = True UpperCamelCase : Optional[Any] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) UpperCamelCase : Dict = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) UpperCamelCase : Optional[int] = len(UpperCAmelCase__ ) # Check attention is always last and order is fine UpperCamelCase : str = True UpperCamelCase : Union[str, Any] = True UpperCamelCase : Optional[int] = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase : Any = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCAmelCase__ ) ) UpperCamelCase : Union[str, Any] = outputs.attentions self.assertEqual(len(UpperCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = model_class(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() with torch.no_grad(): UpperCamelCase : Dict = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) ) UpperCamelCase : Optional[int] = outputs.hidden_states UpperCamelCase : List[str] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) UpperCamelCase : Optional[int] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Any = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : List[Any] = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def a ( ): """simple docstring""" UpperCamelCase : Union[str, Any] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) UpperCamelCase : str = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = TimesformerForVideoClassification.from_pretrained('''facebook/timesformer-base-finetuned-k400''' ).to( UpperCAmelCase__ ) UpperCamelCase : int = self.default_image_processor UpperCamelCase : Tuple = prepare_video() UpperCamelCase : Any = image_processor(video[:8] , return_tensors='''pt''' ).to(UpperCAmelCase__ ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[int] = model(**UpperCAmelCase__ ) # verify the logits UpperCamelCase : Any = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase__ ) UpperCamelCase : List[str] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(UpperCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4 ) )
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Any = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class UpperCAmelCase_ ( __UpperCAmelCase): '''simple docstring''' __UpperCamelCase : List[str] = "xglm" __UpperCamelCase : Union[str, Any] = ["past_key_values"] __UpperCamelCase : str = { "num_attention_heads": "attention_heads", "hidden_size": "d_model", "num_hidden_layers": "num_layers", } def __init__( self , __SCREAMING_SNAKE_CASE=256_008 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[str] = vocab_size UpperCamelCase : Any = max_position_embeddings UpperCamelCase : Tuple = d_model UpperCamelCase : List[str] = ffn_dim UpperCamelCase : List[str] = num_layers UpperCamelCase : Optional[Any] = attention_heads UpperCamelCase : Dict = activation_function UpperCamelCase : int = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[str] = activation_dropout UpperCamelCase : List[Any] = layerdrop UpperCamelCase : Dict = init_std UpperCamelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase : Optional[Any] = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCAmelCase : Any = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : Dict = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCAmelCase : Union[str, Any] = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __UpperCAmelCase : Any = { 'google/bigbird-roberta-base': 4096, 'google/bigbird-roberta-large': 4096, 'google/bigbird-base-trivia-itc': 4096, } __UpperCAmelCase : Union[str, Any] = '▁' class UpperCAmelCase_ ( lowerCamelCase__): '''simple docstring''' __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = BigBirdTokenizer __UpperCamelCase : Dict = ["input_ids", "attention_mask"] __UpperCamelCase : Union[str, Any] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE="[CLS]" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token UpperCamelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token UpperCamelCase : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token UpperCamelCase : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token UpperCamelCase : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token UpperCamelCase : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase : List[Any] = vocab_file UpperCamelCase : List[Any] = False if not self.vocab_file else True def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Any = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[str] = [self.sep_token_id] UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCamelCase : List[str] = {} # Mapping from char to TrieNode UpperCamelCase : str = False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" for word in words: self.insert(_lowercase ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = self for char in word: if char not in curr.nodes: UpperCamelCase : Optional[Any] = TrieNode() UpperCamelCase : List[Any] = curr.nodes[char] UpperCamelCase : Any = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = self for char in word: if char not in curr.nodes: return False UpperCamelCase : int = curr.nodes[char] return curr.is_leaf def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" def _delete(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: if index == len(_lowercase ): # If word does not exist if not curr.is_leaf: return False UpperCamelCase : List[str] = False return len(curr.nodes ) == 0 UpperCamelCase : Tuple = word[index] UpperCamelCase : List[Any] = curr.nodes.get(_lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted UpperCamelCase : Dict = _delete(_lowercase , _lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , _lowercase , 0 ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" if node.is_leaf: print(UpperCamelCase__ , end=''' ''' ) for key, value in node.nodes.items(): print_words(UpperCamelCase__ , word + key ) def a ( ): """simple docstring""" UpperCamelCase : Tuple = '''banana bananas bandana band apple all beast'''.split() UpperCamelCase : Tuple = TrieNode() root.insert_many(UpperCamelCase__ ) # print_words(root, "") assert all(root.find(UpperCamelCase__ ) for word in words ) assert root.find('''banana''' ) assert not root.find('''bandanas''' ) assert not root.find('''apps''' ) assert root.find('''apple''' ) assert root.find('''all''' ) root.delete('''all''' ) assert not root.find('''all''' ) root.delete('''banana''' ) assert not root.find('''banana''' ) assert root.find('''bananas''' ) return True def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" print(str(UpperCamelCase__ ) , '''works!''' if passes else '''doesn\'t work :(''' ) def a ( ): """simple docstring""" assert test_trie() def a ( ): """simple docstring""" print_results('''Testing trie functionality''' , test_trie() ) if __name__ == "__main__": main()
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE=[2, 2, 3, 2] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : str = parent UpperCamelCase : int = batch_size UpperCamelCase : Any = image_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : Optional[int] = num_stages UpperCamelCase : Any = hidden_sizes UpperCamelCase : Any = depths UpperCamelCase : Union[str, Any] = is_training UpperCamelCase : Optional[int] = use_labels UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : Any = hidden_act UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : Union[str, Any] = out_features UpperCamelCase : int = num_labels UpperCamelCase : List[str] = scope UpperCamelCase : Any = num_stages def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : str = None if self.use_labels: UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowercase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowercase_ , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = UperNetForSemanticSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase : Optional[int] = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.prepare_config_and_inputs() ( UpperCamelCase ) : str = config_and_inputs UpperCamelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case__, snake_case__, unittest.TestCase): '''simple docstring''' __UpperCamelCase : int = (UperNetForSemanticSegmentation,) if is_torch_available() else () __UpperCamelCase : Dict = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = False __UpperCamelCase : List[str] = False __UpperCamelCase : str = False __UpperCamelCase : Dict = False __UpperCamelCase : Optional[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = UperNetModelTester(self ) UpperCamelCase : Dict = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : int = model_class(lowercase_ ) UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Union[str, Any] = [*signature.parameters.keys()] UpperCamelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) UpperCamelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase : Optional[int] = self.model_tester.num_stages self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : Optional[int] = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = _config_zero_init(lowercase_ ) UpperCamelCase : Optional[Any] = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: UpperCamelCase : str = model_class(config=lowercase_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[str] = UperNetForSemanticSegmentation.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def a ( ): """simple docstring""" UpperCamelCase : int = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) UpperCamelCase : str = Image.open(__SCREAMING_SNAKE_CASE ).convert('''RGB''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) UpperCamelCase : Optional[int] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowercase_ ) UpperCamelCase : List[Any] = prepare_img() UpperCamelCase : Optional[int] = processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) with torch.no_grad(): UpperCamelCase : Dict = model(**lowercase_ ) UpperCamelCase : List[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase : str = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase_ , atol=1e-4 ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) UpperCamelCase : Tuple = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowercase_ ) UpperCamelCase : Optional[Any] = prepare_img() UpperCamelCase : Optional[int] = processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**lowercase_ ) UpperCamelCase : Any = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase : List[str] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowercase_ , atol=1e-4 ) )
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _UpperCAmelCase): '''simple docstring''' __UpperCamelCase : Optional[int] = (EulerDiscreteScheduler,) __UpperCamelCase : str = 10 def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = { '''num_train_timesteps''': 1_100, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**A_ ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=A_ ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.scheduler_classes[0] UpperCamelCase : int = self.get_scheduler_config() UpperCamelCase : Tuple = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase : Union[str, Any] = torch.manual_seed(0 ) UpperCamelCase : Dict = self.dummy_model() UpperCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase : Dict = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase : int = scheduler.scale_model_input(A_ , A_ ) UpperCamelCase : Optional[int] = model(A_ , A_ ) UpperCamelCase : Optional[int] = scheduler.step(A_ , A_ , A_ , generator=A_ ) UpperCamelCase : Dict = output.prev_sample UpperCamelCase : str = torch.sum(torch.abs(A_ ) ) UpperCamelCase : int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.scheduler_classes[0] UpperCamelCase : str = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCamelCase : List[str] = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) UpperCamelCase : List[str] = self.dummy_model() UpperCamelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase : Union[str, Any] = sample.to(A_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase : List[Any] = scheduler.scale_model_input(A_ , A_ ) UpperCamelCase : int = model(A_ , A_ ) UpperCamelCase : Dict = scheduler.step(A_ , A_ , A_ , generator=A_ ) UpperCamelCase : Dict = output.prev_sample UpperCamelCase : int = torch.sum(torch.abs(A_ ) ) UpperCamelCase : str = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.2676e-06 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : int = self.get_scheduler_config() UpperCamelCase : Dict = scheduler_class(**A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) UpperCamelCase : List[str] = torch.manual_seed(0 ) UpperCamelCase : Any = self.dummy_model() UpperCamelCase : Dict = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCamelCase : List[Any] = sample.to(A_ ) for t in scheduler.timesteps: UpperCamelCase : Any = scheduler.scale_model_input(A_ , A_ ) UpperCamelCase : Optional[Any] = model(A_ , A_ ) UpperCamelCase : List[str] = scheduler.step(A_ , A_ , A_ , generator=A_ ) UpperCamelCase : Optional[Any] = output.prev_sample UpperCamelCase : Tuple = torch.sum(torch.abs(A_ ) ) UpperCamelCase : Optional[int] = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.scheduler_classes[0] UpperCamelCase : List[str] = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**A_ , use_karras_sigmas=A_ ) scheduler.set_timesteps(self.num_inference_steps , device=A_ ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Any = self.dummy_model() UpperCamelCase : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCamelCase : Union[str, Any] = sample.to(A_ ) for t in scheduler.timesteps: UpperCamelCase : Union[str, Any] = scheduler.scale_model_input(A_ , A_ ) UpperCamelCase : Optional[Any] = model(A_ , A_ ) UpperCamelCase : Any = scheduler.step(A_ , A_ , A_ , generator=A_ ) UpperCamelCase : Any = output.prev_sample UpperCamelCase : int = torch.sum(torch.abs(A_ ) ) UpperCamelCase : int = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCAmelCase : Optional[Any] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __UpperCAmelCase : Optional[int] = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __UpperCAmelCase : Optional[int] = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" return float((preds == labels).mean() ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : int = simple_accuracy(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase : Tuple = float(fa_score(y_true=_lowerCamelCase , y_pred=_lowerCamelCase ) ) return { "accuracy": acc, "f1": fa, } def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Tuple = float(pearsonr(_lowerCamelCase , _lowerCamelCase )[0] ) UpperCamelCase : Optional[Any] = float(spearmanr(_lowerCamelCase , _lowerCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): '''simple docstring''' def _lowercase ( self ): """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ''' '''\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} elif self.config_name == "stsb": return pearson_and_spearman(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", ''' '''\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]''' )
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase_ : '''simple docstring''' @staticmethod def _lowercase ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) UpperCamelCase : Optional[int] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = object_detector(examples[0] , threshold=0.0 ) UpperCamelCase : List[str] = len(__UpperCamelCase ) self.assertGreater(__UpperCamelCase , 0 ) self.assertEqual( __UpperCamelCase , [ { '''score''': ANY(__UpperCamelCase ), '''label''': ANY(__UpperCamelCase ), '''box''': {'''xmin''': ANY(__UpperCamelCase ), '''ymin''': ANY(__UpperCamelCase ), '''xmax''': ANY(__UpperCamelCase ), '''ymax''': ANY(__UpperCamelCase )}, } for i in range(__UpperCamelCase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def _lowercase ( self ): """simple docstring""" pass @require_torch def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) UpperCamelCase : Tuple = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) UpperCamelCase : List[str] = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = pipeline('''zero-shot-object-detection''' ) UpperCamelCase : Optional[int] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) UpperCamelCase : Dict = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def _lowercase ( self ): """simple docstring""" pass @require_torch @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = 0.2 UpperCamelCase : int = pipeline('''zero-shot-object-detection''' ) UpperCamelCase : Optional[int] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = 2 UpperCamelCase : Any = pipeline('''zero-shot-object-detection''' ) UpperCamelCase : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( A_): '''simple docstring''' __UpperCamelCase : Dict = '''mobilenet_v1''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE="relu6" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.999 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.001 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCamelCase : Dict = num_channels UpperCamelCase : Optional[Any] = image_size UpperCamelCase : Dict = depth_multiplier UpperCamelCase : str = min_depth UpperCamelCase : Any = hidden_act UpperCamelCase : List[str] = tf_padding UpperCamelCase : List[str] = classifier_dropout_prob UpperCamelCase : Any = initializer_range UpperCamelCase : List[str] = layer_norm_eps class UpperCAmelCase_ ( A_): '''simple docstring''' __UpperCamelCase : Any = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def _lowercase ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tempfile.mkdtemp() UpperCamelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase : Tuple = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCamelCase : str = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.get_tokenizer() UpperCamelCase : Dict = self.get_rust_tokenizer() UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) UpperCamelCase : List[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Union[str, Any] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase : int = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCamelCase : List[Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : Union[str, Any] = self.prepare_image_inputs() UpperCamelCase : int = image_processor(UpperCamelCase__ , return_tensors='''np''' ) UpperCamelCase : Dict = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : List[str] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : Tuple = 'lower newer' UpperCamelCase : Tuple = processor(text=UpperCamelCase__ ) UpperCamelCase : int = tokenizer(UpperCamelCase__ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : str = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : Optional[int] = self.prepare_image_inputs() UpperCamelCase : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[str] = processor.batch_decode(UpperCamelCase__ ) UpperCamelCase : Any = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.get_image_processor() UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCamelCase : str = 'lower newer' UpperCamelCase : List[str] = self.prepare_image_inputs() UpperCamelCase : List[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class UpperCAmelCase_ ( a__): '''simple docstring''' __UpperCamelCase : Union[str, Any] = "open-llama" def __init__( self , __SCREAMING_SNAKE_CASE=100_000 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=11_008 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : Tuple = max_position_embeddings UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Tuple = num_attention_heads UpperCamelCase : Tuple = hidden_act UpperCamelCase : str = initializer_range UpperCamelCase : Dict = rms_norm_eps UpperCamelCase : List[Any] = use_cache UpperCamelCase : Optional[int] = kwargs.pop( '''use_memorry_efficient_attention''' , lowerCamelCase_ ) UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_dropout_prob UpperCamelCase : Tuple = use_stable_embedding UpperCamelCase : int = shared_input_output_embedding UpperCamelCase : Dict = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_ , ) def _lowercase ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) UpperCamelCase : Tuple = self.rope_scaling.get('''type''' , lowerCamelCase_ ) UpperCamelCase : Tuple = self.rope_scaling.get('''factor''' , lowerCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" UpperCamelCase : Tuple = nn.Parameter(SCREAMING_SNAKE_CASE_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" UpperCamelCase : Optional[int] = nn.Parameter(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Any = np.asarray(weights[0] ) UpperCamelCase : Optional[Any] = np.asarray(weights[1] ) UpperCamelCase : Union[str, Any] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : List[Any] = np.asarray(weights[0] ) UpperCamelCase : str = np.asarray(weights[1] ) UpperCamelCase : Dict = np.asarray(weights[2] ) UpperCamelCase : Any = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE_ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).view(-1 , SCREAMING_SNAKE_CASE_ ).contiguous().transpose(0 , 1 ) , ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Tuple = weights[0][0][0] UpperCamelCase : List[Any] = np.asarray(layer_norm_a[0] ) UpperCamelCase : Optional[int] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # lsh weights + output UpperCamelCase : Tuple = weights[0][1] if len(SCREAMING_SNAKE_CASE_ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE_ , torch_block.attention , SCREAMING_SNAKE_CASE_ ) # intermediate weighs UpperCamelCase : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE_ ) == 4: UpperCamelCase : Optional[Any] = intermediate_weights[2] # layernorm 2 UpperCamelCase : str = np.asarray(intermediate_weights[0][0] ) UpperCamelCase : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate dense UpperCamelCase : Optional[int] = np.asarray(intermediate_weights[1][0] ) UpperCamelCase : Optional[int] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # intermediate out UpperCamelCase : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) UpperCamelCase : int = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : List[Any] = torch_model.reformer # word embeds UpperCamelCase : str = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCamelCase : Union[str, Any] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" UpperCamelCase : List[Any] = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCamelCase : List[str] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # output layer norm UpperCamelCase : List[str] = np.asarray(weights[7][0] ) UpperCamelCase : Dict = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE_ ) , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) # output embeddings UpperCamelCase : int = np.asarray(weights[9][0] ) UpperCamelCase : Tuple = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE_ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE_ ) , ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : int = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase : str = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , '''rb''' ) as f: UpperCamelCase : str = pickle.load(SCREAMING_SNAKE_CASE_ )['''weights'''] set_model_weights_in_torch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : str = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __UpperCAmelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(__UpperCAmelCase) class UpperCAmelCase_ ( __UpperCAmelCase): '''simple docstring''' def __init__( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(lowerCAmelCase_ ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} UpperCamelCase : Dict = {} UpperCamelCase : Any = {} # preprocess args if "points_per_batch" in kwargs: UpperCamelCase : int = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: UpperCamelCase : List[Any] = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: UpperCamelCase : List[str] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: UpperCamelCase : Any = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: UpperCamelCase : Tuple = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: UpperCamelCase : Union[str, Any] = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: UpperCamelCase : List[str] = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: UpperCamelCase : Any = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: UpperCamelCase : Union[str, Any] = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: UpperCamelCase : Dict = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: UpperCamelCase : List[str] = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: UpperCamelCase : Any = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return super().__call__(lowerCAmelCase_ , *lowerCAmelCase_ , num_workers=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = 512 / 1_500 , __SCREAMING_SNAKE_CASE = 32 , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase : Union[str, Any] = load_image(lowerCAmelCase_ ) UpperCamelCase : Dict = self.image_processor.size['''longest_edge'''] UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : List[str] = self.image_processor.generate_crop_boxes( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase : str = self.image_processor(images=lowerCAmelCase_ , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": UpperCamelCase : Any = self.get_inference_context() with inference_context(): UpperCamelCase : Tuple = self._ensure_tensor_on_device(lowerCAmelCase_ , device=self.device ) UpperCamelCase : List[Any] = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) UpperCamelCase : int = image_embeddings UpperCamelCase : Optional[Any] = grid_points.shape[1] UpperCamelCase : List[Any] = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , lowerCAmelCase_ , lowerCAmelCase_ ): UpperCamelCase : Tuple = grid_points[:, i : i + points_per_batch, :, :] UpperCamelCase : Optional[int] = input_labels[:, i : i + points_per_batch] UpperCamelCase : Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0.88 , __SCREAMING_SNAKE_CASE=0.95 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , ): """simple docstring""" UpperCamelCase : Union[str, Any] = model_inputs.pop('''input_boxes''' ) UpperCamelCase : Dict = model_inputs.pop('''is_last''' ) UpperCamelCase : Union[str, Any] = model_inputs.pop('''original_sizes''' ).tolist() UpperCamelCase : Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() UpperCamelCase : Union[str, Any] = self.model(**lowerCAmelCase_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks UpperCamelCase : Optional[Any] = model_outputs['''pred_masks'''] UpperCamelCase : str = self.image_processor.post_process_masks( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , binarize=lowerCAmelCase_ ) UpperCamelCase : List[Any] = model_outputs['''iou_scores'''] UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.7 , ): """simple docstring""" UpperCamelCase : str = [] UpperCamelCase : str = [] UpperCamelCase : Any = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) UpperCamelCase : Union[str, Any] = torch.cat(lowerCAmelCase_ ) UpperCamelCase : Any = torch.cat(lowerCAmelCase_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = self.image_processor.post_process_for_mask_generation( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase : Dict = defaultdict(lowerCAmelCase_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(lowerCAmelCase_ ) UpperCamelCase : Tuple = {} if output_rle_mask: UpperCamelCase : Optional[Any] = rle_mask if output_bboxes_mask: UpperCamelCase : int = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(a_ ): requests.request('''GET''' , '''https://huggingface.co''' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 ) @pytest.mark.integration def a ( ): """simple docstring""" with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('''GET''' , '''https://huggingface.co''' ) def a ( ): """simple docstring""" with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(a_ ): http_head('''https://huggingface.co''' )
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
import heapq import sys import numpy as np __UpperCAmelCase : List[str] = tuple[int, int] class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCamelCase : int = [] UpperCamelCase : Dict = set() def _lowercase ( self ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _lowercase ( self ): """simple docstring""" return len(self.elements ) == 0 def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_A ) else: # update # print("update", item) UpperCamelCase : int = [] ((UpperCamelCase) , (UpperCamelCase)) : List[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((UpperCamelCase) , (UpperCamelCase)) : Optional[int] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if item in self.set: self.set.remove(_A ) UpperCamelCase : Dict = [] ((UpperCamelCase) , (UpperCamelCase)) : List[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((UpperCamelCase) , (UpperCamelCase)) : Dict = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowercase ( self ): """simple docstring""" return self.elements[0][1] def _lowercase ( self ): """simple docstring""" ((UpperCamelCase) , (UpperCamelCase)) : Any = heapq.heappop(self.elements ) self.set.remove(_A ) return (priority, item) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Dict = np.array(UpperCAmelCase__ ) UpperCamelCase : str = np.array(UpperCAmelCase__ ) return np.linalg.norm(a - b ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" return consistent_heuristic(UpperCAmelCase__ , UpperCAmelCase__ ) // t def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = g_function[start] + Wa * heuristics[i](UpperCAmelCase__ , UpperCAmelCase__ ) return ans def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = np.chararray((n, n) ) for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): UpperCamelCase : List[Any] = '''*''' for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if (j, (n - 1) - i) in blocks: UpperCamelCase : Optional[int] = '''#''' UpperCamelCase : str = '''-''' UpperCamelCase : Tuple = back_pointer[goal] while x != start: ((UpperCamelCase) , (UpperCamelCase)) : Any = x # print(x) UpperCamelCase : int = '''-''' UpperCamelCase : int = back_pointer[x] UpperCamelCase : Tuple = '''-''' for i in range(UpperCAmelCase__ ): for j in range(UpperCAmelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) UpperCamelCase : List[Any] = back_pointer[goal] while x != start: print(UpperCAmelCase__ , end=''' ''' ) UpperCamelCase : List[str] = back_pointer[x] print(UpperCAmelCase__ ) sys.exit() def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , ): """simple docstring""" for itera in range(UpperCAmelCase__ ): open_list[itera].remove_element(UpperCAmelCase__ ) # print("s", s) # print("j", j) ((UpperCamelCase) , (UpperCamelCase)) : List[str] = s UpperCamelCase : Dict = (x - 1, y) UpperCamelCase : str = (x + 1, y) UpperCamelCase : str = (x, y + 1) UpperCamelCase : Any = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCAmelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCAmelCase__ ) UpperCamelCase : str = -1 UpperCamelCase : List[Any] = float('''inf''' ) if valid(UpperCAmelCase__ ) and g_function[neighbours] > g_function[s] + 1: UpperCamelCase : List[Any] = g_function[s] + 1 UpperCamelCase : Optional[Any] = s if neighbours not in close_list_anchor: open_list[0].put(UpperCAmelCase__ , key(UpperCAmelCase__ , 0 , UpperCAmelCase__ , UpperCAmelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCAmelCase__ ): if key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) <= Wa * key( UpperCAmelCase__ , 0 , UpperCAmelCase__ , UpperCAmelCase__ ): open_list[j].put( UpperCAmelCase__ , key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) def a ( ): """simple docstring""" UpperCamelCase : List[Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list __UpperCAmelCase : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} __UpperCAmelCase : Union[str, Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] __UpperCAmelCase : List[str] = make_common_ground() __UpperCAmelCase : Union[str, Any] = blocks_blk # hyper parameters __UpperCAmelCase : str = 1 __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : List[str] = 20 __UpperCAmelCase : Union[str, Any] = 3 # one consistent and two other inconsistent # start and end destination __UpperCAmelCase : Tuple = (0, 0) __UpperCAmelCase : Tuple = (n - 1, n - 1) __UpperCAmelCase : Dict = 1 def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Any = {start: 0, goal: float('''inf''' )} UpperCamelCase : Optional[Any] = {start: -1, goal: -1} UpperCamelCase : Tuple = [] UpperCamelCase : Optional[Any] = set() for i in range(UpperCAmelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCAmelCase__ , key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) ) UpperCamelCase : Any = [] UpperCamelCase : List[Any] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , UpperCAmelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase , UpperCamelCase : Union[str, Any] = open_list[i].top_show() visited.add(UpperCAmelCase__ ) expand_state( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) close_list_inad.append(UpperCAmelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) else: UpperCamelCase : Optional[int] = open_list[0].top_show() visited.add(UpperCAmelCase__ ) expand_state( UpperCAmelCase__ , 0 , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) close_list_anchor.append(UpperCAmelCase__ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCAmelCase__ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Dict = '▁' __UpperCAmelCase : Union[str, Any] = {'vocab_file': 'prophetnet.tokenizer'} __UpperCAmelCase : Tuple = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } __UpperCAmelCase : int = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } __UpperCAmelCase : List[str] = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Optional[int] = collections.OrderedDict() with open(UpperCAmelCase__ , '''r''' , encoding='''utf-8''' ) as reader: UpperCamelCase : Dict = reader.readlines() for index, token in enumerate(UpperCAmelCase__ ): UpperCamelCase : int = token.rstrip('''\n''' ) UpperCamelCase : Dict = index return vocab class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = ["input_ids", "attention_mask"] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise UpperCamelCase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) UpperCamelCase : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab UpperCamelCase : Any = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(10 ): UpperCamelCase : List[str] = f"""[unused{i}]""" UpperCamelCase : str = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab UpperCamelCase : Tuple = 12 UpperCamelCase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(__UpperCamelCase ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Any = self.__dict__.copy() UpperCamelCase : Any = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''' ) raise # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Dict = {} UpperCamelCase : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return ([0] * len(__UpperCamelCase )) + [1] return ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[str] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowercase ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Optional[int] = self.sp_model.PieceToId(__UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = ''''''.join(__UpperCamelCase ).replace(__UpperCamelCase , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Dict = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: UpperCamelCase : Dict = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] UpperCamelCase : Dict = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
import os from pathlib import Path def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : List[Any] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase : str = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } UpperCamelCase : int = F"""{src_lang}-{tgt_lang}""" UpperCamelCase : str = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase : Tuple = os.path.join(_UpperCamelCase , '''README.md''' ) print(F"""Generating {path}""" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project __UpperCAmelCase : Union[str, Any] = Path(__file__).resolve().parent.parent.parent __UpperCAmelCase : str = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: __UpperCAmelCase : Dict = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
__UpperCAmelCase : Optional[int] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Optional[Any] = [False] * len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = [s] UpperCamelCase : Tuple = True while queue: UpperCamelCase : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = True UpperCamelCase : Any = u return visited[t] def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Dict = [-1] * (len(SCREAMING_SNAKE_CASE_ )) UpperCamelCase : int = 0 UpperCamelCase : List[Any] = [] UpperCamelCase : int = [i[:] for i in graph] # Record original cut, copy. while bfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = float('''Inf''' ) UpperCamelCase : Dict = sink while s != source: # Find the minimum value in select path UpperCamelCase : Tuple = min(SCREAMING_SNAKE_CASE_ , graph[parent[s]][s] ) UpperCamelCase : Dict = parent[s] max_flow += path_flow UpperCamelCase : int = sink while v != source: UpperCamelCase : List[str] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase : Union[str, Any] = parent[v] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup __UpperCAmelCase : int = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def a ( SCREAMING_SNAKE_CASE_ : str = "mumbai" ): """simple docstring""" a_ : Optional[int] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): a_ : Optional[Any] = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() a_ : Union[str, Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=0.9 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 30} UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCamelCase : List[str] = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : str = num_channels UpperCamelCase : Any = min_resolution UpperCamelCase : Optional[int] = max_resolution UpperCamelCase : Dict = do_resize_and_center_crop UpperCamelCase : Optional[Any] = size UpperCamelCase : List[Any] = crop_pct UpperCamelCase : List[str] = crop_size UpperCamelCase : List[str] = do_normalize UpperCamelCase : Dict = image_mean UpperCamelCase : Tuple = image_std def _lowercase ( self ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase_ ( UpperCamelCase_, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[str] = PoolFormerImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = PoolFormerImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''crop_pct''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) UpperCamelCase : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : List[Any] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : int = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : int = logging.get_logger(__name__) class UpperCAmelCase_ ( lowercase_): '''simple docstring''' __UpperCamelCase : int = ['''input_features''', '''is_longer'''] def __init__( self , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=48_000 , __SCREAMING_SNAKE_CASE=480 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = 14_000 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fusion" , __SCREAMING_SNAKE_CASE = "repeatpad" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = top_db UpperCamelCase : Union[str, Any] = truncation UpperCamelCase : Optional[Any] = padding UpperCamelCase : Dict = fft_window_size UpperCamelCase : Union[str, Any] = (fft_window_size >> 1) + 1 UpperCamelCase : Union[str, Any] = hop_length UpperCamelCase : List[str] = max_length_s UpperCamelCase : Tuple = max_length_s * sampling_rate UpperCamelCase : str = sampling_rate UpperCamelCase : Optional[Any] = frequency_min UpperCamelCase : str = frequency_max UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=__SCREAMING_SNAKE_CASE , max_frequency=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , norm=__SCREAMING_SNAKE_CASE , mel_scale='''htk''' , ) UpperCamelCase : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=__SCREAMING_SNAKE_CASE , max_frequency=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) UpperCamelCase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Tuple = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__SCREAMING_SNAKE_CASE , log_mel='''dB''' , ) return log_mel_spectrogram.T def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Tuple = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase : Dict = [0] # randomly choose index for each part UpperCamelCase : Any = np.random.choice(ranges[0] ) UpperCamelCase : List[Any] = np.random.choice(ranges[1] ) UpperCamelCase : List[str] = np.random.choice(ranges[2] ) UpperCamelCase : List[str] = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase : List[str] = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase : List[str] = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase : Any = torch.tensor(mel[None, None, :] ) UpperCamelCase : Any = torch.nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = mel_shrink[0][0].numpy() UpperCamelCase : Optional[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase : str = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase : List[str] = len(__SCREAMING_SNAKE_CASE ) - max_length UpperCamelCase : Optional[int] = np.random.randint(0 , overflow + 1 ) UpperCamelCase : Union[str, Any] = waveform[idx : idx + max_length] UpperCamelCase : List[Any] = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase : str = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters ) UpperCamelCase : Optional[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase : Optional[Any] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase : Any = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase : List[Any] = False else: UpperCamelCase : str = self._random_mel_fusion(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = True else: raise NotImplementedError(f"""data_truncating {truncation} not implemented""" ) else: UpperCamelCase : List[str] = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase : List[str] = int(max_length / len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : int = np.stack(np.tile(__SCREAMING_SNAKE_CASE , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase : Union[str, Any] = int(max_length / len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = np.stack(np.tile(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = np.pad(__SCREAMING_SNAKE_CASE , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": UpperCamelCase : Tuple = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters ) UpperCamelCase : int = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase : Dict = self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[Any] = truncation if truncation is not None else self.truncation UpperCamelCase : List[str] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Any = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : int = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : int = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : Optional[int] = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Dict = [np.asarray(__SCREAMING_SNAKE_CASE )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase : int = [ self._get_input_mel(__SCREAMING_SNAKE_CASE , max_length if max_length else self.nb_max_samples , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for waveform in raw_speech ] UpperCamelCase : Dict = [] UpperCamelCase : int = [] for mel, longer in padded_inputs: input_mel.append(__SCREAMING_SNAKE_CASE ) is_longer.append(__SCREAMING_SNAKE_CASE ) if truncation == "fusion" and sum(__SCREAMING_SNAKE_CASE ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase : int = np.random.randint(0 , len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = True if isinstance(input_mel[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase : int = [[longer] for longer in is_longer] UpperCamelCase : Optional[Any] = {'''input_features''': input_mel, '''is_longer''': is_longer} UpperCamelCase : List[Any] = BatchFeature(__SCREAMING_SNAKE_CASE ) if return_tensors is not None: UpperCamelCase : int = input_features.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return input_features
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int=False ): """simple docstring""" UpperCamelCase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""module.blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""module.blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""module.blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""module.blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''module.cls_token''', '''vit.embeddings.cls_token'''), ('''module.patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''module.patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''module.pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''module.norm.weight''', '''layernorm.weight'''), ('''module.norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase : Optional[Any] = '''''' else: UpperCamelCase : List[Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase : Union[str, Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.weight""" ) UpperCamelCase : List[Any] = state_dict.pop(F"""module.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase : Any = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase : Optional[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase : Tuple = in_proj_bias[-config.hidden_size :] def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : int = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Union[str, Any] = [ '''module.fc.fc1.weight''', '''module.fc.fc1.bias''', '''module.fc.bn1.weight''', '''module.fc.bn1.bias''', '''module.fc.bn1.running_mean''', '''module.fc.bn1.running_var''', '''module.fc.bn1.num_batches_tracked''', '''module.fc.fc2.weight''', '''module.fc.fc2.bias''', '''module.fc.bn2.weight''', '''module.fc.bn2.bias''', '''module.fc.bn2.running_mean''', '''module.fc.bn2.running_var''', '''module.fc.bn2.num_batches_tracked''', '''module.fc.fc3.weight''', '''module.fc.fc3.bias''', ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : Tuple = dct.pop(lowerCamelCase__ ) UpperCamelCase : Union[str, Any] = val def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Union[str, Any] = ViTMSNConfig() UpperCamelCase : Dict = 1_0_0_0 UpperCamelCase : List[str] = '''datasets/huggingface/label-files''' UpperCamelCase : Optional[int] = '''imagenet-1k-id2label.json''' UpperCamelCase : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ ) , '''r''' ) ) UpperCamelCase : List[Any] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} UpperCamelCase : List[str] = idalabel UpperCamelCase : Optional[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase : List[str] = 3_8_4 UpperCamelCase : Any = 1_5_3_6 UpperCamelCase : str = 6 elif "l16" in checkpoint_url: UpperCamelCase : Any = 1_0_2_4 UpperCamelCase : Union[str, Any] = 4_0_9_6 UpperCamelCase : str = 2_4 UpperCamelCase : Optional[Any] = 1_6 UpperCamelCase : int = 0.1 elif "b4" in checkpoint_url: UpperCamelCase : Optional[int] = 4 elif "l7" in checkpoint_url: UpperCamelCase : Union[str, Any] = 7 UpperCamelCase : Union[str, Any] = 1_0_2_4 UpperCamelCase : Dict = 4_0_9_6 UpperCamelCase : Optional[int] = 2_4 UpperCamelCase : int = 1_6 UpperCamelCase : str = 0.1 UpperCamelCase : Tuple = ViTMSNModel(lowerCamelCase__ ) UpperCamelCase : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' )['''target_encoder'''] UpperCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) remove_projection_head(lowerCamelCase__ ) UpperCamelCase : Optional[int] = create_rename_keys(lowerCamelCase__ , base_model=lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) read_in_q_k_v(lowerCamelCase__ , lowerCamelCase__ , base_model=lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() UpperCamelCase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase : List[Any] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) UpperCamelCase : List[str] = ViTImageProcessor( size=config.image_size , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ ) UpperCamelCase : Tuple = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase : Optional[Any] = model(**lowerCamelCase__ ) UpperCamelCase : List[Any] = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase : str = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: UpperCamelCase : Optional[int] = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: UpperCamelCase : List[str] = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: UpperCamelCase : int = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: UpperCamelCase : str = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , lowerCamelCase__ , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCAmelCase : List[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : int = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ) def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" if dataset.ndim != value_array.ndim: UpperCamelCase : List[Any] = ( '''Wrong input data\'s dimensions... ''' F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) try: if dataset.shape[1] != value_array.shape[1]: UpperCamelCase : str = ( '''Wrong input data\'s shape... ''' F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(SCREAMING_SNAKE_CASE_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: UpperCamelCase : Union[str, Any] = ( '''Input data have different datatype... ''' F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = [] for value in value_array: UpperCamelCase : Any = euclidean(SCREAMING_SNAKE_CASE_ , dataset[0] ) UpperCamelCase : Dict = dataset[0].tolist() for dataset_value in dataset[1:]: UpperCamelCase : Tuple = euclidean(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if dist > temp_dist: UpperCamelCase : Union[str, Any] = temp_dist UpperCamelCase : Tuple = dataset_value.tolist() answer.append([vector, dist] ) return answer def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray ): """simple docstring""" return np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) / (norm(SCREAMING_SNAKE_CASE_ ) * norm(SCREAMING_SNAKE_CASE_ )) if __name__ == "__main__": import doctest doctest.testmod()
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCamelCase : list[float] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = degree def __add__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.degree > polynomial_a.degree: UpperCamelCase : int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __SCREAMING_SNAKE_CASE ) def __sub__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): """simple docstring""" UpperCamelCase : List[Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__SCREAMING_SNAKE_CASE ) return polynomial def __repr__( self ): """simple docstring""" return self.__str__() def _lowercase ( self ): """simple docstring""" UpperCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): UpperCamelCase : int = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" UpperCamelCase : list[float] = [0] * (self.degree + 2) UpperCamelCase : Optional[Any] = constant for i in range(self.degree + 1 ): UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __SCREAMING_SNAKE_CASE ) def __eq__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return not self.__eq__(__SCREAMING_SNAKE_CASE )
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[Any] = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" UpperCamelCase : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCamelCase : Union[str, Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self.get_dummy_inputs() UpperCamelCase : Dict = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : int = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs() UpperCamelCase : Any = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self.get_dummy_inputs() UpperCamelCase : List[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : int = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = ort.SessionOptions() UpperCamelCase : Optional[Any] = False return options def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCamelCase : Union[str, Any] = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCamelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = '''A fantasy landscape, trending on artstation''' UpperCamelCase : Any = torch.manual_seed(0 ) UpperCamelCase : str = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=10 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) UpperCamelCase : List[Any] = output.images UpperCamelCase : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Any = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCamelCase : int = init_image.resize((128, 128) ) UpperCamelCase : Dict = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = '''A fantasy landscape, trending on artstation''' UpperCamelCase : Any = torch.manual_seed(0 ) UpperCamelCase : List[Any] = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) UpperCamelCase : Any = output.images UpperCamelCase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Union[str, Any] = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
import torch from diffusers import DiffusionPipeline class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) def __call__( self ): """simple docstring""" UpperCamelCase : Tuple = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCamelCase : Union[str, Any] = 1 UpperCamelCase : Tuple = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample UpperCamelCase : List[Any] = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample UpperCamelCase : Optional[int] = scheduler_output - scheduler_output + torch.ones_like(__SCREAMING_SNAKE_CASE ) return result
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig __UpperCAmelCase : Tuple = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = "ernie_m" __UpperCamelCase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , __SCREAMING_SNAKE_CASE = 250_002 , __SCREAMING_SNAKE_CASE = 768 , __SCREAMING_SNAKE_CASE = 12 , __SCREAMING_SNAKE_CASE = 12 , __SCREAMING_SNAKE_CASE = 3_072 , __SCREAMING_SNAKE_CASE = "gelu" , __SCREAMING_SNAKE_CASE = 0.1 , __SCREAMING_SNAKE_CASE = 0.1 , __SCREAMING_SNAKE_CASE = 514 , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = 1e-05 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.0 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = vocab_size UpperCamelCase : List[Any] = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Tuple = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Union[str, Any] = layer_norm_eps UpperCamelCase : Any = classifier_dropout UpperCamelCase : List[Any] = is_decoder UpperCamelCase : Union[str, Any] = act_dropout
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a ( SCREAMING_SNAKE_CASE_ : Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" UpperCamelCase : Tuple = [] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple[int, ...] ): """simple docstring""" UpperCamelCase : Dict = [] for d in reversed(SCREAMING_SNAKE_CASE_ ): idx.append(flat_idx % d ) UpperCamelCase : Optional[Any] = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE_ ) ) @torch.jit.ignore def a ( SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , ): """simple docstring""" def reduce_edge_list(SCREAMING_SNAKE_CASE_ : List[bool] ) -> None: UpperCamelCase : Optional[int] = True for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase : Optional[int] = l[reversed_idx] if start_edges is None: UpperCamelCase : Any = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) if end_edges is None: UpperCamelCase : Union[str, Any] = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE_ ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCamelCase : List[Tuple[slice, ...]] = [] UpperCamelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE_ , s + 1 ) ) else: break UpperCamelCase : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase : str = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase : str = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCamelCase : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a ( SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : int = t.shape[:no_batch_dims] UpperCamelCase : Union[str, Any] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # _get_minimal_slice_set is inclusive UpperCamelCase : Any = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE_ ) ) # Get an ordered list of slices to perform UpperCamelCase : Optional[int] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : Dict[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : bool = False , ): """simple docstring""" if not (len(SCREAMING_SNAKE_CASE_ ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCamelCase : str = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE_ )] UpperCamelCase : str = tuple([max(SCREAMING_SNAKE_CASE_ ) for s in zip(*SCREAMING_SNAKE_CASE_ )] ) def _prep_inputs(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCamelCase : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCamelCase : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCamelCase : Dict = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCamelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = None if _out is not None: UpperCamelCase : str = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCamelCase : str = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase : Optional[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE_ ): # Chunk the input if not low_mem: UpperCamelCase : Optional[Any] = _select_chunk else: UpperCamelCase : Optional[Any] = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE_ , flat_end=min(SCREAMING_SNAKE_CASE_ , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE_ ) , ) UpperCamelCase : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Run the layer on the chunk UpperCamelCase : Optional[int] = layer(**SCREAMING_SNAKE_CASE_ ) # Allocate space for the output if out is None: UpperCamelCase : Any = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def assign(SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assign(SCREAMING_SNAKE_CASE_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase : Optional[int] = da[k] assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for xa, xa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase : Union[str, Any] = xa elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase : Any = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCamelCase : Tuple = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) return out class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 512 , ): """simple docstring""" UpperCamelCase : Dict = max_chunk_size UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[tuple] = None def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCamelCase : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*__SCREAMING_SNAKE_CASE , chunk_size=__SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[str] = len(__SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: UpperCamelCase : Optional[int] = test_chunk_size(candidates[i] ) if not viable: UpperCamelCase : Any = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase : Tuple = i UpperCamelCase : Optional[int] = (i + len(__SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = True for aa, aa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert type(__SCREAMING_SNAKE_CASE ) == type(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] UpperCamelCase : Optional[int] = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[Any] = True UpperCamelCase : tuple = tree_map(lambda __SCREAMING_SNAKE_CASE : a.shape if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) else a , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , __SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value UpperCamelCase : Optional[Any] = False if not consistent: UpperCamelCase : Optional[int] = self._determine_favorable_chunk_size( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) UpperCamelCase : Any = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=[1, 2, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 4] , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=8 , ): """simple docstring""" UpperCamelCase : Dict = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = image_size UpperCamelCase : Tuple = patch_size UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = embed_dim UpperCamelCase : Any = depths UpperCamelCase : Optional[Any] = num_heads UpperCamelCase : Tuple = window_size UpperCamelCase : List[Any] = mlp_ratio UpperCamelCase : Union[str, Any] = qkv_bias UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : List[Any] = drop_path_rate UpperCamelCase : str = hidden_act UpperCamelCase : Optional[int] = use_absolute_embeddings UpperCamelCase : List[Any] = patch_norm UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Any = initializer_range UpperCamelCase : Optional[int] = is_training UpperCamelCase : Dict = scope UpperCamelCase : Optional[int] = use_labels UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : List[Any] = encoder_stride def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : List[str] = None if self.use_labels: UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = SwinvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) UpperCamelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = SwinvaForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Dict = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase : List[str] = 1 UpperCamelCase : List[str] = SwinvaForMaskedImageModeling(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = self.type_sequence_label_size UpperCamelCase : Union[str, Any] = SwinvaForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() UpperCamelCase : Optional[int] = config_and_inputs UpperCamelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[int] = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __UpperCamelCase : Dict = ( {"feature-extraction": SwinvaModel, "image-classification": SwinvaForImageClassification} if is_torch_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : int = False __UpperCamelCase : Union[str, Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = SwinvaModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , embed_dim=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : List[Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = True for model_class in self.all_model_classes: UpperCamelCase : Any = True UpperCamelCase : Union[str, Any] = False UpperCamelCase : List[str] = True UpperCamelCase : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : str = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[Any] = outputs.attentions UpperCamelCase : List[str] = len(self.model_tester.depths ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase : Tuple = True UpperCamelCase : int = config.window_size**2 UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine UpperCamelCase : str = True UpperCamelCase : Any = True UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : str = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): UpperCamelCase : int = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states UpperCamelCase : Dict = 2 self.assertEqual(out_len + added_hidden_states , len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : int = outputs.attentions self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : List[str] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Tuple = outputs.hidden_states UpperCamelCase : List[str] = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) # Swinv2 has a different seq_length UpperCamelCase : Union[str, Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) UpperCamelCase : List[str] = outputs.reshaped_hidden_states self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = reshaped_hidden_states[0].shape UpperCamelCase : int = ( reshaped_hidden_states[0].view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: UpperCamelCase : str = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : str = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = 3 UpperCamelCase : Tuple = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) UpperCamelCase : Tuple = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) UpperCamelCase : Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) UpperCamelCase : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: UpperCamelCase : Tuple = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase : int = True self.check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (padded_height, padded_width) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[int] = SwinvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : int = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.default_image_processor UpperCamelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCamelCase : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = torch.tensor([-0.3_947, -0.4_306, 0.0_026] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = ["pixel_values"] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 255 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} UpperCamelCase : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase : Dict = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE , param_name='''crop_size''' ) UpperCamelCase : Any = do_resize UpperCamelCase : Tuple = size UpperCamelCase : Optional[Any] = resample UpperCamelCase : Optional[Any] = do_center_crop UpperCamelCase : Any = crop_size UpperCamelCase : Dict = do_rescale UpperCamelCase : Optional[int] = rescale_factor UpperCamelCase : str = do_normalize UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase : Optional[Any] = do_convert_rgb def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[str] = get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase : Optional[int] = get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size=size['''shortest_edge'''] , default_to_square=__SCREAMING_SNAKE_CASE ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Tuple = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size['''height'''], size['''width''']) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Union[str, Any] = size if size is not None else self.size UpperCamelCase : int = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''size''' , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = resample if resample is not None else self.resample UpperCamelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase : Any = crop_size if crop_size is not None else self.crop_size UpperCamelCase : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE , param_name='''crop_size''' , default_to_square=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : int = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Tuple = image_std if image_std is not None else self.image_std UpperCamelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase : Any = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase : Any = [convert_to_rgb(__SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. UpperCamelCase : Tuple = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase : Union[str, Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: UpperCamelCase : str = [self.center_crop(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase : str = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase : Optional[int] = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase : Any = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase : List[str] = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
def a ( SCREAMING_SNAKE_CASE_ : int = 5_0 ): """simple docstring""" UpperCamelCase : Dict = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Union[str, Any] = "markuplm" def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=216 , __SCREAMING_SNAKE_CASE=1_001 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=50 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Tuple = vocab_size UpperCamelCase : Any = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : Optional[int] = intermediate_size UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : str = max_position_embeddings UpperCamelCase : Tuple = type_vocab_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : int = layer_norm_eps UpperCamelCase : Optional[int] = position_embedding_type UpperCamelCase : Any = use_cache UpperCamelCase : Union[str, Any] = classifier_dropout # additional properties UpperCamelCase : int = max_depth UpperCamelCase : Dict = max_xpath_tag_unit_embeddings UpperCamelCase : Union[str, Any] = max_xpath_subs_unit_embeddings UpperCamelCase : Optional[int] = tag_pad_id UpperCamelCase : str = subs_pad_id UpperCamelCase : int = xpath_unit_hidden_size
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[Any] = None def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually UpperCamelCase : Union[str, Any] = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCamelCase : List[str] = str(distributed_port + 1 ) UpperCamelCase : int = dist.new_group(ranks=__SCREAMING_SNAKE_CASE , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase ( self ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=torch.floataa ): """simple docstring""" UpperCamelCase : List[Any] = torch.empty(__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) dist.scatter(__SCREAMING_SNAKE_CASE , src=0 , scatter_list=__SCREAMING_SNAKE_CASE , group=self.process_group ) return target_tensor def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCamelCase : Tuple = next((addr for addr in addrs if addr.startswith('''e''' )) , __SCREAMING_SNAKE_CASE ) return ifname def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not dist.is_initialized(): UpperCamelCase : List[str] = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE ) # distributed training UpperCamelCase : str = dist.get_world_size(group=self.process_group ) # gather logic UpperCamelCase : Any = None if self._is_main(): UpperCamelCase : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__SCREAMING_SNAKE_CASE )] dist.gather(torch.tensor(__SCREAMING_SNAKE_CASE ) , dst=0 , gather_list=__SCREAMING_SNAKE_CASE , group=self.process_group ) # scatter logic UpperCamelCase : str = question_hidden_states.shape[0] UpperCamelCase : Any = [] UpperCamelCase : Tuple = [] if self._is_main(): assert len(__SCREAMING_SNAKE_CASE ) == world_size UpperCamelCase : List[str] = self._main_retrieve(torch.cat(__SCREAMING_SNAKE_CASE ).numpy() , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = torch.tensor(__SCREAMING_SNAKE_CASE ), torch.tensor(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs] , target_type=torch.intaa ) UpperCamelCase : Optional[Any] = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE )
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCamelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) UpperCamelCase : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCamelCase : Dict = [sys.executable] + distributed_args execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() )
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCAmelCase : Tuple = { "configuration_ctrl": ["CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP", "CTRLConfig"], "tokenization_ctrl": ["CTRLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ "TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCTRLForSequenceClassification", "TFCTRLLMHeadModel", "TFCTRLModel", "TFCTRLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase : Any = "▁" __UpperCAmelCase : int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Any = BertGenerationTokenizer __UpperCamelCase : int = False __UpperCamelCase : List[Any] = True def _lowercase ( self ): """simple docstring""" super().setUp() a_ : Tuple = BertGenerationTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" a_ : Tuple = '''<s>''' a_ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" a_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_002 ) def _lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def _lowercase ( self ): """simple docstring""" a_ : int = BertGenerationTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) a_ : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) a_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) a_ : Any = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowercase ( self ): """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def _lowercase ( self ): """simple docstring""" a_ : Optional[int] = '''Hello World!''' a_ : str = [18_536, 2_260, 101] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _lowercase ( self ): """simple docstring""" a_ : Optional[int] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) a_ : Tuple = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _lowercase ( self ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence a_ : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] a_ : List[Any] = ''' '''.join(__SCREAMING_SNAKE_CASE ) a_ : Tuple = self.big_tokenizer.encode_plus(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__SCREAMING_SNAKE_CASE ) a_ : Optional[Any] = BertGenerationConfig() a_ : List[str] = BertGenerationEncoder(__SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__SCREAMING_SNAKE_CASE ) model(**__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" a_ : Optional[Any] = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCAmelCase : Any = None __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : str = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Any = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Tuple = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off __UpperCAmelCase : Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = ["input_ids", "attention_mask"] __UpperCamelCase : int = NllbTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase : Optional[Any] = legacy_behaviour super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[int] = vocab_file UpperCamelCase : str = False if not self.vocab_file else True UpperCamelCase : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : Optional[int] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Any = src_lang if src_lang is not None else '''eng_Latn''' UpperCamelCase : int = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[str] = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : Dict = src_lang UpperCamelCase : List[str] = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "eng_Latn" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fra_Latn" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[str] = src_lang UpperCamelCase : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) if self.legacy_behaviour: UpperCamelCase : Optional[Any] = [] UpperCamelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase : List[Any] = [self.cur_lang_code] UpperCamelCase : List[Any] = [self.eos_token_id] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) if self.legacy_behaviour: UpperCamelCase : Any = [] UpperCamelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase : Union[str, Any] = [self.cur_lang_code] UpperCamelCase : List[str] = [self.eos_token_id] UpperCamelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : List[str] = len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) - pat_len + 1 ): UpperCamelCase : Union[str, Any] = True for j in range(SCREAMING_SNAKE_CASE_ ): if s[i + j] != pattern[j]: UpperCamelCase : str = False break if match_found: position.append(SCREAMING_SNAKE_CASE_ ) return position if __name__ == "__main__": assert naive_pattern_search("ABCDEFG", "DE") == [3] print(naive_pattern_search("ABAAABCDBBABCDDEBCABC", "ABC"))
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : List[str] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCamelCase : Dict = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase : List[str] = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : Optional[int] = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase : Tuple = F"""layers_{str(SCREAMING_SNAKE_CASE_ )}""" # Self-Attention UpperCamelCase : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCamelCase : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCamelCase : str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCamelCase : Any = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCamelCase : Any = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCamelCase : str = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase : Optional[int] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase : List[Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase : Union[str, Any] = flax_model.params['''encoder''']['''block'''][str(SCREAMING_SNAKE_CASE_ )]['''layer'''] UpperCamelCase : str = tax_attention_key UpperCamelCase : int = tax_attention_out UpperCamelCase : Dict = tax_attention_query UpperCamelCase : Dict = tax_attention_value UpperCamelCase : int = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : List[str] = tax_global_layer_norm if split_mlp_wi: UpperCamelCase : Tuple = tax_mlp_wi_a UpperCamelCase : Optional[Any] = tax_mlp_wi_a else: UpperCamelCase : Optional[Any] = tax_mlp_wi UpperCamelCase : Tuple = tax_mlp_wo UpperCamelCase : Dict = tax_mlp_layer_norm UpperCamelCase : Tuple = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase : Any = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : List[str] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCamelCase : Optional[Any] = tax_encoder_global_rel_embedding # Assigning UpperCamelCase : Any = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCamelCase : List[Any] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase : Any = F"""layers_{str(SCREAMING_SNAKE_CASE_ )}""" # Self-Attention UpperCamelCase : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCamelCase : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCamelCase : List[str] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCamelCase : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCamelCase : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCamelCase : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCamelCase : Tuple = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCamelCase : Dict = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCamelCase : Union[str, Any] = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCamelCase : Optional[Any] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCamelCase : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCamelCase : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCamelCase : int = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCamelCase : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCamelCase : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCamelCase : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCamelCase : int = flax_model.params['''decoder''']['''block'''][str(SCREAMING_SNAKE_CASE_ )]['''layer'''] UpperCamelCase : str = tax_attention_key UpperCamelCase : str = tax_attention_out UpperCamelCase : Union[str, Any] = tax_attention_query UpperCamelCase : List[Any] = tax_attention_value UpperCamelCase : int = tax_pre_attention_layer_norm UpperCamelCase : Union[str, Any] = tax_enc_dec_attention_key UpperCamelCase : Union[str, Any] = tax_enc_dec_attention_out UpperCamelCase : Optional[int] = tax_enc_dec_attention_query UpperCamelCase : Union[str, Any] = tax_enc_dec_attention_value UpperCamelCase : List[str] = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase : str = tax_mlp_wi_a UpperCamelCase : Optional[Any] = tax_mlp_wi_a else: UpperCamelCase : List[str] = tax_mlp_wi UpperCamelCase : Tuple = tax_mlp_wo UpperCamelCase : int = txa_mlp_layer_norm UpperCamelCase : List[Any] = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase : Optional[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCamelCase : Optional[Any] = txa_decoder_norm # Only for layer 0: UpperCamelCase : int = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCamelCase : Union[str, Any] = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase : int = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCamelCase : int = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase : List[str] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": __UpperCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) __UpperCAmelCase : Optional[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") __UpperCAmelCase : Tuple = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) __UpperCamelCase : bool = field( default=_a, metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, ) __UpperCamelCase : str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) __UpperCamelCase : bool = field( default=_a, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Optional[str] = field(default=_a, metadata={"help": "The input training data file (a text file)."}) __UpperCamelCase : Optional[str] = field( default=_a, metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."}, ) __UpperCamelCase : bool = field( default=_a, metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCamelCase : Optional[int] = field( default=_a, metadata={"help": "The number of processes to use for the preprocessing."}, ) __UpperCamelCase : Optional[int] = field( default=_a, metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) __UpperCamelCase : bool = field( default=_a, metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) }, ) __UpperCamelCase : Optional[int] = field( default=_a, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) __UpperCamelCase : Optional[int] = field( default=_a, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) def _lowercase ( self ): """simple docstring""" if self.train_file is not None: UpperCamelCase : Union[str, Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase : List[Any] = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : PreTrainedTokenizerBase __UpperCamelCase : Union[bool, str, PaddingStrategy] = True __UpperCamelCase : Optional[int] = None __UpperCamelCase : Optional[int] = None def __call__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCamelCase : List[Any] = [feature.pop(__SCREAMING_SNAKE_CASE ) for feature in features] UpperCamelCase : Dict = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = len(features[0]['''input_ids'''] ) UpperCamelCase : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(__SCREAMING_SNAKE_CASE )] for feature in features ] UpperCamelCase : Any = list(chain(*__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : str = self.tokenizer.pad( __SCREAMING_SNAKE_CASE , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) # Un-flatten UpperCamelCase : Dict = {k: v.view(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase : Any = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.intaa ) return batch def a ( ): """simple docstring""" UpperCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase : List[str] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCamelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase : Tuple = {} if data_args.train_file is not None: UpperCamelCase : List[Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase : Dict = data_args.validation_file UpperCamelCase : List[Any] = data_args.train_file.split('''.''' )[-1] UpperCamelCase : List[str] = load_dataset( SCREAMING_SNAKE_CASE_ , data_files=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase : Any = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase : Optional[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase : List[str] = [F"""ending{i}""" for i in range(4 )] UpperCamelCase : int = '''sent1''' UpperCamelCase : Optional[int] = '''sent2''' if data_args.max_seq_length is None: UpperCamelCase : Tuple = tokenizer.model_max_length if max_seq_length > 1_0_2_4: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCamelCase : List[str] = 1_0_2_4 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCamelCase : Any = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(SCREAMING_SNAKE_CASE_ : Optional[Any] ): UpperCamelCase : int = [[context] * 4 for context in examples[context_name]] UpperCamelCase : Union[str, Any] = examples[question_header_name] UpperCamelCase : List[str] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(SCREAMING_SNAKE_CASE_ ) ] # Flatten out UpperCamelCase : Optional[Any] = list(chain(*SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : str = list(chain(*SCREAMING_SNAKE_CASE_ ) ) # Tokenize UpperCamelCase : Tuple = tokenizer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCamelCase : Tuple = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCamelCase : Dict = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_train_samples ) UpperCamelCase : Any = train_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCamelCase : List[Any] = train_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCamelCase : int = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCamelCase : int = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_eval_samples ) UpperCamelCase : Union[str, Any] = eval_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCamelCase : Tuple = eval_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase : Tuple = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(SCREAMING_SNAKE_CASE_ : Optional[Any] ): UpperCamelCase : List[str] = eval_predictions UpperCamelCase : Any = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase : Optional[Any] = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , compute_metrics=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: UpperCamelCase : List[str] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase : List[Any] = last_checkpoint UpperCamelCase : Any = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase : Optional[int] = train_result.metrics UpperCamelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[int] = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('''train''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''train''' , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase : str = trainer.evaluate() UpperCamelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" main() if __name__ == "__main__": main()
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = tempfile.mkdtemp() UpperCamelCase : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCamelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase : str = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return BertTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return BertTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase : Tuple = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[int] = self.get_rust_tokenizer() UpperCamelCase : str = self.get_image_processor() UpperCamelCase : int = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase : Any = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[int] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase : Optional[int] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase : Tuple = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) UpperCamelCase : int = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Any = self.get_tokenizer() UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.prepare_image_inputs() UpperCamelCase : Union[str, Any] = image_processor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) UpperCamelCase : Union[str, Any] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.get_image_processor() UpperCamelCase : str = self.get_tokenizer() UpperCamelCase : List[str] = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = '''lower newer''' UpperCamelCase : Any = processor(text=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.get_image_processor() UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : Tuple = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = '''lower newer''' UpperCamelCase : List[str] = self.prepare_image_inputs() UpperCamelCase : Optional[int] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.get_image_processor() UpperCamelCase : List[Any] = self.get_tokenizer() UpperCamelCase : Union[str, Any] = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase : List[str] = processor.batch_decode(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.get_image_processor() UpperCamelCase : Union[str, Any] = self.get_tokenizer() UpperCamelCase : Tuple = AlignProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = '''lower newer''' UpperCamelCase : Optional[int] = self.prepare_image_inputs() UpperCamelCase : Any = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : str = len(SCREAMING_SNAKE_CASE_ ) + 1 UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. UpperCamelCase : str = [[0 for i in range(SCREAMING_SNAKE_CASE_ )] for j in range(SCREAMING_SNAKE_CASE_ )] # since string of zero length match pattern of zero length UpperCamelCase : Optional[Any] = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Any = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , SCREAMING_SNAKE_CASE_ ): for j in range(1 , SCREAMING_SNAKE_CASE_ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": UpperCamelCase : int = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: UpperCamelCase : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): UpperCamelCase : Tuple = dp[i - 1][j] else: UpperCamelCase : Any = 0 else: UpperCamelCase : Optional[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") __UpperCAmelCase : Tuple = "aab" __UpperCAmelCase : Any = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Tuple = {"vocab_file": "spiece.model"} __UpperCAmelCase : List[Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<sep>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<cls>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = 3 UpperCamelCase : str = do_lower_case UpperCamelCase : Optional[Any] = remove_space UpperCamelCase : List[Any] = keep_accents UpperCamelCase : Optional[int] = vocab_file UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) UpperCamelCase : str = jieba UpperCamelCase : Tuple = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self ): """simple docstring""" return len(self.sp_model ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" UpperCamelCase : Tuple = self.__dict__.copy() UpperCamelCase : Tuple = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Any = {} UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.remove_space: UpperCamelCase : Tuple = ''' '''.join(inputs.strip().split() ) else: UpperCamelCase : Any = inputs UpperCamelCase : List[Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: UpperCamelCase : List[Any] = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: UpperCamelCase : Union[str, Any] = outputs.lower() return outputs def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = self.preprocess_text(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCamelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase : str = cur_pieces[1:] else: UpperCamelCase : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = [self.sep_token_id] UpperCamelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
# Imports import numpy as np class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" self.set_matricies(red=__SCREAMING_SNAKE_CASE , green=__SCREAMING_SNAKE_CASE , blue=__SCREAMING_SNAKE_CASE , red_edge=__SCREAMING_SNAKE_CASE , nir=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if red is not None: UpperCamelCase : List[str] = red if green is not None: UpperCamelCase : Dict = green if blue is not None: UpperCamelCase : List[str] = blue if red_edge is not None: UpperCamelCase : Union[str, Any] = red_edge if nir is not None: UpperCamelCase : Dict = nir return True def _lowercase ( self , __SCREAMING_SNAKE_CASE="" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" self.set_matricies(red=__SCREAMING_SNAKE_CASE , green=__SCREAMING_SNAKE_CASE , blue=__SCREAMING_SNAKE_CASE , red_edge=__SCREAMING_SNAKE_CASE , nir=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def _lowercase ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def _lowercase ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _lowercase ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def _lowercase ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _lowercase ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def _lowercase ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def _lowercase ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def _lowercase ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def _lowercase ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _lowercase ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _lowercase ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _lowercase ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE=0.08 , __SCREAMING_SNAKE_CASE=1.22 , __SCREAMING_SNAKE_CASE=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _lowercase ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _lowercase ( self ): """simple docstring""" return (self.nir / self.green) - 1 def _lowercase ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def _lowercase ( self ): """simple docstring""" return (self.red - self.blue) / self.red def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _lowercase ( self ): """simple docstring""" return self.nir - self.green def _lowercase ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def _lowercase ( self , __SCREAMING_SNAKE_CASE=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def _lowercase ( self , __SCREAMING_SNAKE_CASE=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _lowercase ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def _lowercase ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _lowercase ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def _lowercase ( self ): """simple docstring""" return self.nir / self.red def _lowercase ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def _lowercase ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _lowercase ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def _lowercase ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def _lowercase ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def _lowercase ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def _lowercase ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) UpperCamelCase : Any = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _lowercase ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _lowercase ( self ): """simple docstring""" return self.nir / self.red def _lowercase ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def _lowercase ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=36 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1_000 , ): """simple docstring""" UpperCamelCase : Tuple = parent UpperCamelCase : Union[str, Any] = batch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : int = image_size UpperCamelCase : int = patch_size UpperCamelCase : int = is_training UpperCamelCase : int = use_input_mask UpperCamelCase : int = use_token_type_ids UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : Tuple = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Tuple = intermediate_size UpperCamelCase : Tuple = hidden_act UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : Optional[int] = type_vocab_size UpperCamelCase : Any = type_sequence_label_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Dict = coordinate_size UpperCamelCase : Optional[int] = shape_size UpperCamelCase : str = num_labels UpperCamelCase : Any = num_choices UpperCamelCase : Union[str, Any] = scope UpperCamelCase : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCamelCase : Tuple = text_seq_length UpperCamelCase : Any = (image_size // patch_size) ** 2 + 1 UpperCamelCase : Dict = self.text_seq_length + self.image_seq_length def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) UpperCamelCase : List[str] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCamelCase : Dict = bbox[i, j, 3] UpperCamelCase : Union[str, Any] = bbox[i, j, 1] UpperCamelCase : Union[str, Any] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: UpperCamelCase : Union[str, Any] = bbox[i, j, 2] UpperCamelCase : str = bbox[i, j, 0] UpperCamelCase : Tuple = tmp_coordinate UpperCamelCase : Optional[Any] = tf.constant(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Optional[Any] = None if self.use_input_mask: UpperCamelCase : List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCamelCase : Dict = None if self.use_token_type_ids: UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCamelCase : List[str] = None UpperCamelCase : List[Any] = None if self.use_labels: UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCamelCase : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = TFLayoutLMvaModel(config=__SCREAMING_SNAKE_CASE ) # text + image UpperCamelCase : Dict = model(__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCamelCase : int = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCamelCase : List[Any] = model({'''pixel_values''': pixel_values} , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = self.num_labels UpperCamelCase : str = TFLayoutLMvaForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = self.num_labels UpperCamelCase : Dict = TFLayoutLMvaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = 2 UpperCamelCase : Optional[int] = TFLayoutLMvaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.prepare_config_and_inputs() (UpperCamelCase) : Optional[Any] = config_and_inputs UpperCamelCase : Union[str, Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[int] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __UpperCamelCase : Any = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) __UpperCamelCase : Tuple = False __UpperCamelCase : Any = False __UpperCamelCase : Dict = False def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return True def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" UpperCamelCase : List[str] = copy.deepcopy(__SCREAMING_SNAKE_CASE ) if model_class in get_values(__SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = { k: tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(__SCREAMING_SNAKE_CASE , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) UpperCamelCase : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = TFLayoutLMvaModelTester(self ) UpperCamelCase : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) if getattr(__SCREAMING_SNAKE_CASE , '''hf_compute_loss''' , __SCREAMING_SNAKE_CASE ): # The number of elements in the loss should be the same as the number of elements in the label UpperCamelCase : int = self._prepare_for_class(inputs_dict.copy() , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__SCREAMING_SNAKE_CASE )[0] ] UpperCamelCase : Optional[int] = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs UpperCamelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = prepared_for_class.pop('''input_ids''' ) UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions UpperCamelCase : List[str] = self._prepare_for_class(inputs_dict.copy() , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = prepared_for_class.pop('''input_ids''' ) if "labels" in prepared_for_class: UpperCamelCase : Optional[Any] = prepared_for_class['''labels'''].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: UpperCamelCase : Any = -100 UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict UpperCamelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple UpperCamelCase : Optional[int] = self._prepare_for_class(inputs_dict.copy() , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) # Get keys that were added with the _prepare_for_class function UpperCamelCase : Dict = prepared_for_class.keys() - inputs_dict.keys() UpperCamelCase : str = inspect.signature(model.call ).parameters UpperCamelCase : Tuple = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple UpperCamelCase : Optional[int] = {0: '''input_ids'''} for label_key in label_keys: UpperCamelCase : str = signature_names.index(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = label_key UpperCamelCase : List[Any] = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple UpperCamelCase : str = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: UpperCamelCase : Dict = prepared_for_class[value] UpperCamelCase : List[str] = tuple(__SCREAMING_SNAKE_CASE ) # Send to model UpperCamelCase : Optional[int] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _lowercase ( self ): """simple docstring""" ( UpperCamelCase ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" ( UpperCamelCase ) : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : Any = type self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" ( UpperCamelCase ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" ( UpperCamelCase ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" ( UpperCamelCase ) : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[Any] = TFLayoutLMvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a ( ): """simple docstring""" UpperCamelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) if is_vision_available() else None @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = TFLayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ) UpperCamelCase : str = self.default_image_processor UpperCamelCase : Optional[int] = prepare_img() UpperCamelCase : Any = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ).pixel_values UpperCamelCase : int = tf.constant([[1, 2]] ) UpperCamelCase : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass UpperCamelCase : List[str] = model(input_ids=__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase : str = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCAmelCase : Optional[Any] = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = "https://openaipublic.azureedge.net/jukebox/models/" __UpperCAmelCase : Optional[Any] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 1_0: UpperCamelCase : Any = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 1_0: UpperCamelCase : Optional[int] = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 1_0: UpperCamelCase : int = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 1_0: UpperCamelCase : Union[str, Any] = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: UpperCamelCase : Union[str, Any] = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: UpperCamelCase : Any = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: UpperCamelCase : Union[str, Any] = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: UpperCamelCase : str = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : str = {} import re UpperCamelCase : int = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase : Any = re.compile( R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase : List[str] = re.compile(R'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase : Dict = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase : Union[str, Any] = re.compile( R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase : Optional[Any] = re.compile(R'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase : Optional[int] = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) UpperCamelCase : Tuple = re.compile( R'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) UpperCamelCase : Any = re.compile(R'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = re_encoder_block_conv_in.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = regex_match.groups() UpperCamelCase : Union[str, Any] = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase : Dict = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}""" UpperCamelCase : str = re_encoder_block_conv_in.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif re_encoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = re_encoder_block_resnet.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = regex_match.groups() UpperCamelCase : int = int(groups[2] ) * 2 + int(groups[3] ) UpperCamelCase : Any = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase : List[Any] = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.""" UpperCamelCase : Any = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase : Any = prefix + resnet_block UpperCamelCase : List[str] = re_encoder_block_resnet.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif re_encoder_block_proj_out.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = re_encoder_block_proj_out.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = regex_match.groups() UpperCamelCase : Tuple = F"""encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}""" UpperCamelCase : str = re_encoder_block_proj_out.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = re_decoder_block_conv_out.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = regex_match.groups() UpperCamelCase : Optional[Any] = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase : Optional[Any] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase : List[str] = re_decoder_block_conv_out.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif re_decoder_block_resnet.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = re_decoder_block_resnet.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = regex_match.groups() UpperCamelCase : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 UpperCamelCase : int = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase : str = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.""" UpperCamelCase : Tuple = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase : str = prefix + resnet_block UpperCamelCase : Optional[Any] = re_decoder_block_resnet.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif re_decoder_block_proj_in.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = re_decoder_block_proj_in.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = regex_match.groups() UpperCamelCase : List[str] = F"""decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}""" UpperCamelCase : Optional[int] = re_decoder_block_proj_in.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Dict = re_prior_cond_conv_out.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = regex_match.groups() UpperCamelCase : str = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase : Optional[Any] = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}""" UpperCamelCase : int = re_prior_cond_conv_out.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif re_prior_cond_resnet.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = re_prior_cond_resnet.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = regex_match.groups() UpperCamelCase : List[Any] = int(groups[1] ) * 2 + int(groups[2] ) - 2 UpperCamelCase : Optional[int] = {'''1''': 1, '''3''': 2}[groups[-2]] UpperCamelCase : str = F"""conditioner_blocks.upsampler.upsample_block.{block_index}.""" UpperCamelCase : Optional[int] = F"""resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}""" UpperCamelCase : Optional[Any] = prefix + resnet_block UpperCamelCase : List[str] = re_prior_cond_resnet.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif re_prior_cond_proj_in.fullmatch(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = re_prior_cond_proj_in.match(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = regex_match.groups() UpperCamelCase : int = F"""conditioner_blocks.upsampler.proj_in.{groups[-1]}""" UpperCamelCase : Optional[Any] = re_prior_cond_proj_in.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # keep original key else: UpperCamelCase : List[Any] = original_key UpperCamelCase : List[str] = replace_key(SCREAMING_SNAKE_CASE_ ) if F"""{key_prefix}.{key}""" not in model_state_dict or key is None: print(F"""failed converting {original_key} to {key}, does not match""" ) # handle missmatched shape elif value.shape != model_state_dict[F"""{key_prefix}.{key}"""].shape: UpperCamelCase : Optional[int] = model_state_dict[F"""{key_prefix}.{key}"""] print(F"""{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match""" ) UpperCamelCase : List[Any] = original_key UpperCamelCase : str = original_key UpperCamelCase : List[str] = value return new_dict @torch.no_grad() def a ( SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Dict=None ): """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" ): UpperCamelCase : Tuple = requests.get(F"""{PREFIX}{file}""" , allow_redirects=SCREAMING_SNAKE_CASE_ ) os.makedirs(F"""{pytorch_dump_folder_path}/""" , exist_ok=SCREAMING_SNAKE_CASE_ ) open(F"""{pytorch_dump_folder_path}/{file.split("/" )[-1]}""" , '''wb''' ).write(r.content ) UpperCamelCase : int = MODEL_MAPPING[model_name.split('''/''' )[-1]] UpperCamelCase : Optional[Any] = JukeboxConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = JukeboxModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = [] UpperCamelCase : Optional[Any] = {} for i, dict_name in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = torch.load(F"""{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}""" )['''model'''] UpperCamelCase : int = {} for k in old_dic.keys(): if k.endswith('''.b''' ): UpperCamelCase : List[Any] = old_dic[k] elif k.endswith('''.w''' ): UpperCamelCase : Any = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: UpperCamelCase : Optional[int] = old_dic[k] else: UpperCamelCase : List[str] = old_dic[k] UpperCamelCase : Union[str, Any] = '''vqvae''' if i == 0 else F"""priors.{3 - i}""" UpperCamelCase : Optional[Any] = fix_jukebox_keys(SCREAMING_SNAKE_CASE_ , model.state_dict() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) weight_dict.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = weight_dict.pop(0 ) model.vqvae.load_state_dict(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(F"""{pytorch_dump_folder_path}/mapping.json""" , '''w''' ) as txtfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) return weight_dict if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) __UpperCAmelCase : Tuple = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[float] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(SCREAMING_SNAKE_CASE_ ): print(F"""{i}\t\t{d}""" ) def a ( SCREAMING_SNAKE_CASE_ : list[dict[str, int]] , SCREAMING_SNAKE_CASE_ : list[float] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def a ( SCREAMING_SNAKE_CASE_ : list[dict[str, int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Union[str, Any] = [float('''inf''' )] * vertex_count UpperCamelCase : Tuple = 0.0 for _ in range(vertex_count - 1 ): for j in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCamelCase : str = distance[u] + w UpperCamelCase : str = check_negative_cycle(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Optional[Any] = int(input("Enter number of vertices: ").strip()) __UpperCAmelCase : Any = int(input("Enter number of edges: ").strip()) __UpperCAmelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) __UpperCAmelCase : str = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) __UpperCAmelCase : List[str] = {"src": src, "dst": dest, "weight": weight} __UpperCAmelCase : Optional[int] = int(input("\nEnter shortest path source:").strip()) __UpperCAmelCase : List[str] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline __UpperCAmelCase : str = { "n_samples": 64, "horizon": 32, "num_inference_steps": 20, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": __UpperCAmelCase : Optional[int] = "hopper-medium-v2" __UpperCAmelCase : Optional[int] = gym.make(env_name) __UpperCAmelCase : Optional[Any] = ValueGuidedRLPipeline.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", env=env, ) env.seed(0) __UpperCAmelCase : Tuple = env.reset() __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[str] = 0 __UpperCAmelCase : List[str] = 1000 __UpperCAmelCase : Any = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy __UpperCAmelCase : Optional[int] = pipeline(obs, planning_horizon=32) # execute action in environment __UpperCAmelCase : List[str] = env.step(denorm_actions) __UpperCAmelCase : Dict = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' f''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) __UpperCAmelCase : str = next_observation except KeyboardInterrupt: pass print(f'''Total reward: {total_reward}''')
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : complex , SCREAMING_SNAKE_CASE_ : str = "x" , SCREAMING_SNAKE_CASE_ : float = 1_0**-1_0 , SCREAMING_SNAKE_CASE_ : int = 1 , ): """simple docstring""" UpperCamelCase : Any = symbols(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = lambdify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = lambdify(SCREAMING_SNAKE_CASE_ , diff(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Dict = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE_ ) != 0: UpperCamelCase : Optional[int] = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE_ ) / diff_function( SCREAMING_SNAKE_CASE_ ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess UpperCamelCase : Optional[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson('log(y) - 1', 2, variable='y')}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson('exp(x) - 1', 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}''')
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
from PIL import Image def a ( SCREAMING_SNAKE_CASE_ : Image , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Tuple = (2_5_9 * (level + 2_5_5)) / (2_5_5 * (2_5_9 - level)) def contrast(SCREAMING_SNAKE_CASE_ : int ) -> int: return int(1_2_8 + factor * (c - 1_2_8) ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change contrast to 170 __UpperCAmelCase : Dict = change_contrast(img, 170) cont_img.save("image_data/lena_high_contrast.png", format="png")
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
import math import flax.linen as nn import jax.numpy as jnp def a ( SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 1 , SCREAMING_SNAKE_CASE_ : float = 1 , SCREAMING_SNAKE_CASE_ : float = 1.0E4 , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : float = 1.0 , ): """simple docstring""" assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, F"""Embedding dimension {embedding_dim} should be even""" UpperCamelCase : Dict = float(embedding_dim // 2 ) UpperCamelCase : Union[str, Any] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) UpperCamelCase : Tuple = min_timescale * jnp.exp(jnp.arange(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) * -log_timescale_increment ) UpperCamelCase : List[str] = jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 1 ) * jnp.expand_dims(SCREAMING_SNAKE_CASE_ , 0 ) # scale embeddings UpperCamelCase : Optional[Any] = scale * emb if flip_sin_to_cos: UpperCamelCase : Union[str, Any] = jnp.concatenate([jnp.cos(SCREAMING_SNAKE_CASE_ ), jnp.sin(SCREAMING_SNAKE_CASE_ )] , axis=1 ) else: UpperCamelCase : Union[str, Any] = jnp.concatenate([jnp.sin(SCREAMING_SNAKE_CASE_ ), jnp.cos(SCREAMING_SNAKE_CASE_ )] , axis=1 ) UpperCamelCase : Dict = jnp.reshape(SCREAMING_SNAKE_CASE_ , [jnp.shape(SCREAMING_SNAKE_CASE_ )[0], embedding_dim] ) return signal class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int = 32 __UpperCamelCase : jnp.dtype = jnp.floataa @nn.compact def __call__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_1''' )(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = nn.silu(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='''linear_2''' )(__SCREAMING_SNAKE_CASE ) return temb class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : int = 32 __UpperCamelCase : bool = False __UpperCamelCase : float = 1 @nn.compact def __call__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return get_sinusoidal_embeddings( __SCREAMING_SNAKE_CASE , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) UpperCamelCase : int = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(SCREAMING_SNAKE_CASE_ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[Any] = BlenderbotSmallTokenizer __UpperCamelCase : str = False def _lowercase ( self ): """simple docstring""" super().setUp() UpperCamelCase : Optional[Any] = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] UpperCamelCase : Any = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] UpperCamelCase : Tuple = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''adapt act apte''' UpperCamelCase : List[Any] = '''adapt act apte''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase : List[str] = '''adapt act apte''' UpperCamelCase : List[str] = ['''adapt''', '''act''', '''ap@@''', '''te'''] UpperCamelCase : str = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase : Dict = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1_384] UpperCamelCase : Dict = '''I am a small frog.''' UpperCamelCase : Tuple = tok([src_text] , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCamelCase : Tuple = tok.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=__SCREAMING_SNAKE_CASE )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) UpperCamelCase : List[Any] = '''I am a small frog .''' UpperCamelCase : Union[str, Any] = '''.''' UpperCamelCase : Dict = tok(__SCREAMING_SNAKE_CASE )['''input_ids'''] UpperCamelCase : Optional[int] = tok(__SCREAMING_SNAKE_CASE )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate __UpperCAmelCase : Any = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Union[str, Any] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} __UpperCAmelCase : Dict = [ { "type": "header", "text": { "type": "plain_text", "text": f'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', "emoji": True, }, } ] __UpperCAmelCase : Optional[Any] = 0 for log in Path().glob("*.log"): __UpperCAmelCase : List[Any] = 0 with open(log, "r") as f: for line in f: __UpperCAmelCase : Any = json.loads(line) if line.get("nodeid", "") != "": __UpperCAmelCase : str = line["nodeid"] if line.get("duration", None) is not None: __UpperCAmelCase : Union[str, Any] = f'''{line['duration']:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) __UpperCAmelCase : Any = [] log.unlink() __UpperCAmelCase : List[str] = "" __UpperCAmelCase : str = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" __UpperCAmelCase : str = [] __UpperCAmelCase : Optional[int] = {} for test in failed_tests: __UpperCAmelCase : int = test[0].split("::") __UpperCAmelCase : Tuple = data[0].split("/")[-1] if data[0] not in filesafailed: __UpperCAmelCase : Dict = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) __UpperCAmelCase : int = [test[0] for test in failed_table] __UpperCAmelCase : List[str] = list(set(files)) # Count number of instances in failed_tests __UpperCAmelCase : str = [] for file in individual_files: table.append([file, len(filesafailed[file])]) __UpperCAmelCase : int = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: __UpperCAmelCase : str = "Too many failed tests, please see the full report in the Action results." __UpperCAmelCase : Tuple = len(err) + 10 __UpperCAmelCase : int = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: __UpperCAmelCase : List[str] = "No failed tests! 🤗" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient __UpperCAmelCase : int = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": __UpperCAmelCase : List[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) __UpperCAmelCase : Any = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) __UpperCAmelCase : int = { "type": "context", "elements": [ { "type": "plain_text", "text": f'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) __UpperCAmelCase : Dict = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) __UpperCAmelCase : Any = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name __UpperCAmelCase : Dict = "" for i, row in enumerate(test_failures): if row[0] != test_class: __UpperCAmelCase : List[Any] = row[0] else: __UpperCAmelCase : Dict = "" __UpperCAmelCase : Dict = { "type": "section", "text": { "type": "mrkdwn", "text": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
from PIL import Image def a ( SCREAMING_SNAKE_CASE_ : Image , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" def brightness(SCREAMING_SNAKE_CASE_ : int ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # Load image with Image.open("image_data/lena.jpg") as img: # Change brightness to 100 __UpperCAmelCase : List[Any] = change_brightness(img, 100) brigt_img.save("image_data/lena_brightness.png", format="png")
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[int] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase : List[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=0.6 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : Tuple = parent UpperCamelCase : Any = batch_size UpperCamelCase : Optional[Any] = image_size UpperCamelCase : Optional[int] = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : List[Any] = is_training UpperCamelCase : Tuple = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Optional[Any] = hidden_act UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : int = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : Tuple = mask_ratio UpperCamelCase : Dict = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase : str = (image_size // patch_size) ** 2 UpperCamelCase : int = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Any = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = TFViTMAEModel(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = TFViTMAEForPreTraining(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches UpperCamelCase : Tuple = (self.image_size // self.patch_size) ** 2 UpperCamelCase : str = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase : str = 1 UpperCamelCase : List[str] = TFViTMAEForPreTraining(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.prepare_config_and_inputs() (UpperCamelCase) : Tuple = config_and_inputs UpperCamelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __UpperCamelCase : Tuple = {"feature-extraction": TFViTMAEModel} if is_tf_available() else {} __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Tuple = False __UpperCamelCase : Any = False __UpperCamelCase : Union[str, Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = TFViTMAEModelTester(self ) UpperCamelCase : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , tf.keras.layers.Layer ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Dict = [*signature.parameters.keys()] UpperCamelCase : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : str = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase : int = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = copy.deepcopy(self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[Any] = model(**__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = outputs_dict[0].numpy() UpperCamelCase : Any = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def _lowercase ( self ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = v.numpy() else: UpperCamelCase : str = np.array(__SCREAMING_SNAKE_CASE ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = prepare_numpy_arrays(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = model(**__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) self.assert_outputs_same(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : List[str] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase : Union[str, Any] = tf.constant(__SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase : Optional[int] = tf_noise super().check_pt_tf_models(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : List[str] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__SCREAMING_SNAKE_CASE ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__SCREAMING_SNAKE_CASE , '''_keras_serializable''' , __SCREAMING_SNAKE_CASE ) } UpperCamelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase : Tuple = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase : Tuple = main_layer_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase : Tuple = tf.keras.Model(__SCREAMING_SNAKE_CASE , outputs=main_layer(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase : Any = os.path.join(__SCREAMING_SNAKE_CASE , '''keras_model.h5''' ) model.save(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tf.keras.models.load_model( __SCREAMING_SNAKE_CASE , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__SCREAMING_SNAKE_CASE , tf.keras.Model ) UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.assert_outputs_same(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : int = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase : int = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase : Optional[Any] = outputs.last_hidden_state.numpy() UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : str = outputs.logits.numpy() UpperCamelCase : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__SCREAMING_SNAKE_CASE , saved_model=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = model_class.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase : List[str] = after_outputs['''last_hidden_state'''].numpy() UpperCamelCase : Tuple = 0 else: UpperCamelCase : int = after_outputs['''logits'''].numpy() UpperCamelCase : Union[str, Any] = 0 UpperCamelCase : Optional[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__SCREAMING_SNAKE_CASE , 1e-5 ) def _lowercase ( self ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase : Optional[int] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase : str = model_class.from_config(model.config ) UpperCamelCase : Tuple = new_model(__SCREAMING_SNAKE_CASE ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase : List[Any] = new_model(__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) self.assert_outputs_same(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a ( ): """simple docstring""" UpperCamelCase : List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def _lowercase ( self ): """simple docstring""" np.random.seed(2 ) UpperCamelCase : List[Any] = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) UpperCamelCase : int = self.default_image_processor UpperCamelCase : str = prepare_img() UpperCamelCase : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase : Dict = ViTMAEConfig() UpperCamelCase : str = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE , noise=__SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase : str = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = tf.convert_to_tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 )
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Union[str, Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = flatten_dict(SCREAMING_SNAKE_CASE_ ) return flax_params def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : Optional[int] = {} UpperCamelCase : int = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } UpperCamelCase : int = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key UpperCamelCase : Any = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): UpperCamelCase : Optional[int] = new_key.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): UpperCamelCase : int = new_key.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number UpperCamelCase : Union[str, Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number UpperCamelCase : List[Any] = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = flax_dict[key] UpperCamelCase : Union[str, Any] = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): UpperCamelCase : Union[str, Any] = torch.from_numpy(converted_dict[key].T ) else: UpperCamelCase : Optional[Any] = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : List[Any]=False ): """simple docstring""" UpperCamelCase : Dict = get_flax_param(SCREAMING_SNAKE_CASE_ ) if not use_large: UpperCamelCase : List[str] = PixaStructVisionConfig() UpperCamelCase : str = PixaStructTextConfig() else: UpperCamelCase : List[Any] = PixaStructVisionConfig( hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_attention_heads=2_4 , num_hidden_layers=1_8 ) UpperCamelCase : str = PixaStructTextConfig(hidden_size=1_5_3_6 , d_ff=3_9_6_8 , num_heads=2_4 , num_layers=1_8 ) UpperCamelCase : List[str] = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) UpperCamelCase : Optional[Any] = PixaStructImageProcessor() UpperCamelCase : Tuple = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) if use_large: UpperCamelCase : Dict = 4_0_9_6 UpperCamelCase : Union[str, Any] = True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) print('''Model saved in {}'''.format(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": __UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.") parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--use_large", action="store_true", help="Use large model.") parser.add_argument("--is_vqa", action="store_true", help="Use large model.") __UpperCAmelCase : Optional[int] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from random import shuffle import tensorflow as tf from numpy import array def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Any = int(SCREAMING_SNAKE_CASE_ ) assert noofclusters < len(SCREAMING_SNAKE_CASE_ ) # Find out the dimensionality UpperCamelCase : Any = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase : List[Any] = list(range(len(SCREAMING_SNAKE_CASE_ ) ) ) shuffle(SCREAMING_SNAKE_CASE_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase : str = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase : List[str] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase : Any = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase : List[str] = tf.placeholder('''float64''' , [dim] ) UpperCamelCase : int = [] for centroid in centroids: cent_assigns.append(tf.assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase : int = [tf.Variable(0 ) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase : str = tf.placeholder('''int32''' ) UpperCamelCase : Any = [] for assignment in assignments: cluster_assigns.append(tf.assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase : Tuple = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase : List[str] = tf.reduce_mean(SCREAMING_SNAKE_CASE_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase : Any = tf.placeholder('''float''' , [dim] ) UpperCamelCase : List[Any] = tf.placeholder('''float''' , [dim] ) UpperCamelCase : Optional[Any] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase : Optional[int] = tf.placeholder('''float''' , [noofclusters] ) UpperCamelCase : Optional[int] = tf.argmin(SCREAMING_SNAKE_CASE_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase : Dict = tf.initialize_all_variables() # Initialize all variables sess.run(SCREAMING_SNAKE_CASE_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase : Optional[int] = 1_0_0 for _ in range(SCREAMING_SNAKE_CASE_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Union[str, Any] = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase : List[Any] = [ sess.run(SCREAMING_SNAKE_CASE_ , feed_dict={va: vect, va: sess.run(SCREAMING_SNAKE_CASE_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase : str = sess.run( SCREAMING_SNAKE_CASE_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(SCREAMING_SNAKE_CASE_ ): # Collect all the vectors assigned to this cluster UpperCamelCase : Optional[int] = [ vectors[i] for i in range(len(SCREAMING_SNAKE_CASE_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase : List[str] = sess.run( SCREAMING_SNAKE_CASE_ , feed_dict={mean_input: array(SCREAMING_SNAKE_CASE_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase : Any = sess.run(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = sess.run(SCREAMING_SNAKE_CASE_ ) return centroids, assignments
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = CpmAntTokenizer __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" super().setUp() UpperCamelCase : Dict = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) UpperCamelCase : Tuple = '''今天天气真好!''' UpperCamelCase : List[Any] = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] UpperCamelCase : List[Any] = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : str = '''今天天气真好!''' UpperCamelCase : List[Any] = [tokenizer.bos_token] + tokens UpperCamelCase : Optional[int] = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = tokenizer.decode(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
__UpperCAmelCase : Any = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __UpperCAmelCase : List[Any] = [{"type": "code", "content": INSTALL_CONTENT}] __UpperCAmelCase : int = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[list[int]] , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __UpperCAmelCase : Union[str, Any] = Lock() def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 1_0 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(SCREAMING_SNAKE_CASE_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase : List[str] = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase : Any = min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(SCREAMING_SNAKE_CASE_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase : Union[str, Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase : str = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : Tuple = [] UpperCamelCase : int = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase : str = Pipe() UpperCamelCase : Optional[Any] = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) UpperCamelCase : int = temp_rs UpperCamelCase : str = temp_rr for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) - 1 ): UpperCamelCase : Any = Pipe() UpperCamelCase : List[Any] = Pipe() process_array_.append( Process( target=SCREAMING_SNAKE_CASE_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) UpperCamelCase : List[str] = temp_rs UpperCamelCase : Any = temp_rr process_array_.append( Process( target=SCREAMING_SNAKE_CASE_ , args=( len(SCREAMING_SNAKE_CASE_ ) - 1, arr[len(SCREAMING_SNAKE_CASE_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(SCREAMING_SNAKE_CASE_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : int = result_pipe[p][0].recv() process_array_[p].join() return arr def a ( ): """simple docstring""" UpperCamelCase : int = list(range(1_0 , 0 , -1 ) ) print('''Initial List''' ) print(*SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = odd_even_transposition(SCREAMING_SNAKE_CASE_ ) print('''Sorted List\n''' ) print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __UpperCAmelCase : Tuple = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __UpperCAmelCase : Any = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : int = (images / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCamelCase : Any = numpy_to_pil(SCREAMING_SNAKE_CASE_ ) return images def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if images.ndim == 3: UpperCamelCase : int = images[None, ...] UpperCamelCase : str = (images * 2_5_5).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCamelCase : Union[str, Any] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: UpperCamelCase : Optional[Any] = [Image.fromarray(SCREAMING_SNAKE_CASE_ ) for image in images] return pil_images
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
def a ( SCREAMING_SNAKE_CASE_ : int = 4_0_0_0_0_0_0 ): """simple docstring""" UpperCamelCase : Dict = [0, 1] UpperCamelCase : Any = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 UpperCamelCase : Optional[int] = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(f'''{solution() = }''')
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase : Optional[int] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str=8 ): """simple docstring""" UpperCamelCase : List[str] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__() self.register_modules( unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , movq=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Any = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if latents is None: UpperCamelCase : List[str] = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) UpperCamelCase : Optional[Any] = latents.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = latents * scheduler.init_noise_sigma return latents def _lowercase ( self , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) UpperCamelCase : List[str] = torch.device(f"""cuda:{gpu_id}""" ) UpperCamelCase : str = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) UpperCamelCase : Dict = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=__SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase : Dict = cpu_offload_with_hook(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , prev_module_hook=__SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. UpperCamelCase : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self ): """simple docstring""" if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(__SCREAMING_SNAKE_CASE , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__SCREAMING_SNAKE_CASE ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 512 , __SCREAMING_SNAKE_CASE = 512 , __SCREAMING_SNAKE_CASE = 100 , __SCREAMING_SNAKE_CASE = 4.0 , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" UpperCamelCase : Dict = self._execution_device UpperCamelCase : str = guidance_scale > 1.0 if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : int = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) UpperCamelCase : List[str] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: UpperCamelCase : Union[str, Any] = image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) UpperCamelCase : Tuple = negative_image_embeds.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) UpperCamelCase : Any = hint.repeat_interleave(__SCREAMING_SNAKE_CASE , dim=0 ) UpperCamelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=__SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = self.scheduler.timesteps UpperCamelCase : List[Any] = self.movq.config.latent_channels UpperCamelCase : Any = downscale_height_and_width(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent UpperCamelCase : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(__SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase : Union[str, Any] = {'''image_embeds''': image_embeds, '''hint''': hint} UpperCamelCase : Optional[int] = self.unet( sample=__SCREAMING_SNAKE_CASE , timestep=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , added_cond_kwargs=__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: UpperCamelCase : int = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase : List[Any] = noise_pred.chunk(2 ) UpperCamelCase : Union[str, Any] = variance_pred.chunk(2 ) UpperCamelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase : int = self.scheduler.step( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , )[0] # post-processing UpperCamelCase : List[Any] = self.movq.decode(__SCREAMING_SNAKE_CASE , force_not_quantize=__SCREAMING_SNAKE_CASE )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase : List[str] = image * 0.5 + 0.5 UpperCamelCase : List[str] = image.clamp(0 , 1 ) UpperCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase : List[Any] = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCAmelCase : Optional[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __UpperCAmelCase : Optional[Any] = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __UpperCAmelCase : str = "|".join(sys.argv[1:]) __UpperCAmelCase : Tuple = re.compile(rf'''^({joined_dirs}).*?\.py$''') __UpperCAmelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = (DDPMScheduler,) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.scheduler_classes[0] UpperCamelCase : Union[str, Any] = self.get_scheduler_config() UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.scheduler_classes[0] UpperCamelCase : int = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = self.dummy_model() UpperCamelCase : str = self.dummy_sample_deter UpperCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase : List[str] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase : Optional[int] = pred_prev_sample UpperCamelCase : Tuple = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : List[str] = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.dummy_model() UpperCamelCase : str = self.dummy_sample_deter UpperCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase : str = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase : Optional[int] = pred_prev_sample UpperCamelCase : Dict = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.scheduler_classes[0] UpperCamelCase : Dict = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase : int = -1 else: UpperCamelCase : List[Any] = timesteps[i + 1] UpperCamelCase : int = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Optional[Any] = self.get_scheduler_config() UpperCamelCase : List[str] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [100, 87, 50, 1, 0] UpperCamelCase : Any = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import math __UpperCAmelCase : List[Any] = 10 __UpperCAmelCase : List[Any] = 7 __UpperCAmelCase : str = BALLS_PER_COLOUR * NUM_COLOURS def a ( SCREAMING_SNAKE_CASE_ : int = 2_0 ): """simple docstring""" UpperCamelCase : Dict = math.comb(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = math.comb(NUM_BALLS - BALLS_PER_COLOUR , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys __UpperCAmelCase : List[Any] = "3" print("Python version:", sys.version) print("OS platform:", platform.platform()) print("OS architecture:", platform.machine()) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) except ImportError: print("Torch version:", None) try: import transformers print("transformers version:", transformers.__version__) except ImportError: print("transformers version:", None)
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Union[str, Any] = "timesformer" def __init__( self , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="divided_space_time" , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = image_size UpperCamelCase : str = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : str = num_frames UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : int = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : Union[str, Any] = qkv_bias UpperCamelCase : Tuple = attention_type UpperCamelCase : int = drop_path_rate
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = "deformable_detr" __UpperCamelCase : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.25 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : List[Any] = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Any = backbone_config.get('''model_type''' ) UpperCamelCase : List[str] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : str = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = use_timm_backbone UpperCamelCase : Dict = backbone_config UpperCamelCase : str = num_channels UpperCamelCase : List[str] = num_queries UpperCamelCase : int = max_position_embeddings UpperCamelCase : str = d_model UpperCamelCase : List[Any] = encoder_ffn_dim UpperCamelCase : Tuple = encoder_layers UpperCamelCase : List[str] = encoder_attention_heads UpperCamelCase : List[str] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : int = decoder_attention_heads UpperCamelCase : Tuple = dropout UpperCamelCase : str = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[Any] = activation_function UpperCamelCase : Tuple = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Any = encoder_layerdrop UpperCamelCase : List[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Union[str, Any] = backbone UpperCamelCase : List[str] = use_pretrained_backbone UpperCamelCase : int = dilation # deformable attributes UpperCamelCase : str = num_feature_levels UpperCamelCase : Union[str, Any] = encoder_n_points UpperCamelCase : Tuple = decoder_n_points UpperCamelCase : Optional[Any] = two_stage UpperCamelCase : Union[str, Any] = two_stage_num_proposals UpperCamelCase : Tuple = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher UpperCamelCase : Dict = class_cost UpperCamelCase : List[str] = bbox_cost UpperCamelCase : Dict = giou_cost # Loss coefficients UpperCamelCase : int = mask_loss_coefficient UpperCamelCase : Tuple = dice_loss_coefficient UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : List[str] = giou_loss_coefficient UpperCamelCase : Tuple = eos_coefficient UpperCamelCase : Optional[int] = focal_alpha UpperCamelCase : str = disable_custom_kernels super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : str = self.backbone_config.to_dict() UpperCamelCase : List[str] = self.__class__.model_type return output
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" return "".join(chr(ord(SCREAMING_SNAKE_CASE_ ) - 3_2 ) if '''a''' <= char <= '''z''' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
from __future__ import annotations import typing from collections import Counter def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(SCREAMING_SNAKE_CASE_ , max_perimeter + 1 ): UpperCamelCase : int = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def a ( SCREAMING_SNAKE_CASE_ : int = 1_0_0_0 ): """simple docstring""" UpperCamelCase : Any = pythagorean_triple(SCREAMING_SNAKE_CASE_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0