code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "RWKV/rwkv-4-169m-pile": "https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json", "RWKV/rwkv-4-430m-pile": "https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json", "RWKV/rwkv-4-1b5-pile": "https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json", "RWKV/rwkv-4-3b-pile": "https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json", "RWKV/rwkv-4-7b-pile": "https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json", "RWKV/rwkv-4-14b-pile": "https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json", "RWKV/rwkv-raven-1b5": "https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json", "RWKV/rwkv-raven-3b": "https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json", "RWKV/rwkv-raven-7b": "https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json", "RWKV/rwkv-raven-14b": "https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json", } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = "rwkv" __UpperCamelCase : Any = {"max_position_embeddings": "context_length"} def __init__( self , __SCREAMING_SNAKE_CASE=50_277 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : Optional[int] = context_length UpperCamelCase : str = hidden_size UpperCamelCase : Dict = num_hidden_layers UpperCamelCase : List[str] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCamelCase : Union[str, Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCamelCase : List[str] = layer_norm_epsilon UpperCamelCase : Optional[int] = rescale_every UpperCamelCase : Dict = use_cache UpperCamelCase : str = bos_token_id UpperCamelCase : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
1
from numpy import exp, pi, sqrt def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : float = 1.0 ): """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
643
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' # TODO: is there an appropriate internal test set? __UpperCamelCase : List[Any] = "ssube/stable-diffusion-x4-upscaler-onnx" def _lowercase ( self , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" UpperCamelCase : str = floats_tensor((1, 3, 128, 128) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Dict = torch.manual_seed(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Tuple = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCamelCase : Union[str, Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self.get_dummy_inputs() UpperCamelCase : Dict = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : int = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs() UpperCamelCase : Any = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCamelCase : List[str] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self.get_dummy_inputs() UpperCamelCase : List[Any] = pipe(**__SCREAMING_SNAKE_CASE ).images UpperCamelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : int = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = ort.SessionOptions() UpperCamelCase : Optional[Any] = False return options def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCamelCase : Union[str, Any] = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCamelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = '''A fantasy landscape, trending on artstation''' UpperCamelCase : Any = torch.manual_seed(0 ) UpperCamelCase : str = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=10 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) UpperCamelCase : List[Any] = output.images UpperCamelCase : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Any = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCamelCase : int = init_image.resize((128, 128) ) UpperCamelCase : Dict = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = '''A fantasy landscape, trending on artstation''' UpperCamelCase : Any = torch.manual_seed(0 ) UpperCamelCase : List[Any] = pipe( prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , ) UpperCamelCase : Any = output.images UpperCamelCase : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Union[str, Any] = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
643
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
1
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[float] ): """simple docstring""" UpperCamelCase : Tuple = 0.00 UpperCamelCase : Any = 0 for resistor in resistors: if resistor <= 0: UpperCamelCase : List[Any] = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(SCREAMING_SNAKE_CASE_ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE_ ) index += 1 return 1 / first_sum def a ( SCREAMING_SNAKE_CASE_ : list[float] ): """simple docstring""" UpperCamelCase : Dict = 0.00 UpperCamelCase : Dict = 0 for resistor in resistors: sum_r += resistor if resistor < 0: UpperCamelCase : Optional[Any] = F"""Resistor at index {index} has a negative value!""" raise ValueError(SCREAMING_SNAKE_CASE_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
643
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=0 , ): """simple docstring""" UpperCamelCase : Tuple = parent UpperCamelCase : str = batch_size UpperCamelCase : Dict = seq_length UpperCamelCase : List[Any] = is_training UpperCamelCase : List[Any] = use_input_mask UpperCamelCase : List[Any] = use_token_type_ids UpperCamelCase : Any = use_labels UpperCamelCase : str = vocab_size UpperCamelCase : List[Any] = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : List[str] = hidden_act UpperCamelCase : List[str] = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : List[str] = max_position_embeddings UpperCamelCase : Any = type_vocab_size UpperCamelCase : Dict = type_sequence_label_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : List[str] = num_labels UpperCamelCase : Union[str, Any] = num_choices UpperCamelCase : Any = scope UpperCamelCase : List[Any] = projection_dim def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Union[str, Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Dict = None if self.use_token_type_ids: UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Optional[int] = None UpperCamelCase : Tuple = None UpperCamelCase : Optional[int] = None if self.use_labels: UpperCamelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) UpperCamelCase : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = TFDPRContextEncoder(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = TFDPRQuestionEncoder(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = TFDPRReader(config=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : int = config_and_inputs UpperCamelCase : str = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : int = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __UpperCamelCase : Any = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} __UpperCamelCase : Dict = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[int] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = TFDPRModelTester(self ) UpperCamelCase : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[int] = TFDPRContextEncoder.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : int = TFDPRQuestionEncoder.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : str = TFDPRReader.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) UpperCamelCase : Tuple = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] UpperCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE )[0] # embedding shape = (1, 768) # compare the actual values for a slice. UpperCamelCase : Optional[Any] = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
643
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
1
import json import os import torch from diffusers import UNetaDModel os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True) os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True) os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True) def a ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" if hor == 1_2_8: UpperCamelCase : int = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') UpperCamelCase : Optional[int] = (3_2, 1_2_8, 2_5_6) UpperCamelCase : Any = ('''UpResnetBlock1D''', '''UpResnetBlock1D''') elif hor == 3_2: UpperCamelCase : str = ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''') UpperCamelCase : Any = (3_2, 6_4, 1_2_8, 2_5_6) UpperCamelCase : Any = ('''UpResnetBlock1D''', '''UpResnetBlock1D''', '''UpResnetBlock1D''') UpperCamelCase : str = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) UpperCamelCase : str = model.state_dict() UpperCamelCase : Dict = { '''down_block_types''': down_block_types, '''block_out_channels''': block_out_channels, '''up_block_types''': up_block_types, '''layers_per_block''': 1, '''use_timestep_embedding''': True, '''out_block_type''': '''OutConv1DBlock''', '''norm_num_groups''': 8, '''downsample_each_block''': False, '''in_channels''': 1_4, '''out_channels''': 1_4, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''sample_size''': 6_5_5_3_6, '''mid_block_type''': '''MidResTemporalBlock1D''', '''act_fn''': '''mish''', } UpperCamelCase : List[str] = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) UpperCamelCase : Any = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase : Any = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : int = { '''in_channels''': 1_4, '''down_block_types''': ('''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D''', '''DownResnetBlock1D'''), '''up_block_types''': (), '''out_block_type''': '''ValueFunction''', '''mid_block_type''': '''ValueFunctionMidBlock1D''', '''block_out_channels''': (3_2, 6_4, 1_2_8, 2_5_6), '''layers_per_block''': 1, '''downsample_each_block''': True, '''sample_size''': 6_5_5_3_6, '''out_channels''': 1_4, '''extra_in_channels''': 0, '''time_embedding_type''': '''positional''', '''use_timestep_embedding''': True, '''flip_sin_to_cos''': False, '''freq_shift''': 1, '''norm_num_groups''': 8, '''act_fn''': '''mish''', } UpperCamelCase : int = torch.load('''/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch''' ) UpperCamelCase : Tuple = model UpperCamelCase : Optional[Any] = UNetaDModel(**SCREAMING_SNAKE_CASE_ ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) UpperCamelCase : Dict = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase : Any = state_dict.pop(SCREAMING_SNAKE_CASE_ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE_ ) torch.save(hf_value_function.state_dict() , '''hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin''' ) with open('''hub/hopper-medium-v2/value_function/config.json''' , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
643
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
1
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __UpperCAmelCase : Tuple = "http://www.mocksite.com/file1.txt" __UpperCAmelCase : Tuple = "\"text\": [\"foo\", \"foo\"]" __UpperCAmelCase : Optional[Any] = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : str = 200 __UpperCamelCase : Optional[int] = {"Content-Length": "100"} __UpperCamelCase : Dict = {} def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return [bytes(__SCREAMING_SNAKE_CASE , '''utf-8''' )] def a ( *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE_ , '''request''' , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = URL if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = url elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : str = [url] elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = {'''train''': url} UpperCamelCase : int = '''dummy''' UpperCamelCase : str = '''downloads''' UpperCamelCase : Dict = tmp_path UpperCamelCase : Dict = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , use_etag=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[int] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = dl_manager.download(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : int = [downloaded_paths] UpperCamelCase : int = [urls] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert "train" in downloaded_paths.keys() UpperCamelCase : Tuple = downloaded_paths.values() UpperCamelCase : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCamelCase : Any = Path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCamelCase : Union[str, Any] = downloaded_path.read_text() assert content == CONTENT UpperCamelCase : List[str] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() UpperCamelCase : Union[str, Any] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Any = str(SCREAMING_SNAKE_CASE_ ) if issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[Any] = filename elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[Any] = [filename] elif issubclass(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = {'''train''': filename} UpperCamelCase : Union[str, Any] = '''dummy''' UpperCamelCase : int = xz_file.parent UpperCamelCase : Optional[Any] = '''extracted''' UpperCamelCase : Dict = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE_ , use_etag=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Optional[Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = dl_manager.extract(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Tuple = [extracted_paths] UpperCamelCase : Any = [paths] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert "train" in extracted_paths.keys() UpperCamelCase : Tuple = extracted_paths.values() UpperCamelCase : List[Any] = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCamelCase : Any = Path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE_ , etag=SCREAMING_SNAKE_CASE_ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCamelCase : Optional[int] = extracted_path.read_text() UpperCamelCase : int = text_file.read_text() assert extracted_file_content == expected_file_content def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE_ , start=1 ): UpperCamelCase : Optional[int] = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Any = request.getfixturevalue(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE_ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Any = request.getfixturevalue(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE_ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE_ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert num_tar == 1 assert num_jsonl == 2 def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE_ ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE_ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
643
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[int] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __UpperCAmelCase : List[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
643
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
1
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[list[int]] , ): """simple docstring""" if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : List[Any] = 2 __UpperCAmelCase : Dict = generate_all_combinations(n, k) print_all_state(total_list)
643
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
1
import os import numpy import onnx def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : List[Any] = a.name UpperCamelCase : List[Any] = b.name UpperCamelCase : Optional[int] = '''''' UpperCamelCase : Any = '''''' UpperCamelCase : Any = a == b UpperCamelCase : Tuple = name_a UpperCamelCase : List[Any] = name_b return res def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Union[str, Any] = list(model.graph.initializer ) UpperCamelCase : Optional[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCamelCase : Union[str, Any] = inits[i].name UpperCamelCase : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : List[str] = os.path.dirname(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = os.path.basename(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = onnx.load(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Any = list(model.graph.initializer ) UpperCamelCase : List[Any] = set() UpperCamelCase : List[str] = {} UpperCamelCase : List[Any] = [] UpperCamelCase : Dict = 0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE_ ) dup_set.add(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = inits[j].data_type UpperCamelCase : Optional[Any] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print('''unexpected data type: ''' , SCREAMING_SNAKE_CASE_ ) total_reduced_size += mem_size UpperCamelCase : Optional[Any] = inits[i].name UpperCamelCase : Tuple = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : List[Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , '''GB''' ) UpperCamelCase : Optional[Any] = sorted(SCREAMING_SNAKE_CASE_ ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = '''optimized_''' + model_file_name UpperCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) onnx.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return new_model
643
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
1
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever __UpperCAmelCase : Optional[Any] = logging.getLogger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , question_encoder_tokenizer=__SCREAMING_SNAKE_CASE , generator_tokenizer=__SCREAMING_SNAKE_CASE , index=__SCREAMING_SNAKE_CASE , init_retrieval=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[Any] = None def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" logger.info('''initializing retrieval''' ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info('''dist initialized''' ) # needs to be set manually UpperCamelCase : Union[str, Any] = self._infer_socket_ifname() # avoid clash with the NCCL port UpperCamelCase : List[str] = str(distributed_port + 1 ) UpperCamelCase : int = dist.new_group(ranks=__SCREAMING_SNAKE_CASE , backend='''gloo''' ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info('''dist not initialized / main''' ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def _lowercase ( self ): """simple docstring""" return dist.get_rank(group=self.process_group ) == 0 def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=torch.floataa ): """simple docstring""" UpperCamelCase : List[Any] = torch.empty(__SCREAMING_SNAKE_CASE , dtype=__SCREAMING_SNAKE_CASE ) dist.scatter(__SCREAMING_SNAKE_CASE , src=0 , scatter_list=__SCREAMING_SNAKE_CASE , group=self.process_group ) return target_tensor def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names UpperCamelCase : Tuple = next((addr for addr in addrs if addr.startswith('''e''' )) , __SCREAMING_SNAKE_CASE ) return ifname def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not dist.is_initialized(): UpperCamelCase , UpperCamelCase : List[str] = self._main_retrieve(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE ) # distributed training UpperCamelCase : str = dist.get_world_size(group=self.process_group ) # gather logic UpperCamelCase : Any = None if self._is_main(): UpperCamelCase : Dict = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__SCREAMING_SNAKE_CASE )] dist.gather(torch.tensor(__SCREAMING_SNAKE_CASE ) , dst=0 , gather_list=__SCREAMING_SNAKE_CASE , group=self.process_group ) # scatter logic UpperCamelCase : str = question_hidden_states.shape[0] UpperCamelCase : Any = [] UpperCamelCase : Tuple = [] if self._is_main(): assert len(__SCREAMING_SNAKE_CASE ) == world_size UpperCamelCase , UpperCamelCase : List[str] = self._main_retrieve(torch.cat(__SCREAMING_SNAKE_CASE ).numpy() , __SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : Optional[Any] = torch.tensor(__SCREAMING_SNAKE_CASE ), torch.tensor(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self._chunk_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs] , target_type=torch.intaa ) UpperCamelCase : Optional[Any] = self._scattered(__SCREAMING_SNAKE_CASE , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__SCREAMING_SNAKE_CASE )
643
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : Any = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase : Tuple = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __UpperCAmelCase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
643
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
1
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" if "cls_token" in name: UpperCamelCase : Any = name.replace('''cls_token''' , '''vit.embeddings.cls_token''' ) if "mask_token" in name: UpperCamelCase : Tuple = name.replace('''mask_token''' , '''decoder.mask_token''' ) if "decoder_pos_embed" in name: UpperCamelCase : Dict = name.replace('''decoder_pos_embed''' , '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase : Any = name.replace('''pos_embed''' , '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: UpperCamelCase : Any = name.replace('''patch_embed.proj''' , '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase : int = name.replace('''patch_embed.norm''' , '''vit.embeddings.norm''' ) if "decoder_blocks" in name: UpperCamelCase : int = name.replace('''decoder_blocks''' , '''decoder.decoder_layers''' ) if "blocks" in name: UpperCamelCase : Union[str, Any] = name.replace('''blocks''' , '''vit.encoder.layer''' ) if "attn.proj" in name: UpperCamelCase : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCamelCase : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCamelCase : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCamelCase : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCamelCase : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCamelCase : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "decoder_embed" in name: UpperCamelCase : Tuple = name.replace('''decoder_embed''' , '''decoder.decoder_embed''' ) if "decoder_norm" in name: UpperCamelCase : str = name.replace('''decoder_norm''' , '''decoder.decoder_norm''' ) if "decoder_pred" in name: UpperCamelCase : Optional[Any] = name.replace('''decoder_pred''' , '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: UpperCamelCase : Dict = name.replace('''norm.weight''' , '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: UpperCamelCase : Optional[int] = name.replace('''norm.bias''' , '''vit.layernorm.bias''' ) return name def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): UpperCamelCase : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: UpperCamelCase : str = key.split('''.''' ) UpperCamelCase : Any = int(key_split[1] ) if "decoder_blocks" in key: UpperCamelCase : str = config.decoder_hidden_size UpperCamelCase : Dict = '''decoder.decoder_layers.''' if "weight" in key: UpperCamelCase : Any = val[:dim, :] UpperCamelCase : Optional[Any] = val[dim : dim * 2, :] UpperCamelCase : List[str] = val[-dim:, :] elif "bias" in key: UpperCamelCase : List[str] = val[:dim] UpperCamelCase : Dict = val[dim : dim * 2] UpperCamelCase : Union[str, Any] = val[-dim:] else: UpperCamelCase : str = config.hidden_size UpperCamelCase : List[Any] = '''vit.encoder.layer.''' if "weight" in key: UpperCamelCase : List[Any] = val[:dim, :] UpperCamelCase : Tuple = val[dim : dim * 2, :] UpperCamelCase : Optional[Any] = val[-dim:, :] elif "bias" in key: UpperCamelCase : Optional[int] = val[:dim] UpperCamelCase : Any = val[dim : dim * 2] UpperCamelCase : Optional[Any] = val[-dim:] else: UpperCamelCase : str = val return orig_state_dict def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Union[str, Any] = ViTMAEConfig() if "large" in checkpoint_url: UpperCamelCase : Tuple = 1_0_2_4 UpperCamelCase : Tuple = 4_0_9_6 UpperCamelCase : Any = 2_4 UpperCamelCase : Union[str, Any] = 1_6 elif "huge" in checkpoint_url: UpperCamelCase : List[str] = 1_4 UpperCamelCase : Union[str, Any] = 1_2_8_0 UpperCamelCase : Tuple = 5_1_2_0 UpperCamelCase : int = 3_2 UpperCamelCase : str = 1_6 UpperCamelCase : Tuple = ViTMAEForPreTraining(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' )['''model'''] UpperCamelCase : Tuple = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase : List[str] = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase : Any = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' UpperCamelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE_ , stream=SCREAMING_SNAKE_CASE_ ).raw ) UpperCamelCase : Optional[int] = ViTMAEImageProcessor(size=config.image_size ) UpperCamelCase : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) UpperCamelCase : List[str] = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = outputs.logits if "large" in checkpoint_url: UpperCamelCase : List[str] = torch.tensor( [[-0.7309, -0.7128, -1.0169], [-1.0161, -0.9058, -1.1878], [-1.0478, -0.9411, -1.1911]] ) elif "huge" in checkpoint_url: UpperCamelCase : Optional[Any] = torch.tensor( [[-1.1599, -0.9199, -1.2221], [-1.1952, -0.9269, -1.2307], [-1.2143, -0.9337, -1.2262]] ) else: UpperCamelCase : List[str] = torch.tensor( [[-0.9192, -0.8481, -1.1259], [-1.1349, -1.0034, -1.2599], [-1.1757, -1.0429, -1.2726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCAmelCase : Dict = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
643
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCAmelCase : Any = None __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : str = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Any = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Tuple = { "facebook/nllb-large-en-ro": 1024, "facebook/nllb-200-distilled-600M": 1024, } # fmt: off __UpperCAmelCase : Tuple = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : int = VOCAB_FILES_NAMES __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : str = ["input_ids", "attention_mask"] __UpperCamelCase : int = NllbTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase : Optional[Any] = legacy_behaviour super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Optional[int] = vocab_file UpperCamelCase : str = False if not self.vocab_file else True UpperCamelCase : Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : Optional[int] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Any = src_lang if src_lang is not None else '''eng_Latn''' UpperCamelCase : int = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[str] = [self.sep_token_id] UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : Dict = src_lang UpperCamelCase : List[str] = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "eng_Latn" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fra_Latn" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[str] = src_lang UpperCamelCase : List[Any] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) if self.legacy_behaviour: UpperCamelCase : Optional[Any] = [] UpperCamelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase : List[Any] = [self.cur_lang_code] UpperCamelCase : List[Any] = [self.eos_token_id] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) if self.legacy_behaviour: UpperCamelCase : Any = [] UpperCamelCase : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: UpperCamelCase : Union[str, Any] = [self.cur_lang_code] UpperCamelCase : List[str] = [self.eos_token_id] UpperCamelCase : Dict = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
1
import math def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" return math.sqrt(SCREAMING_SNAKE_CASE_ ) * math.sqrt(SCREAMING_SNAKE_CASE_ ) == num def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : List[str] = 0 UpperCamelCase : Optional[Any] = n while left <= right: UpperCamelCase : List[str] = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCamelCase : Union[str, Any] = mid - 1 else: UpperCamelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
643
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
1
import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __UpperCAmelCase : Any = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''bs4'''] ) super().__init__(**__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = [] UpperCamelCase : Tuple = [] UpperCamelCase : Any = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag UpperCamelCase : Dict = parent.find_all(child.name , recursive=__SCREAMING_SNAKE_CASE ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(__SCREAMING_SNAKE_CASE ) else next(i for i, s in enumerate(__SCREAMING_SNAKE_CASE , 1 ) if s is child ) ) UpperCamelCase : Optional[int] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = BeautifulSoup(__SCREAMING_SNAKE_CASE , '''html.parser''' ) UpperCamelCase : Tuple = [] UpperCamelCase : Optional[int] = [] UpperCamelCase : Tuple = [] for element in html_code.descendants: if type(__SCREAMING_SNAKE_CASE ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue UpperCamelCase : List[Any] = html.unescape(__SCREAMING_SNAKE_CASE ).strip() if not text_in_this_tag: continue all_doc_strings.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : Dict = self.xpath_soup(__SCREAMING_SNAKE_CASE ) stringaxtag_seq.append(__SCREAMING_SNAKE_CASE ) stringaxsubs_seq.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError('''Number of doc strings and xtags does not correspond''' ) if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError('''Number of doc strings and xsubs does not correspond''' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = '''''' for tagname, subs in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): xpath += f"""/{tagname}""" if subs != 0: xpath += f"""[{subs}]""" return xpath def __call__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = False # Check that strings has a valid type if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = True elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): if len(__SCREAMING_SNAKE_CASE ) == 0 or isinstance(html_strings[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[Any] = True if not valid_strings: raise ValueError( '''HTML strings must of type `str`, `List[str]` (batch of examples), ''' f"""but is of type {type(__SCREAMING_SNAKE_CASE )}.""" ) UpperCamelCase : Tuple = bool(isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(html_strings[0] , __SCREAMING_SNAKE_CASE )) ) if not is_batched: UpperCamelCase : int = [html_strings] # Get nodes + xpaths UpperCamelCase : str = [] UpperCamelCase : Dict = [] for html_string in html_strings: UpperCamelCase , UpperCamelCase , UpperCamelCase : str = self.get_three_from_single(__SCREAMING_SNAKE_CASE ) nodes.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] for node, tag_list, sub_list in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = self.construct_xpath(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) xpath_strings.append(__SCREAMING_SNAKE_CASE ) xpaths.append(__SCREAMING_SNAKE_CASE ) # return as Dict UpperCamelCase : Optional[Any] = {'''nodes''': nodes, '''xpaths''': xpaths} UpperCamelCase : str = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) return encoded_inputs
643
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
1
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
1
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = 10 def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = [1, 2, 3, 4] UpperCamelCase : int = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__SCREAMING_SNAKE_CASE , self.block_size , 0 ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] UpperCamelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__SCREAMING_SNAKE_CASE , self.block_size , 0 ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] UpperCamelCase : int = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__SCREAMING_SNAKE_CASE , self.block_size , 0 ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' UpperCamelCase , UpperCamelCase : List[str] = process_story(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , [] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = '''''' UpperCamelCase , UpperCamelCase : List[str] = process_story(__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , [] ) self.assertEqual(__SCREAMING_SNAKE_CASE , [] ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) UpperCamelCase , UpperCamelCase : str = process_story(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = ['''It was the best of times.'''] self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = torch.tensor([1, 2, 3, 4] ) UpperCamelCase : Tuple = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__SCREAMING_SNAKE_CASE , 0 ).numpy() , expected.numpy() ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) UpperCamelCase : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__SCREAMING_SNAKE_CASE , 23 ).numpy() , expected.numpy() ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) UpperCamelCase : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__SCREAMING_SNAKE_CASE , 1 ).numpy() , expected.numpy() ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = 101 UpperCamelCase : Dict = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) UpperCamelCase : List[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) UpperCamelCase : Optional[int] = compute_token_type_ids(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) np.testing.assert_array_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
1
import math import tensorflow as tf from packaging import version def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : List[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = tf.cast(math.pi , x.dtype ) UpperCamelCase : int = tf.cast(0.044715 , x.dtype ) UpperCamelCase : List[str] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(SCREAMING_SNAKE_CASE_ , 3 )) )) return x * cdf def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) return x * tf.tanh(tf.math.softplus(SCREAMING_SNAKE_CASE_ ) ) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Optional[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = tf.cast(0.044715 , x.dtype ) UpperCamelCase : Optional[Any] = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Tuple = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" return tf.clip_by_value(_gelu(SCREAMING_SNAKE_CASE_ ) , -1_0 , 1_0 ) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int=-1 ): """simple docstring""" UpperCamelCase , UpperCamelCase : Optional[int] = tf.split(SCREAMING_SNAKE_CASE_ , 2 , axis=SCREAMING_SNAKE_CASE_ ) return a * tf.math.sigmoid(SCREAMING_SNAKE_CASE_ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" return tf.keras.activations.gelu(SCREAMING_SNAKE_CASE_ , approximate=SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase : str = tf.keras.activations.gelu __UpperCAmelCase : str = approximate_gelu_wrap else: __UpperCAmelCase : Union[str, Any] = _gelu __UpperCAmelCase : Union[str, Any] = _gelu_new __UpperCAmelCase : str = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
643
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCAmelCase : Optional[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") __UpperCAmelCase : Optional[Any] = ( subprocess.check_output(f'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("utf-8").split() ) __UpperCAmelCase : str = "|".join(sys.argv[1:]) __UpperCAmelCase : Tuple = re.compile(rf'''^({joined_dirs}).*?\.py$''') __UpperCAmelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
643
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
1
from __future__ import annotations from collections.abc import MutableSequence class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if len(__SCREAMING_SNAKE_CASE ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) UpperCamelCase : list[float] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = degree def __add__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.degree > polynomial_a.degree: UpperCamelCase : int = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , __SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , __SCREAMING_SNAKE_CASE ) def __sub__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): """simple docstring""" return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int | float = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): """simple docstring""" UpperCamelCase : List[Any] = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__SCREAMING_SNAKE_CASE ) return polynomial def __repr__( self ): """simple docstring""" return self.__str__() def _lowercase ( self ): """simple docstring""" UpperCamelCase : list[float] = [0] * self.degree for i in range(self.degree ): UpperCamelCase : int = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" UpperCamelCase : list[float] = [0] * (self.degree + 2) UpperCamelCase : Optional[Any] = constant for i in range(self.degree + 1 ): UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , __SCREAMING_SNAKE_CASE ) def __eq__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return not self.__eq__(__SCREAMING_SNAKE_CASE )
643
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE_ , '''_dynamo''' ): return False return isinstance(SCREAMING_SNAKE_CASE_ , torch._dynamo.eval_frame.OptimizedModule ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : bool = True ): """simple docstring""" UpperCamelCase : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase : int = is_compiled_module(SCREAMING_SNAKE_CASE_ ) if is_compiled: UpperCamelCase : Any = model UpperCamelCase : Union[str, Any] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = model.module if not keep_fpaa_wrapper: UpperCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , '''forward''' ) UpperCamelCase : Optional[Any] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE_ ) if original_forward is not None: while hasattr(SCREAMING_SNAKE_CASE_ , '''__wrapped__''' ): UpperCamelCase : int = forward.__wrapped__ if forward == original_forward: break UpperCamelCase : Union[str, Any] = forward if getattr(SCREAMING_SNAKE_CASE_ , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE_ ): convert_model(SCREAMING_SNAKE_CASE_ , to_transformer_engine=SCREAMING_SNAKE_CASE_ ) if is_compiled: UpperCamelCase : Union[str, Any] = model UpperCamelCase : Dict = compiled_model return model def a ( ): """simple docstring""" PartialState().wait_for_everyone() def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif PartialState().local_process_index == 0: torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @contextmanager def a ( **SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" for key, value in kwargs.items(): UpperCamelCase : Optional[int] = str(SCREAMING_SNAKE_CASE_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE_ , '''__name__''' ): UpperCamelCase : str = getattr(SCREAMING_SNAKE_CASE_ , '''__class__''' , SCREAMING_SNAKE_CASE_ ) if hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__''' ): return obj.__qualname__ if hasattr(SCREAMING_SNAKE_CASE_ , '''__name__''' ): return obj.__name__ return str(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" for key, value in source.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Union[str, Any] = destination.setdefault(SCREAMING_SNAKE_CASE_ , {} ) merge_dicts(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Optional[Any] = value return destination def a ( SCREAMING_SNAKE_CASE_ : int = None ): """simple docstring""" if port is None: UpperCamelCase : Dict = 2_9_5_0_0 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
643
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Tuple = {"vocab_file": "spiece.model"} __UpperCAmelCase : List[Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<sep>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<cls>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=["<eop>", "<eod>"] , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token UpperCamelCase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , remove_space=__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = 3 UpperCamelCase : str = do_lower_case UpperCamelCase : Optional[Any] = remove_space UpperCamelCase : List[Any] = keep_accents UpperCamelCase : Optional[int] = vocab_file UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) UpperCamelCase : str = jieba UpperCamelCase : Tuple = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _lowercase ( self ): """simple docstring""" return len(self.sp_model ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" UpperCamelCase : Tuple = self.__dict__.copy() UpperCamelCase : Tuple = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Any = {} UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.remove_space: UpperCamelCase : Tuple = ''' '''.join(inputs.strip().split() ) else: UpperCamelCase : Any = inputs UpperCamelCase : List[Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: UpperCamelCase : List[Any] = unicodedata.normalize('''NFKD''' , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = ''''''.join([c for c in outputs if not unicodedata.combining(__SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: UpperCamelCase : Union[str, Any] = outputs.lower() return outputs def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = self.preprocess_text(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for piece in pieces: if len(__SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): UpperCamelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__SCREAMING_SNAKE_CASE , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCamelCase : str = cur_pieces[1:] else: UpperCamelCase : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__SCREAMING_SNAKE_CASE ) else: new_pieces.append(__SCREAMING_SNAKE_CASE ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = [self.sep_token_id] UpperCamelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[Any] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = super()._decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
643
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" UpperCamelCase : Tuple = parent UpperCamelCase : Any = batch_size UpperCamelCase : str = seq_length UpperCamelCase : Dict = is_training UpperCamelCase : Optional[int] = use_attention_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Tuple = use_labels UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Tuple = num_choices def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : List[Any] = None if self.use_attention_mask: UpperCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = config_and_inputs UpperCamelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : Optional[Any] = True UpperCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : int = True __UpperCamelCase : Union[str, Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = FlaxBertModelTester(self ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
643
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
1
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def a ( SCREAMING_SNAKE_CASE_ : Union[dict, list, tuple, torch.Tensor] ): """simple docstring""" UpperCamelCase : Tuple = [] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for v in tree.values(): shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(SCREAMING_SNAKE_CASE_ ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple[int, ...] ): """simple docstring""" UpperCamelCase : Dict = [] for d in reversed(SCREAMING_SNAKE_CASE_ ): idx.append(flat_idx % d ) UpperCamelCase : Optional[Any] = flat_idx // d return tuple(reversed(SCREAMING_SNAKE_CASE_ ) ) @torch.jit.ignore def a ( SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Sequence[int] , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , SCREAMING_SNAKE_CASE_ : Optional[Sequence[bool]] = None , ): """simple docstring""" def reduce_edge_list(SCREAMING_SNAKE_CASE_ : List[bool] ) -> None: UpperCamelCase : Optional[int] = True for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase : Optional[int] = l[reversed_idx] if start_edges is None: UpperCamelCase : Any = [s == 0 for s in start] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) if end_edges is None: UpperCamelCase : Union[str, Any] = [e == (d - 1) for e, d in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] reduce_edge_list(SCREAMING_SNAKE_CASE_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(SCREAMING_SNAKE_CASE_ ) == 0: return [()] elif len(SCREAMING_SNAKE_CASE_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCamelCase : List[Tuple[slice, ...]] = [] UpperCamelCase : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if s == e: path_list.append(slice(SCREAMING_SNAKE_CASE_ , s + 1 ) ) else: break UpperCamelCase : Tuple[slice, ...] = tuple(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ ) # start == end, and we're done if divergence_idx == len(SCREAMING_SNAKE_CASE_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase : str = start[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase : str = end[divergence_idx] return tuple( path + (slice(SCREAMING_SNAKE_CASE_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCamelCase : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def a ( SCREAMING_SNAKE_CASE_ : torch.Tensor , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : int = t.shape[:no_batch_dims] UpperCamelCase : Union[str, Any] = list(_flat_idx_to_idx(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # _get_minimal_slice_set is inclusive UpperCamelCase : Any = list(_flat_idx_to_idx(flat_end - 1 , SCREAMING_SNAKE_CASE_ ) ) # Get an ordered list of slices to perform UpperCamelCase : Optional[int] = _get_minimal_slice_set( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) UpperCamelCase : Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def a ( SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : Dict[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : Any = None , SCREAMING_SNAKE_CASE_ : bool = False , ): """simple docstring""" if not (len(SCREAMING_SNAKE_CASE_ ) > 0): raise ValueError('''Must provide at least one input''' ) UpperCamelCase : str = [shape[:no_batch_dims] for shape in _fetch_dims(SCREAMING_SNAKE_CASE_ )] UpperCamelCase : str = tuple([max(SCREAMING_SNAKE_CASE_ ) for s in zip(*SCREAMING_SNAKE_CASE_ )] ) def _prep_inputs(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCamelCase : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCamelCase : List[str] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCamelCase : Dict = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCamelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = None if _out is not None: UpperCamelCase : str = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCamelCase : str = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase : Optional[Any] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(SCREAMING_SNAKE_CASE_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase : Optional[int] = 0 UpperCamelCase : Tuple = prepped_outputs for _ in range(SCREAMING_SNAKE_CASE_ ): # Chunk the input if not low_mem: UpperCamelCase : Optional[Any] = _select_chunk else: UpperCamelCase : Optional[Any] = partial( _chunk_slice , flat_start=SCREAMING_SNAKE_CASE_ , flat_end=min(SCREAMING_SNAKE_CASE_ , i + chunk_size ) , no_batch_dims=len(SCREAMING_SNAKE_CASE_ ) , ) UpperCamelCase : Dict[str, Any] = tensor_tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Run the layer on the chunk UpperCamelCase : Optional[int] = layer(**SCREAMING_SNAKE_CASE_ ) # Allocate space for the output if out is None: UpperCamelCase : Any = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) # Put the chunk in its pre-allocated space if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): def assign(SCREAMING_SNAKE_CASE_ : dict , SCREAMING_SNAKE_CASE_ : dict ) -> None: for k, v in da.items(): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assign(SCREAMING_SNAKE_CASE_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase : Optional[int] = da[k] assign(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for xa, xa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase : Union[str, Any] = xa elif isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase : Any = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size UpperCamelCase : Tuple = tensor_tree_map(lambda SCREAMING_SNAKE_CASE_ : t.view(orig_batch_dims + t.shape[1:] ) , SCREAMING_SNAKE_CASE_ ) return out class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 512 , ): """simple docstring""" UpperCamelCase : Dict = max_chunk_size UpperCamelCase : Optional[int] = None UpperCamelCase : Optional[tuple] = None def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCamelCase : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase : str = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__SCREAMING_SNAKE_CASE ) -> bool: try: with torch.no_grad(): fn(*__SCREAMING_SNAKE_CASE , chunk_size=__SCREAMING_SNAKE_CASE ) return True except RuntimeError: return False UpperCamelCase : Optional[int] = 0 UpperCamelCase : List[str] = len(__SCREAMING_SNAKE_CASE ) - 1 while i > min_viable_chunk_size_index: UpperCamelCase : Optional[int] = test_chunk_size(candidates[i] ) if not viable: UpperCamelCase : Any = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase : Tuple = i UpperCamelCase : Optional[int] = (i + len(__SCREAMING_SNAKE_CASE ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = True for aa, aa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert type(__SCREAMING_SNAKE_CASE ) == type(__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ): consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] UpperCamelCase : Optional[int] = [v for _, v in sorted(aa.items() , key=lambda __SCREAMING_SNAKE_CASE : x[0] )] consistent &= self._compare_arg_caches(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: consistent &= aa == aa return consistent def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[Any] = True UpperCamelCase : tuple = tree_map(lambda __SCREAMING_SNAKE_CASE : a.shape if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) else a , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , __SCREAMING_SNAKE_CASE ) else: # Otherwise, we can reuse the precomputed value UpperCamelCase : Optional[Any] = False if not consistent: UpperCamelCase : Optional[int] = self._determine_favorable_chunk_size( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) UpperCamelCase : Any = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
643
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
1
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : int = 4 ): """simple docstring""" UpperCamelCase : Optional[Any] = abs(SCREAMING_SNAKE_CASE_ ) or 4 return [[1 + x + y * row_size for x in range(SCREAMING_SNAKE_CASE_ )] for y in range(SCREAMING_SNAKE_CASE_ )] def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" return reverse_row(transpose(SCREAMING_SNAKE_CASE_ ) ) # OR.. transpose(reverse_column(matrix)) def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" return reverse_row(reverse_column(SCREAMING_SNAKE_CASE_ ) ) # OR.. reverse_column(reverse_row(matrix)) def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" return reverse_column(transpose(SCREAMING_SNAKE_CASE_ ) ) # OR.. transpose(reverse_row(matrix)) def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" UpperCamelCase : Tuple = [list(SCREAMING_SNAKE_CASE_ ) for x in zip(*SCREAMING_SNAKE_CASE_ )] return matrix def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" UpperCamelCase : Optional[Any] = matrix[::-1] return matrix def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" UpperCamelCase : Dict = [x[::-1] for x in matrix] return matrix def a ( SCREAMING_SNAKE_CASE_ : list[list[int]] ): """simple docstring""" for i in matrix: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCAmelCase : int = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) __UpperCAmelCase : List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) __UpperCAmelCase : Tuple = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
643
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase : Any = "▁" __UpperCAmelCase : int = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Any = BertGenerationTokenizer __UpperCamelCase : int = False __UpperCamelCase : List[Any] = True def _lowercase ( self ): """simple docstring""" super().setUp() UpperCamelCase : Tuple = BertGenerationTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = '''<s>''' UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_002 ) def _lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = BertGenerationTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) UpperCamelCase : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCamelCase : Any = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _lowercase ( self ): """simple docstring""" return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = '''Hello World!''' UpperCamelCase : str = [18_536, 2_260, 101] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCamelCase : Tuple = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _lowercase ( self ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence UpperCamelCase : Optional[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCamelCase : List[Any] = ''' '''.join(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self.big_tokenizer.encode_plus(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , return_token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = BertGenerationConfig() UpperCamelCase : List[str] = BertGenerationEncoder(__SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__SCREAMING_SNAKE_CASE ) model(**__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = {'''input_ids''': [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
643
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json", } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Union[str, Any] = "timesformer" def __init__( self , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="divided_space_time" , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = image_size UpperCamelCase : str = patch_size UpperCamelCase : Optional[int] = num_channels UpperCamelCase : str = num_frames UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[str] = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : int = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : Union[str, Any] = qkv_bias UpperCamelCase : Tuple = attention_type UpperCamelCase : int = drop_path_rate
643
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Optional[Any] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=() , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[str]="no" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="29500" ): """simple docstring""" UpperCamelCase : List[str] = False UpperCamelCase : str = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): UpperCamelCase : Optional[Any] = True elif "IPython" in sys.modules: UpperCamelCase : str = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: UpperCamelCase : List[Any] = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , __A ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: UpperCamelCase : Tuple = 8 UpperCamelCase : List[str] = PrepareForLaunch(__A , distributed_type='''TPU''' ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(__A , args=__A , nprocs=__A , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*__A ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__A , master_addr='''127.0.01''' , master_port=__A , mixed_precision=__A ): UpperCamelCase : Dict = PrepareForLaunch(__A , distributed_type='''MULTI_GPU''' ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(__A , args=__A , nprocs=__A , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): UpperCamelCase : Any = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*__A ) def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=() , SCREAMING_SNAKE_CASE_ : str=2 ): """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__A , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): UpperCamelCase : List[str] = PrepareForLaunch(__A , debug=__A ) start_processes(__A , args=__A , nprocs=__A , start_method='''fork''' )
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _SCREAMING_SNAKE_CASE , ) if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return image elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase : Union[str, Any] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase , UpperCamelCase : str = image[0].size UpperCamelCase , UpperCamelCase : Dict = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 UpperCamelCase : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCamelCase : Any = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCamelCase : Optional[int] = np.array(_SCREAMING_SNAKE_CASE ).astype(np.floataa ) / 255.0 UpperCamelCase : Union[str, Any] = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase : Optional[int] = 2.0 * image - 1.0 UpperCamelCase : List[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase : int = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) return image def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return mask elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase : List[Any] = [mask] if isinstance(mask[0] , PIL.Image.Image ): UpperCamelCase , UpperCamelCase : Union[str, Any] = mask[0].size UpperCamelCase , UpperCamelCase : List[Any] = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase : Union[str, Any] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] UpperCamelCase : List[str] = np.concatenate(_SCREAMING_SNAKE_CASE , axis=0 ) UpperCamelCase : Optional[Any] = mask.astype(np.floataa ) / 255.0 UpperCamelCase : List[Any] = 0 UpperCamelCase : Tuple = 1 UpperCamelCase : int = torch.from_numpy(_SCREAMING_SNAKE_CASE ) elif isinstance(mask[0] , torch.Tensor ): UpperCamelCase : List[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) return mask class UpperCAmelCase_ ( snake_case__): '''simple docstring''' __UpperCamelCase : UNetaDModel __UpperCamelCase : RePaintScheduler def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 250 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ): """simple docstring""" UpperCamelCase : Optional[int] = image UpperCamelCase : int = _preprocess_image(UpperCAmelCase_ ) UpperCamelCase : str = original_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase : Tuple = _preprocess_mask(UpperCAmelCase_ ) UpperCamelCase : str = mask_image.to(device=self.device , dtype=self.unet.dtype ) UpperCamelCase : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and len(UpperCAmelCase_ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(UpperCAmelCase_ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) UpperCamelCase : List[Any] = original_image.shape UpperCamelCase : Optional[int] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , self.device ) UpperCamelCase : Any = eta UpperCamelCase : Optional[Any] = self.scheduler.timesteps[0] + 1 UpperCamelCase : Optional[int] = generator[0] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual UpperCamelCase : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute previous image: x_t -> x_t-1 UpperCamelCase : Dict = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ).prev_sample else: # compute the reverse: x_t-1 -> x_t UpperCamelCase : Optional[Any] = self.scheduler.undo_step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) UpperCamelCase : Optional[int] = t UpperCamelCase : Dict = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase : str = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[int] = IFImgaImgSuperResolutionPipeline __UpperCamelCase : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"} __UpperCamelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"original_image"}) __UpperCamelCase : Any = PipelineTesterMixin.required_optional_params - {"latents"} def _lowercase ( self ): """simple docstring""" return self._get_superresolution_dummy_components() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(A_ ).startswith('''mps''' ): UpperCamelCase : List[str] = torch.manual_seed(A_ ) else: UpperCamelCase : List[Any] = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Any = floats_tensor((1, 3, 16, 16) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : str = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _lowercase ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _lowercase ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _lowercase ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def _lowercase ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _lowercase ( self ): """simple docstring""" self._test_save_load_local() def _lowercase ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase : Any = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" UpperCamelCase : Union[str, Any] = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : List[Any] = seq_length UpperCamelCase : str = is_training UpperCamelCase : Dict = use_attention_mask UpperCamelCase : List[str] = use_token_type_ids UpperCamelCase : Tuple = use_labels UpperCamelCase : List[str] = vocab_size UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : Optional[Any] = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : str = attention_probs_dropout_prob UpperCamelCase : Tuple = max_position_embeddings UpperCamelCase : Dict = type_vocab_size UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Any = initializer_range UpperCamelCase : Union[str, Any] = num_choices def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Dict = None if self.use_attention_mask: UpperCamelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Optional[int] = None if self.use_token_type_ids: UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Optional[Any] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.prepare_config_and_inputs() UpperCamelCase : List[Any] = config_and_inputs UpperCamelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase_ ( lowercase__, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = FlaxAlbertModelTester(self ) @slow def _lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class_name.from_pretrained('''albert-base-v2''' ) UpperCamelCase : Dict = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) UpperCamelCase : Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCamelCase : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCamelCase : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] UpperCamelCase : Tuple = (1, 11, 768) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase : Any = np.array( [[[-0.6_513, 1.5_035, -0.2_766], [-0.6_515, 1.5_046, -0.2_780], [-0.6_512, 1.5_049, -0.2_784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' import math def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase_ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('''This should never happen''' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __UpperCAmelCase : List[str] = "Enter the base and the power separated by a comma: " __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = map(int, input(prompt).split(",")) __UpperCAmelCase , __UpperCAmelCase : List[str] = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. __UpperCAmelCase : List[str] = res(xa, ya) __UpperCAmelCase : List[Any] = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class UpperCAmelCase_ ( UpperCAmelCase_): '''simple docstring''' __UpperCamelCase : Any = 'transfo-xl' __UpperCamelCase : int = ['mems'] __UpperCamelCase : Tuple = { 'n_token': 'vocab_size', 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __SCREAMING_SNAKE_CASE=267_735 , __SCREAMING_SNAKE_CASE=[20_000, 40_000, 200_000] , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=1_600 , __SCREAMING_SNAKE_CASE=1_000 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="normal" , __SCREAMING_SNAKE_CASE=0.01 , __SCREAMING_SNAKE_CASE=0.01 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = vocab_size UpperCamelCase : str = [] self.cutoffs.extend(_lowercase ) if proj_share_all_but_first: UpperCamelCase : List[Any] = [False] + [True] * len(self.cutoffs ) else: UpperCamelCase : List[str] = [False] + [False] * len(self.cutoffs ) UpperCamelCase : str = d_model UpperCamelCase : int = d_embed UpperCamelCase : Dict = d_head UpperCamelCase : Optional[int] = d_inner UpperCamelCase : int = div_val UpperCamelCase : List[str] = pre_lnorm UpperCamelCase : Any = n_layer UpperCamelCase : Dict = n_head UpperCamelCase : Tuple = mem_len UpperCamelCase : Optional[int] = same_length UpperCamelCase : List[str] = attn_type UpperCamelCase : Optional[int] = clamp_len UpperCamelCase : int = sample_softmax UpperCamelCase : List[str] = adaptive UpperCamelCase : List[str] = dropout UpperCamelCase : Union[str, Any] = dropatt UpperCamelCase : int = untie_r UpperCamelCase : Optional[Any] = init UpperCamelCase : Union[str, Any] = init_range UpperCamelCase : Any = proj_init_std UpperCamelCase : List[Any] = init_std UpperCamelCase : Optional[Any] = layer_norm_epsilon super().__init__(eos_token_id=_lowercase , **_lowercase ) @property def _lowercase ( self ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class UpperCAmelCase_ ( __A): '''simple docstring''' __UpperCamelCase : List[Any] = "xmod" def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=("en_XX",) , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Optional[int] = num_hidden_layers UpperCamelCase : List[Any] = num_attention_heads UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : List[Any] = initializer_range UpperCamelCase : Dict = layer_norm_eps UpperCamelCase : Any = position_embedding_type UpperCamelCase : List[Any] = use_cache UpperCamelCase : List[str] = classifier_dropout UpperCamelCase : Dict = pre_norm UpperCamelCase : List[Any] = adapter_reduction_factor UpperCamelCase : List[str] = adapter_layer_norm UpperCamelCase : Tuple = adapter_reuse_layer_norm UpperCamelCase : Dict = ln_before_adapter UpperCamelCase : Optional[Any] = list(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = default_language class UpperCAmelCase_ ( __A): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __UpperCAmelCase : str = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] __UpperCAmelCase : List[str] = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def a ( ): """simple docstring""" UpperCamelCase : str = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase : Tuple = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def a ( ): """simple docstring""" UpperCamelCase : Any = '''rougeLsum''' UpperCamelCase : Any = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] UpperCamelCase : Optional[Any] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def a ( ): """simple docstring""" UpperCamelCase : Optional[Any] = ['''rouge1''', '''rouge2''', '''rougeL'''] UpperCamelCase : Optional[int] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) UpperCamelCase : Dict = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) assert score_sep == score_no_sep def a ( ): """simple docstring""" UpperCamelCase : Tuple = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .''', ] UpperCamelCase : Optional[Any] = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) == calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) def a ( ): """simple docstring""" UpperCamelCase : List[str] = [ '''\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" ''' ] UpperCamelCase : Any = [ ''' Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] UpperCamelCase : List[Any] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] , newline_sep=__lowerCAmelCase )['''rougeLsum'''] UpperCamelCase : Union[str, Any] = calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def a ( ): """simple docstring""" UpperCamelCase : List[Any] = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) UpperCamelCase : Tuple = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase : List[Any] = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
import math class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" UpperCamelCase : Optional[int] = n UpperCamelCase : Union[str, Any] = [ [math.inf for j in range(0 , UpperCamelCase_ )] for i in range(0 , UpperCamelCase_ ) ] # adjacency matrix for weight UpperCamelCase : str = [ [math.inf for j in range(0 , UpperCamelCase_ )] for i in range(0 , UpperCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = w def _lowercase ( self ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): UpperCamelCase : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": __UpperCAmelCase : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCAmelCase_ ( unittest.TestCase): __UpperCamelCase : Optional[int] = JukeboxTokenizer __UpperCamelCase : List[str] = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def _lowercase ( self ): """simple docstring""" import torch UpperCamelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) UpperCamelCase : Optional[int] = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCamelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def _lowercase ( self ): """simple docstring""" import torch UpperCamelCase : Tuple = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) UpperCamelCase : List[str] = tokenizer(**self.metas )["input_ids"] # fmt: off UpperCamelCase : int = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
from math import sqrt def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(__lowerCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( SCREAMING_SNAKE_CASE_ : List[Any] = 1_0_0_0_1 ): """simple docstring""" UpperCamelCase : Dict = 0 UpperCamelCase : Tuple = 1 while count != nth and number < 3: number += 1 if is_prime(__lowerCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(__lowerCAmelCase ): count += 1 return number if __name__ == "__main__": print(f'''{solution() = }''')
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
__UpperCAmelCase : List[Any] = [0, 2, 4, 6, 8] __UpperCAmelCase : str = [1, 3, 5, 7, 9] def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 1_0 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 UpperCamelCase : Union[str, Any] = 0 for digit in range(1_0 ): UpperCamelCase : List[str] = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 1_0 , __UpperCAmelCase , __UpperCAmelCase ) return result UpperCamelCase : Union[str, Any] = 0 for digita in range(1_0 ): UpperCamelCase : Optional[int] = digita if (remainder + digita) % 2 == 0: UpperCamelCase : str = ODD_DIGITS else: UpperCamelCase : Dict = EVEN_DIGITS for digita in other_parity_digits: UpperCamelCase : List[str] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 1_0 , __UpperCAmelCase , __UpperCAmelCase , ) return result def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] = 9 ): """simple docstring""" UpperCamelCase : Optional[Any] = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCAmelCase , 0 , [0] * length , __UpperCAmelCase ) return result if __name__ == "__main__": print(f'''{solution() = }''')
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
import random def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Union[str, Any] = num - 1 UpperCamelCase : List[str] = 0 while s % 2 == 0: UpperCamelCase : Optional[Any] = s // 2 t += 1 for _ in range(5 ): UpperCamelCase : Tuple = random.randrange(2 , num - 1 ) UpperCamelCase : Any = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if v != 1: UpperCamelCase : List[Any] = 0 while v != (num - 1): if i == t - 1: return False else: UpperCamelCase : Any = i + 1 UpperCamelCase : Dict = (v**2) % num return True def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" if num < 2: return False UpperCamelCase : Optional[Any] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(lowerCAmelCase__ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] = 1_0_2_4 ): """simple docstring""" while True: UpperCamelCase : str = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(lowerCAmelCase__ ): return num if __name__ == "__main__": __UpperCAmelCase : int = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
from __future__ import annotations import math def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(__A ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) return min( minimax(depth + 1 , node_index * 2 , __A , __A , __A ) , minimax(depth + 1 , node_index * 2 + 1 , __A , __A , __A ) , ) def a ( ): """simple docstring""" UpperCamelCase : Dict = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] UpperCamelCase : List[Any] = math.log(len(__A ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , __A , __A , __A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( a__, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = PhobertTokenizer __UpperCamelCase : Union[str, Any] = False def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : str = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] UpperCamelCase : Union[str, Any] = dict(zip(_A , range(len(_A ) ) ) ) UpperCamelCase : Optional[int] = ['#version: 0.2', 'l à</w>'] UpperCamelCase : Tuple = {'unk_token': '<unk>'} UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f"""{token} {vocab_tokens[token]}\n""" ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_A ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **_A ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = 'Tôi là VinAI Research' UpperCamelCase : Any = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase : List[Any] = 'Tôi là VinAI Research' UpperCamelCase : Dict = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() UpperCamelCase : Optional[int] = tokenizer.tokenize(_A ) print(_A ) self.assertListEqual(_A , _A ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Dict = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , _A )
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
from __future__ import annotations import pandas as pd def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : str = [0] * no_of_processes UpperCamelCase : Any = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_lowerCamelCase ): UpperCamelCase : str = burst_time[i] UpperCamelCase : int = 0 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Dict = 9_9_9_9_9_9_9_9_9 UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Optional[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(_lowerCamelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCamelCase : str = remaining_time[j] UpperCamelCase : Tuple = j UpperCamelCase : Optional[int] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCamelCase : int = remaining_time[short] if minm == 0: UpperCamelCase : Optional[Any] = 9_9_9_9_9_9_9_9_9 if remaining_time[short] == 0: complete += 1 UpperCamelCase : Optional[int] = False # Find finish time of current process UpperCamelCase : Union[str, Any] = increment_time + 1 # Calculate waiting time UpperCamelCase : Optional[int] = finish_time - arrival_time[short] UpperCamelCase : Dict = finar - burst_time[short] if waiting_time[short] < 0: UpperCamelCase : Tuple = 0 # Increment time increment_time += 1 return waiting_time def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Any = [0] * no_of_processes for i in range(_lowerCamelCase ): UpperCamelCase : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Any = 0 UpperCamelCase : Optional[Any] = 0 for i in range(_lowerCamelCase ): UpperCamelCase : List[Any] = total_waiting_time + waiting_time[i] UpperCamelCase : str = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print("Enter how many process you want to analyze") __UpperCAmelCase : str = int(input()) __UpperCAmelCase : Optional[int] = [0] * no_of_processes __UpperCAmelCase : str = [0] * no_of_processes __UpperCAmelCase : str = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print("Enter the arrival time and burst time for process:--" + str(i + 1)) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = map(int, input().split()) __UpperCAmelCase : Any = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __UpperCAmelCase : Any = burst_time __UpperCAmelCase : Dict = no_of_processes __UpperCAmelCase : Optional[int] = waiting_time __UpperCAmelCase : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __UpperCAmelCase : Optional[Any] = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ "Process", "BurstTime", "ArrivalTime", "WaitingTime", "TurnAroundTime", ], ) # Printing the dataFrame pd.set_option("display.max_rows", fcfs.shape[0] + 1) print(fcfs)
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : List[str] = 42 __UpperCamelCase : Optional[int] = 42 __UpperCamelCase : Optional[int] = 0.0 __UpperCamelCase : Dict = 1 __UpperCamelCase : int = 1 __UpperCamelCase : Optional[int] = True __UpperCamelCase : Dict = False __UpperCamelCase : int = False __UpperCamelCase : Tuple = False __UpperCamelCase : int = jnp.floataa def _lowercase ( self ): """simple docstring""" a_ : Optional[int] = [] a_ : Optional[int] = [] for i in range(self.num_layers ): a_ : Optional[int] = self.in_channels if i == 0 else self.out_channels a_ : List[Any] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase_ ) a_ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCamelCase_ ) a_ : List[Any] = resnets a_ : List[str] = attentions if self.add_downsample: a_ : Union[str, Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" a_ : int = () for resnet, attn in zip(self.resnets , self.attentions ): a_ : int = resnet(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) a_ : str = attn(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: a_ : Union[str, Any] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : List[Any] = 42 __UpperCamelCase : Dict = 42 __UpperCamelCase : Any = 0.0 __UpperCamelCase : List[Any] = 1 __UpperCamelCase : Any = True __UpperCamelCase : int = jnp.floataa def _lowercase ( self ): """simple docstring""" a_ : str = [] for i in range(self.num_layers ): a_ : Optional[Any] = self.in_channels if i == 0 else self.out_channels a_ : Optional[int] = FlaxResnetBlockaD( in_channels=lowerCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase_ ) a_ : str = resnets if self.add_downsample: a_ : int = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" a_ : Optional[int] = () for resnet in self.resnets: a_ : int = resnet(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: a_ : Optional[int] = self.downsamplers_a(lowerCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : List[Any] = 42 __UpperCamelCase : Optional[int] = 42 __UpperCamelCase : Dict = 42 __UpperCamelCase : Optional[int] = 0.0 __UpperCamelCase : str = 1 __UpperCamelCase : List[Any] = 1 __UpperCamelCase : str = True __UpperCamelCase : List[str] = False __UpperCamelCase : str = False __UpperCamelCase : Tuple = False __UpperCamelCase : Any = jnp.floataa def _lowercase ( self ): """simple docstring""" a_ : int = [] a_ : List[Any] = [] for i in range(self.num_layers ): a_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels a_ : Dict = self.prev_output_channel if i == 0 else self.out_channels a_ : Tuple = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase_ ) a_ : List[str] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCamelCase_ ) a_ : str = resnets a_ : Tuple = attentions if self.add_upsample: a_ : int = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states a_ : Any = res_hidden_states_tuple[-1] a_ : Any = res_hidden_states_tuple[:-1] a_ : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a_ : Optional[Any] = resnet(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) a_ : List[str] = attn(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) if self.add_upsample: a_ : Optional[int] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : Dict = 42 __UpperCamelCase : Union[str, Any] = 42 __UpperCamelCase : List[str] = 42 __UpperCamelCase : Optional[Any] = 0.0 __UpperCamelCase : Optional[int] = 1 __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Optional[Any] = jnp.floataa def _lowercase ( self ): """simple docstring""" a_ : Any = [] for i in range(self.num_layers ): a_ : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels a_ : List[str] = self.prev_output_channel if i == 0 else self.out_channels a_ : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase_ ) a_ : Union[str, Any] = resnets if self.add_upsample: a_ : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states a_ : List[str] = res_hidden_states_tuple[-1] a_ : Tuple = res_hidden_states_tuple[:-1] a_ : Optional[int] = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a_ : str = resnet(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) if self.add_upsample: a_ : Union[str, Any] = self.upsamplers_a(lowerCamelCase_ ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' __UpperCamelCase : Any = 42 __UpperCamelCase : Optional[Any] = 0.0 __UpperCamelCase : str = 1 __UpperCamelCase : int = 1 __UpperCamelCase : Dict = False __UpperCamelCase : Dict = False __UpperCamelCase : List[Any] = jnp.floataa def _lowercase ( self ): """simple docstring""" a_ : Any = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] a_ : int = [] for _ in range(self.num_layers ): a_ : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowerCamelCase_ ) a_ : Optional[Any] = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowerCamelCase_ ) a_ : Optional[Any] = resnets a_ : Any = attentions def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" a_ : int = self.resnets[0](lowerCamelCase_ , lowerCamelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): a_ : str = attn(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) a_ : Optional[int] = resnet(lowerCamelCase_ , lowerCamelCase_ , deterministic=lowerCamelCase_ ) return hidden_states
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
import fire from utils import calculate_rouge, save_json def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict=None , **SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : List[str] = [x.strip() for x in open(_A ).readlines()] UpperCamelCase : Optional[Any] = [x.strip() for x in open(_A ).readlines()][: len(_A )] UpperCamelCase : int = calculate_rouge(_A , _A , **_A ) if save_path is not None: save_json(_A , _A , indent=_A ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { """google/pix2struct-textcaps-base""": ( """https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = """pix2struct_text_model""" __UpperCamelCase : Any = ["""past_key_values"""] __UpperCamelCase : str = { """hidden_size""": """hidden_size""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __SCREAMING_SNAKE_CASE=50_244 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : str = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Any = d_kv UpperCamelCase : Dict = d_ff UpperCamelCase : Optional[int] = num_layers UpperCamelCase : Optional[int] = num_heads UpperCamelCase : int = relative_attention_num_buckets UpperCamelCase : Optional[Any] = relative_attention_max_distance UpperCamelCase : int = dropout_rate UpperCamelCase : Dict = layer_norm_epsilon UpperCamelCase : Tuple = initializer_factor UpperCamelCase : List[Any] = use_cache UpperCamelCase : Optional[int] = eos_token_id UpperCamelCase : Optional[int] = decoder_start_token_id # for backwards compatibility UpperCamelCase : int = dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) UpperCamelCase , UpperCamelCase : List[Any] = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": UpperCamelCase : Optional[int] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Tuple = """pix2struct_vision_model""" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1e-10 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=128 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**snake_case_ ) UpperCamelCase : Dict = hidden_size UpperCamelCase : Dict = patch_embed_hidden_size UpperCamelCase : str = d_ff UpperCamelCase : Dict = dropout_rate UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Any = num_attention_heads UpperCamelCase : Tuple = initializer_range UpperCamelCase : Union[str, Any] = initializer_factor UpperCamelCase : Optional[int] = attention_dropout UpperCamelCase : Any = layer_norm_eps UpperCamelCase : Optional[Any] = dense_act_fn UpperCamelCase : List[str] = seq_len UpperCamelCase : Optional[Any] = relative_attention_num_buckets UpperCamelCase : Tuple = relative_attention_max_distance UpperCamelCase : List[str] = d_kv @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(snake_case_ ) UpperCamelCase , UpperCamelCase : str = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": UpperCamelCase : List[Any] = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(snake_case_ , **snake_case_ ) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = """pix2struct""" __UpperCamelCase : Any = True def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: UpperCamelCase : Optional[int] = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: UpperCamelCase : Tuple = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) UpperCamelCase : Any = PixaStructTextConfig(**snake_case_ ) UpperCamelCase : Dict = PixaStructVisionConfig(**snake_case_ ) UpperCamelCase : Optional[Any] = self.text_config.decoder_start_token_id UpperCamelCase : List[Any] = self.text_config.pad_token_id UpperCamelCase : Optional[int] = self.text_config.eos_token_id UpperCamelCase : Optional[int] = initializer_factor UpperCamelCase : List[str] = initializer_range UpperCamelCase : Union[str, Any] = self.initializer_range UpperCamelCase : List[str] = self.initializer_range UpperCamelCase : Any = is_vqa @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = copy.deepcopy(self.__dict__ ) UpperCamelCase : int = self.text_config.to_dict() UpperCamelCase : List[Any] = self.vision_config.to_dict() UpperCamelCase : List[str] = self.__class__.model_type return output
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): '''simple docstring''' __UpperCamelCase : Any = "blenderbot-small" __UpperCamelCase : int = ["past_key_values"] __UpperCamelCase : Union[str, Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , __SCREAMING_SNAKE_CASE=50_265 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Dict = max_position_embeddings UpperCamelCase : Union[str, Any] = d_model UpperCamelCase : List[str] = encoder_ffn_dim UpperCamelCase : Any = encoder_layers UpperCamelCase : Optional[Any] = encoder_attention_heads UpperCamelCase : int = decoder_ffn_dim UpperCamelCase : List[str] = decoder_layers UpperCamelCase : str = decoder_attention_heads UpperCamelCase : str = dropout UpperCamelCase : List[str] = attention_dropout UpperCamelCase : Any = activation_dropout UpperCamelCase : Optional[int] = activation_function UpperCamelCase : int = init_std UpperCamelCase : List[str] = encoder_layerdrop UpperCamelCase : Dict = decoder_layerdrop UpperCamelCase : List[Any] = use_cache UpperCamelCase : Optional[Any] = encoder_layers UpperCamelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , forced_eos_token_id=_lowercase , **_lowercase , ) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Optional[Any] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCamelCase : int = {0: """batch"""} UpperCamelCase : str = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: UpperCamelCase : Union[str, Any] = {0: """batch""", 1: """decoder_sequence"""} UpperCamelCase : Optional[Any] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase : Dict = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: UpperCamelCase : int = self.num_layers for i in range(_lowercase ): UpperCamelCase : Any = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase : Optional[int] = {0: """batch""", 2: """past_sequence + sequence"""} else: UpperCamelCase : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _lowercase ( self ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Any = super().outputs else: UpperCamelCase : Optional[int] = super(_lowercase , self ).outputs if self.use_past: UpperCamelCase : str = self.num_layers for i in range(_lowercase ): UpperCamelCase : str = {0: """batch""", 2: """past_sequence + sequence"""} UpperCamelCase : Dict = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : Tuple = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # Generate decoder inputs UpperCamelCase : List[str] = seq_length if not self.use_past else 1 UpperCamelCase : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) UpperCamelCase : Optional[Any] = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} UpperCamelCase : Any = dict(**_lowercase , **_lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase : Optional[int] = common_inputs["""input_ids"""].shape UpperCamelCase : Optional[int] = common_inputs["""decoder_input_ids"""].shape[1] UpperCamelCase : Optional[Any] = self.num_attention_heads UpperCamelCase : Optional[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : Tuple = decoder_seq_length + 3 UpperCamelCase : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase : Optional[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(_lowercase , _lowercase )] , dim=1 ) UpperCamelCase : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase : List[str] = self.num_layers UpperCamelCase : List[str] = min(_lowercase , _lowercase ) UpperCamelCase : Optional[Any] = max(_lowercase , _lowercase ) - min_num_layers UpperCamelCase : Optional[Any] = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), torch.zeros(_lowercase ), ) ) # TODO: test this. UpperCamelCase : Optional[Any] = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowercase , _lowercase ): common_inputs["past_key_values"].append((torch.zeros(_lowercase ), torch.zeros(_lowercase )) ) return common_inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCamelCase : Any = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCamelCase : List[Any] = seqlen + 2 UpperCamelCase : Any = self.num_layers UpperCamelCase : Any = self.num_attention_heads UpperCamelCase : List[str] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase : str = common_inputs["""attention_mask"""].dtype UpperCamelCase : Tuple = torch.cat( [common_inputs['''attention_mask'''], torch.ones(_lowercase , _lowercase , dtype=_lowercase )] , dim=1 ) UpperCamelCase : int = [ (torch.zeros(_lowercase ), torch.zeros(_lowercase )) for _ in range(_lowercase ) ] return common_inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : Any = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase : Any = tokenizer.num_special_tokens_to_add(_lowercase ) UpperCamelCase : Dict = compute_effective_axis_dimension( _lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_lowercase ) # Generate dummy inputs according to compute batch and sequence UpperCamelCase : Dict = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size UpperCamelCase : List[Any] = dict(tokenizer(_lowercase , return_tensors=_lowercase ) ) return common_inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = -1 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : str = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) elif self.task == "causal-lm": UpperCamelCase : int = self._generate_dummy_inputs_for_causal_lm( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) else: UpperCamelCase : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( _lowercase , batch_size=_lowercase , seq_length=_lowercase , is_pair=_lowercase , framework=_lowercase ) return common_inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: UpperCamelCase : Union[str, Any] = super()._flatten_past_key_values_(_lowercase , _lowercase , _lowercase , _lowercase ) else: UpperCamelCase : int = super(_lowercase , self )._flatten_past_key_values_( _lowercase , _lowercase , _lowercase , _lowercase )
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : int = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class UpperCAmelCase_ ( _lowercase): '''simple docstring''' __UpperCamelCase : List[str] = '''mobilenet_v1''' def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE="relu6" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.999 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.001 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**A_ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) UpperCamelCase : Optional[int] = num_channels UpperCamelCase : str = image_size UpperCamelCase : str = depth_multiplier UpperCamelCase : str = min_depth UpperCamelCase : str = hidden_act UpperCamelCase : Tuple = tf_padding UpperCamelCase : Tuple = classifier_dropout_prob UpperCamelCase : int = initializer_range UpperCamelCase : Any = layer_norm_eps class UpperCAmelCase_ ( _lowercase): '''simple docstring''' __UpperCamelCase : Any = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def _lowercase ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Dict = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[int] = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' F"""{test_file} instead.""" ) UpperCamelCase : Any = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) UpperCamelCase : Tuple = components[:-1] + [test_fn.replace('''.py''' , '''''' )] UpperCamelCase : List[Any] = '''.'''.join(SCREAMING_SNAKE_CASE_ ) return test_module_path def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Union[str, Any] = get_module_path(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = importlib.import_module(SCREAMING_SNAKE_CASE_ ) return test_module def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Tuple = [] UpperCamelCase : Any = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Union[str, Any] = [] UpperCamelCase : Union[str, Any] = get_test_module(SCREAMING_SNAKE_CASE_ ) for attr in dir(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). UpperCamelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE_ , '''all_model_classes''' , [] ) if len(SCREAMING_SNAKE_CASE_ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Tuple = get_test_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : Dict = test_class() if hasattr(SCREAMING_SNAKE_CASE_ , '''setUp''' ): test.setUp() UpperCamelCase : Union[str, Any] = None if hasattr(SCREAMING_SNAKE_CASE_ , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: UpperCamelCase : Optional[Any] = test.model_tester.__class__ return model_tester def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Optional[Any] = get_test_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" UpperCamelCase : int = get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Tuple = [] for test_class in test_classes: UpperCamelCase : Any = get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE_ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : x.__name__ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): """simple docstring""" UpperCamelCase : Any = get_test_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = {test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE_ ) for test_class in test_classes} return test_tester_mapping def a ( SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : str = get_model_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_test_mapping def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Dict = get_model_classes(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = { model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for model_class in model_classes } return model_to_tester_mapping def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE_ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return {to_json(SCREAMING_SNAKE_CASE_ ): to_json(SCREAMING_SNAKE_CASE_ ) for k, v in o.items()} else: return o
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' __UpperCamelCase : int = "gptsan-japanese" __UpperCamelCase : List[Any] = [ "past_key_values", ] __UpperCamelCase : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __SCREAMING_SNAKE_CASE=36_000 , __SCREAMING_SNAKE_CASE=1_280 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=8_192 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE="float32" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.002 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=35_998 , __SCREAMING_SNAKE_CASE=35_995 , __SCREAMING_SNAKE_CASE=35_999 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Dict = vocab_size UpperCamelCase : Optional[Any] = max_position_embeddings UpperCamelCase : Optional[int] = d_model UpperCamelCase : Optional[Any] = d_ff UpperCamelCase : int = d_ext UpperCamelCase : Optional[int] = d_spout UpperCamelCase : str = num_switch_layers UpperCamelCase : int = num_ext_layers UpperCamelCase : List[Any] = num_switch_layers + num_ext_layers UpperCamelCase : Union[str, Any] = num_heads UpperCamelCase : Any = num_experts UpperCamelCase : Dict = expert_capacity UpperCamelCase : List[Any] = dropout_rate UpperCamelCase : Tuple = layer_norm_epsilon UpperCamelCase : Union[str, Any] = router_bias UpperCamelCase : str = router_jitter_noise UpperCamelCase : List[str] = router_dtype UpperCamelCase : Any = router_ignore_padding_tokens UpperCamelCase : List[Any] = output_hidden_states UpperCamelCase : Union[str, Any] = output_attentions UpperCamelCase : Optional[int] = initializer_factor UpperCamelCase : Dict = output_router_logits UpperCamelCase : Union[str, Any] = use_cache super().__init__( separator_token_id=__A , pad_token_id=__A , eos_token_id=__A , **__A , )
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) UpperCamelCase : Union[str, Any] = """xvjiarui/stable-diffusion-2-inpainting""" UpperCamelCase : List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) UpperCamelCase : int = """Face of a yellow cat, high resolution, sitting on a park bench""" UpperCamelCase : Tuple = jax.random.PRNGKey(0 ) UpperCamelCase : Optional[int] = 50 UpperCamelCase : Union[str, Any] = jax.device_count() UpperCamelCase : Tuple = num_samples * [prompt] UpperCamelCase : int = num_samples * [init_image] UpperCamelCase : Dict = num_samples * [mask_image] UpperCamelCase : Tuple = pipeline.prepare_inputs(_a , _a , _a ) # shard inputs and rng UpperCamelCase : str = replicate(_a ) UpperCamelCase : str = jax.random.split(_a , jax.device_count() ) UpperCamelCase : List[str] = shard(_a ) UpperCamelCase : int = shard(_a ) UpperCamelCase : Tuple = shard(_a ) UpperCamelCase : str = pipeline( _a , _a , _a , _a , _a , _a , jit=_a ) UpperCamelCase : List[Any] = output.images.reshape(_a , 512 , 512 , 3 ) UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1] UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCamelCase : Optional[Any] = jnp.array( [0.3_611_307, 0.37_649_736, 0.3_757_408, 0.38_213_953, 0.39_295_167, 0.3_841_631, 0.41_554_978, 0.4_137_475, 0.4_217_084] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCAmelCase : int = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class UpperCAmelCase_ ( __a): '''simple docstring''' __UpperCamelCase : List[Any] = "luke" def __init__( self , __SCREAMING_SNAKE_CASE=50_267 , __SCREAMING_SNAKE_CASE=500_000 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) UpperCamelCase : Optional[int] = vocab_size UpperCamelCase : Any = entity_vocab_size UpperCamelCase : Optional[Any] = hidden_size UpperCamelCase : Union[str, Any] = entity_emb_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Union[str, Any] = num_attention_heads UpperCamelCase : Any = hidden_act UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[Any] = type_vocab_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Optional[Any] = layer_norm_eps UpperCamelCase : Dict = use_entity_aware_attention UpperCamelCase : List[Any] = classifier_dropout
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def a ( ): """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase_ ( _UpperCAmelCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" UpperCamelCase : Union[str, Any] = 1.0 if scale is None else scale UpperCamelCase : List[Any] = 0.0 if loc is None else loc super().__init__(lowercase_ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=lowercase_ )] ) @property def _lowercase ( self ): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def _lowercase ( self ): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def _lowercase ( self ): """simple docstring""" return self.variance.sqrt() class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(**lowercase_ ) UpperCamelCase : List[Any] = args_dim UpperCamelCase : Tuple = nn.ModuleList([nn.Linear(lowercase_ , lowercase_ ) for dim in args_dim.values()] ) UpperCamelCase : int = domain_map def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = [proj(lowercase_ ) for proj in self.proj] return self.domain_map(*lowercase_ ) class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : Dict = function def _lowercase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.function(lowercase_ , *lowercase_ ) class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Tuple = 42 __UpperCamelCase : Union[str, Any] = 42 __UpperCamelCase : List[str] = 42 def __init__( self , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" UpperCamelCase : str = dim UpperCamelCase : int = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.dim == 1: return self.distribution_class(*lowercase_ ) else: return Independent(self.distribution_class(*lowercase_ ) , 1 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : str = self._base_distribution(lowercase_ ) if loc is None and scale is None: return distr else: return AffineTransformed(lowercase_ , loc=lowercase_ , scale=lowercase_ , event_dim=self.event_dim ) @property def _lowercase ( self ): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def _lowercase ( self ): """simple docstring""" return len(self.event_shape ) @property def _lowercase ( self ): """simple docstring""" return 0.0 def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return ParameterProjection( in_features=lowercase_ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE ): """simple docstring""" raise NotImplementedError() @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" return (x + torch.sqrt(torch.square(lowercase_ ) + 4.0 )) / 2.0 class UpperCAmelCase_ ( _UpperCAmelCase): '''simple docstring''' __UpperCamelCase : Union[str, Any] = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : Union[str, Any] = StudentT @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = cls.squareplus(lowercase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase : Optional[Any] = 2.0 + cls.squareplus(lowercase_ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( _UpperCAmelCase): '''simple docstring''' __UpperCamelCase : Tuple = {"loc": 1, "scale": 1} __UpperCamelCase : Tuple = Normal @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = cls.squareplus(lowercase_ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( _UpperCAmelCase): '''simple docstring''' __UpperCamelCase : Union[str, Any] = {"total_count": 1, "logits": 1} __UpperCamelCase : Tuple = NegativeBinomial @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = cls.squareplus(lowercase_ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = distr_args if self.dim == 1: return self.distribution_class(total_count=lowercase_ , logits=lowercase_ ) else: return Independent(self.distribution_class(total_count=lowercase_ , logits=lowercase_ ) , 1 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
from __future__ import annotations from typing import TypedDict class UpperCAmelCase_ ( a__): '''simple docstring''' __UpperCamelCase : str __UpperCamelCase : int def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('''The parameter s type must be str.''' ) return [s[i:] + s[:i] for i in range(len(_lowercase ) )] def a ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('''The parameter s type must be str.''' ) if not s: raise ValueError('''The parameter s must not be empty.''' ) UpperCamelCase : str = all_rotations(_lowercase ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation UpperCamelCase : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(_lowercase ), } return response def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if not isinstance(_lowercase , _lowercase ): raise TypeError('''The parameter bwt_string type must be str.''' ) if not bwt_string: raise ValueError('''The parameter bwt_string must not be empty.''' ) try: UpperCamelCase : Tuple = int(_lowercase ) except ValueError: raise TypeError( '''The parameter idx_original_string type must be int or passive''' ''' of cast to int.''' ) if idx_original_string < 0: raise ValueError('''The parameter idx_original_string must not be lower than 0.''' ) if idx_original_string >= len(_lowercase ): raise ValueError( '''The parameter idx_original_string must be lower than''' ''' len(bwt_string).''' ) UpperCamelCase : str = [""] * len(_lowercase ) for _ in range(len(_lowercase ) ): for i in range(len(_lowercase ) ): UpperCamelCase : int = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCAmelCase : Optional[int] = '''Provide a string that I will generate its BWT transform: ''' __UpperCAmelCase : Optional[int] = input(entry_msg).strip() __UpperCAmelCase : List[Any] = bwt_transform(s) print( f'''Burrows Wheeler transform for string \'{s}\' results ''' f'''in \'{result['bwt_string']}\'''' ) __UpperCAmelCase : Any = reverse_bwt(result["bwt_string"], result["idx_original_string"]) print( f'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' f'''we get original string \'{original_string}\'''' )
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class UpperCAmelCase_ ( UpperCAmelCase__, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Tuple = BarthezTokenizer __UpperCamelCase : List[Any] = BarthezTokenizerFast __UpperCamelCase : str = True __UpperCamelCase : List[str] = True def _lowercase ( self ): """simple docstring""" super().setUp() UpperCamelCase : int = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCAmelCase ) UpperCamelCase : List[Any] = tokenizer def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = '''<pad>''' UpperCamelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCAmelCase ) , 101_122 ) def _lowercase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCamelCase : List[str] = [0, 57, 3_018, 70_307, 91, 2] UpperCamelCase : str = self.tokenizer( __lowerCAmelCase , max_length=len(__lowerCAmelCase ) , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) UpperCamelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase : Optional[Any] = self.get_tokenizer() UpperCamelCase : Dict = self.get_rust_tokenizer() UpperCamelCase : List[str] = '''I was born in 92000, and this is falsé.''' UpperCamelCase : str = tokenizer.tokenize(__lowerCAmelCase ) UpperCamelCase : Optional[Any] = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase : Any = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) UpperCamelCase : str = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase : str = self.get_rust_tokenizer() UpperCamelCase : Optional[Any] = tokenizer.encode(__lowerCAmelCase ) UpperCamelCase : Any = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. UpperCamelCase : Union[str, Any] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__lowerCAmelCase , )
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , ): """simple docstring""" UpperCamelCase : Union[str, Any] = len(_snake_case ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_snake_case ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _snake_case , _snake_case , ) def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = [] depth_first_search([] , [] , [] , _snake_case , _snake_case ) # Print all the boards for board in boards: for column in board: print(_snake_case ) print('''''' ) print(len(_snake_case ) , '''solutions were found.''' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=0 ): """simple docstring""" UpperCamelCase : Dict = 1.0 if scale is None else scale UpperCamelCase : Optional[int] = 0.0 if loc is None else loc super().__init__(UpperCamelCase__ , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCamelCase__ )] ) @property def _lowercase ( self ): """simple docstring""" return self.base_dist.mean * self.scale + self.loc @property def _lowercase ( self ): """simple docstring""" return self.base_dist.variance * self.scale**2 @property def _lowercase ( self ): """simple docstring""" return self.variance.sqrt() class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCamelCase : Union[str, Any] = args_dim UpperCamelCase : List[Any] = nn.ModuleList([nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) for dim in args_dim.values()] ) UpperCamelCase : Dict = domain_map def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = [proj(UpperCamelCase__ ) for proj in self.proj] return self.domain_map(*UpperCamelCase__ ) class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : Union[str, Any] = function def _lowercase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.function(UpperCamelCase__ , *UpperCamelCase__ ) class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Dict = 42 __UpperCamelCase : int = 42 __UpperCamelCase : Any = 42 def __init__( self , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" UpperCamelCase : Tuple = dim UpperCamelCase : List[str] = {k: dim * self.args_dim[k] for k in self.args_dim} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.dim == 1: return self.distribution_class(*UpperCamelCase__ ) else: return Independent(self.distribution_class(*UpperCamelCase__ ) , 1 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : Union[str, Any] = self._base_distribution(UpperCamelCase__ ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCamelCase__ , loc=UpperCamelCase__ , scale=UpperCamelCase__ , event_dim=self.event_dim ) @property def _lowercase ( self ): """simple docstring""" return () if self.dim == 1 else (self.dim,) @property def _lowercase ( self ): """simple docstring""" return len(self.event_shape ) @property def _lowercase ( self ): """simple docstring""" return 0.0 def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return ParameterProjection( in_features=UpperCamelCase__ , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE ): """simple docstring""" raise NotImplementedError() @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" return (x + torch.sqrt(torch.square(UpperCamelCase__ ) + 4.0 )) / 2.0 class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' __UpperCamelCase : Any = {"df": 1, "loc": 1, "scale": 1} __UpperCamelCase : int = StudentT @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = cls.squareplus(UpperCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) UpperCamelCase : Any = 2.0 + cls.squareplus(UpperCamelCase__ ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' __UpperCamelCase : Dict = {"loc": 1, "scale": 1} __UpperCamelCase : int = Normal @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = cls.squareplus(UpperCamelCase__ ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' __UpperCamelCase : Tuple = {"total_count": 1, "logits": 1} __UpperCamelCase : Optional[Any] = NegativeBinomial @classmethod def _lowercase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = cls.squareplus(UpperCamelCase__ ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCamelCase__ , logits=UpperCamelCase__ ) else: return Independent(self.distribution_class(total_count=UpperCamelCase__ , logits=UpperCamelCase__ ) , 1 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def a ( SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" return EnvironmentCommand() def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" return EnvironmentCommand(args.accelerate_config_file ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = parser.add_parser('''env''' ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) download_parser.add_argument( '''--accelerate-config_file''' , default=_SCREAMING_SNAKE_CASE , help='''The accelerate config file to use for the default values in the launching script.''' , ) download_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = accelerate_config_file def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = '''not installed''' if is_safetensors_available(): import safetensors UpperCamelCase : str = safetensors.__version__ elif importlib.util.find_spec('''safetensors''' ) is not None: import safetensors UpperCamelCase : List[str] = f"""{safetensors.__version__} but is ignored because of PyTorch version too old.""" UpperCamelCase : List[Any] = '''not installed''' UpperCamelCase : Optional[Any] = '''not found''' if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file UpperCamelCase : Optional[Any] = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = load_config_from_file(self._accelerate_config_file ).to_dict() UpperCamelCase : List[str] = ( '''\n'''.join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else f"""\t{accelerate_config}""" ) UpperCamelCase : str = '''not installed''' UpperCamelCase : Optional[int] = '''NA''' if is_torch_available(): import torch UpperCamelCase : int = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : List[Any] = '''not installed''' UpperCamelCase : Union[str, Any] = '''NA''' if is_tf_available(): import tensorflow as tf UpperCamelCase : Optional[Any] = tf.__version__ try: # deprecated in v2.1 UpperCamelCase : Union[str, Any] = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool UpperCamelCase : Union[str, Any] = bool(tf.config.list_physical_devices('''GPU''' ) ) UpperCamelCase : Any = '''not installed''' UpperCamelCase : List[str] = '''not installed''' UpperCamelCase : Dict = '''not installed''' UpperCamelCase : List[str] = '''NA''' if is_flax_available(): import flax import jax import jaxlib UpperCamelCase : Optional[Any] = flax.__version__ UpperCamelCase : Any = jax.__version__ UpperCamelCase : Union[str, Any] = jaxlib.__version__ UpperCamelCase : Union[str, Any] = jax.lib.xla_bridge.get_backend().platform UpperCamelCase : int = { '''`transformers` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Huggingface_hub version''': huggingface_hub.__version__, '''Safetensors version''': f"""{safetensors_version}""", '''Accelerate version''': f"""{accelerate_version}""", '''Accelerate config''': f"""{accelerate_config_str}""", '''PyTorch version (GPU?)''': f"""{pt_version} ({pt_cuda_available})""", '''Tensorflow version (GPU?)''': f"""{tf_version} ({tf_cuda_available})""", '''Flax version (CPU?/GPU?/TPU?)''': f"""{flax_version} ({jax_backend})""", '''Jax version''': f"""{jax_version}""", '''JaxLib version''': f"""{jaxlib_version}""", '''Using GPU in script?''': '''<fill in>''', '''Using distributed or parallel set-up in script?''': '''<fill in>''', } print('''\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n''' ) print(self.format_dict(_SCREAMING_SNAKE_CASE ) ) return info @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCAmelCase_ : '''simple docstring''' def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase : int = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : str = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCamelCase : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase : Any = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) UpperCamelCase : List[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) UpperCamelCase : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , thresholding=__SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) UpperCamelCase : List[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0_001 , beta_end=0.02 , ) torch.manual_seed(0 ) UpperCamelCase : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = inputs["""prompt"""] UpperCamelCase : Tuple = inputs["""generator"""] UpperCamelCase : Tuple = inputs["""num_inference_steps"""] UpperCamelCase : Tuple = inputs["""output_type"""] if "image" in inputs: UpperCamelCase : List[str] = inputs["""image"""] else: UpperCamelCase : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase : Optional[Any] = inputs["""mask_image"""] else: UpperCamelCase : Tuple = None if "original_image" in inputs: UpperCamelCase : List[str] = inputs["""original_image"""] else: UpperCamelCase : Optional[int] = None UpperCamelCase : str = pipe.encode_prompt(__SCREAMING_SNAKE_CASE ) # inputs with prompt converted to embeddings UpperCamelCase : Union[str, Any] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: UpperCamelCase : int = image if mask_image is not None: UpperCamelCase : Optional[Any] = mask_image if original_image is not None: UpperCamelCase : str = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = pipe(**__SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = self.pipeline_class.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe_loaded.to(__SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) UpperCamelCase : Optional[int] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs["""generator"""] UpperCamelCase : List[str] = inputs["""num_inference_steps"""] UpperCamelCase : List[str] = inputs["""output_type"""] # inputs with prompt converted to embeddings UpperCamelCase : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: UpperCamelCase : Union[str, Any] = image if mask_image is not None: UpperCamelCase : List[str] = mask_image if original_image is not None: UpperCamelCase : int = original_image UpperCamelCase : List[str] = pipe_loaded(**__SCREAMING_SNAKE_CASE )[0] UpperCamelCase : Optional[int] = np.abs(to_np(__SCREAMING_SNAKE_CASE ) - to_np(__SCREAMING_SNAKE_CASE ) ).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1e-4 ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_dummy_components() UpperCamelCase : Any = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = pipe(**__SCREAMING_SNAKE_CASE )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self.pipeline_class.from_pretrained(__SCREAMING_SNAKE_CASE ) pipe_loaded.to(__SCREAMING_SNAKE_CASE ) pipe_loaded.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests UpperCamelCase : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = pipe_loaded(**__SCREAMING_SNAKE_CASE )[0] UpperCamelCase : List[Any] = np.abs(to_np(__SCREAMING_SNAKE_CASE ) - to_np(__SCREAMING_SNAKE_CASE ) ).max() self.assertLess(__SCREAMING_SNAKE_CASE , 1e-4 )
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class UpperCAmelCase_ ( lowercase__): '''simple docstring''' __UpperCamelCase : Tuple = """roformer""" def __init__( self , __SCREAMING_SNAKE_CASE=50_000 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1_536 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__lowercase , **__lowercase ) UpperCamelCase : Dict = vocab_size UpperCamelCase : Dict = hidden_size if embedding_size is None else embedding_size UpperCamelCase : List[str] = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : str = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : List[str] = intermediate_size UpperCamelCase : Optional[Any] = hidden_dropout_prob UpperCamelCase : Tuple = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Optional[int] = type_vocab_size UpperCamelCase : List[str] = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : Tuple = rotary_value UpperCamelCase : Tuple = use_cache class UpperCAmelCase_ ( lowercase__): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : str = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : Dict = {0: '''batch''', 1: '''sequence'''} UpperCamelCase : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Any = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : int = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : int = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[int] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) def a ( *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" requires_backends(_lowerCAmelCase , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : int = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Any = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[int] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : int = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[int] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Any = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Any = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : int = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[int] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : List[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : List[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : int = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : List[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : List[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Dict = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : str = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Tuple = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : Optional[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) class UpperCAmelCase_ ( metaclass=__snake_case): '''simple docstring''' __UpperCamelCase : List[Any] = ['torch'] def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(self , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] ) @classmethod def _lowercase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" requires_backends(cls , ['''torch'''] )
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) __UpperCAmelCase : Optional[Any] = '''pytorch_model.bin''' __UpperCAmelCase : Optional[Any] = '''pytorch_model.bin.index.json''' __UpperCAmelCase : List[str] = '''adapter_config.json''' __UpperCAmelCase : str = '''adapter_model.bin''' __UpperCAmelCase : Tuple = '''adapter_model.safetensors''' __UpperCAmelCase : int = '''tf_model.h5''' __UpperCAmelCase : Optional[Any] = '''tf_model.h5.index.json''' __UpperCAmelCase : str = '''model.ckpt''' __UpperCAmelCase : Union[str, Any] = '''flax_model.msgpack''' __UpperCAmelCase : List[Any] = '''flax_model.msgpack.index.json''' __UpperCAmelCase : List[str] = '''model.safetensors''' __UpperCAmelCase : Tuple = '''model.safetensors.index.json''' __UpperCAmelCase : List[Any] = '''config.json''' __UpperCAmelCase : int = '''preprocessor_config.json''' __UpperCAmelCase : Any = FEATURE_EXTRACTOR_NAME __UpperCAmelCase : Optional[int] = '''generation_config.json''' __UpperCAmelCase : int = '''modelcard.json''' __UpperCAmelCase : int = '''▁''' __UpperCAmelCase : Optional[int] = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility __UpperCAmelCase : Optional[int] = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. __UpperCAmelCase : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] __UpperCAmelCase : Any = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if version.parse(SCREAMING_SNAKE_CASE_ ) < version.parse(SCREAMING_SNAKE_CASE_ ): if "dev" in min_version: UpperCamelCase : Union[str, Any] = ( '''This example requires a source install from HuggingFace Transformers (see ''' '''`https://huggingface.co/docs/transformers/installation#install-from-source`),''' ) else: UpperCamelCase : str = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + '''Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ''' '''versions of HuggingFace Transformers.''' )
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE=[2, 2, 3, 2] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" a_ : List[Any] = parent a_ : Dict = batch_size a_ : List[str] = image_size a_ : Tuple = num_channels a_ : Any = num_stages a_ : List[str] = hidden_sizes a_ : Optional[Any] = depths a_ : List[str] = is_training a_ : Optional[int] = use_labels a_ : List[Any] = intermediate_size a_ : Union[str, Any] = hidden_act a_ : Optional[int] = type_sequence_label_size a_ : Optional[int] = initializer_range a_ : str = out_features a_ : Optional[int] = num_labels a_ : Any = scope a_ : Optional[int] = num_stages def _lowercase ( self ): """simple docstring""" a_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a_ : Any = None if self.use_labels: a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowercase ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def _lowercase ( self ): """simple docstring""" return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCamelCase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCamelCase__ , loss_ignore_index=255 , num_labels=self.num_labels , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : List[Any] = UperNetForSemanticSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a_ : str = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _lowercase ( self ): """simple docstring""" a_ : List[Any] = self.prepare_config_and_inputs() ( a_ ) : int = config_and_inputs a_ : Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = (UperNetForSemanticSegmentation,) if is_torch_available() else () __UpperCamelCase : Dict = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {} __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Optional[int] = False __UpperCamelCase : Any = False __UpperCamelCase : Optional[int] = False def _lowercase ( self ): """simple docstring""" a_ : List[Any] = UperNetModelTester(self ) a_ : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" return def _lowercase ( self ): """simple docstring""" a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : Tuple = model_class(lowerCamelCase__ ) a_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a_ : Optional[int] = [*signature.parameters.keys()] a_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _lowercase ( self ): """simple docstring""" a_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip(reason='''UperNet does not have a base model''' ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): a_ : Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): a_ : List[str] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) a_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a_ : List[str] = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a_ : int = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a_ : Optional[Any] = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): """simple docstring""" a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Union[str, Any] = _config_zero_init(lowerCamelCase__ ) a_ : str = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: a_ : Tuple = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def _lowercase ( self ): """simple docstring""" pass @slow def _lowercase ( self ): """simple docstring""" for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = UperNetForSemanticSegmentation.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def a ( ): """simple docstring""" a_ : Any = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) a_ : int = Image.open(__lowerCAmelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" a_ : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) a_ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowerCamelCase__ ) a_ : str = prepare_img() a_ : Any = processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) with torch.no_grad(): a_ : Union[str, Any] = model(**lowerCamelCase__ ) a_ : List[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a_ : Any = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) def _lowercase ( self ): """simple docstring""" a_ : Dict = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) a_ : Dict = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowerCamelCase__ ) a_ : int = prepare_img() a_ : List[Any] = processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) with torch.no_grad(): a_ : Dict = model(**lowerCamelCase__ ) a_ : int = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a_ : Dict = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase_ ( __a, __a): '''simple docstring''' @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 128 , __SCREAMING_SNAKE_CASE = 256 , __SCREAMING_SNAKE_CASE = 2_000.0 , __SCREAMING_SNAKE_CASE = 768 , __SCREAMING_SNAKE_CASE = 12 , __SCREAMING_SNAKE_CASE = 12 , __SCREAMING_SNAKE_CASE = 64 , __SCREAMING_SNAKE_CASE = 2_048 , __SCREAMING_SNAKE_CASE = 0.1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Sequential( nn.Linear(lowerCAmelCase_ , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase_ ) , nn.SiLU() , ) UpperCamelCase : Optional[int] = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase : int = False UpperCamelCase : Union[str, Any] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) UpperCamelCase : Tuple = nn.Dropout(p=lowerCAmelCase_ ) UpperCamelCase : Tuple = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): # FiLM conditional T5 decoder UpperCamelCase : str = DecoderLayer(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) self.decoders.append(lowerCAmelCase_ ) UpperCamelCase : List[str] = TaLayerNorm(lowerCAmelCase_ ) UpperCamelCase : Optional[int] = nn.Dropout(p=lowerCAmelCase_ ) UpperCamelCase : int = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. UpperCamelCase : Any = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) UpperCamelCase : List[Any] = self.conditioning_emb(lowerCAmelCase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) UpperCamelCase : List[Any] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. UpperCamelCase : Tuple = torch.broadcast_to( torch.arange(lowerCAmelCase_ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) UpperCamelCase : List[Any] = self.position_encoding(lowerCAmelCase_ ) UpperCamelCase : int = self.continuous_inputs_projection(lowerCAmelCase_ ) inputs += position_encodings UpperCamelCase : Dict = self.dropout(lowerCAmelCase_ ) # decoder: No padding present. UpperCamelCase : Optional[Any] = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. UpperCamelCase : Any = [(x, self.encoder_decoder_mask(lowerCAmelCase_ , lowerCAmelCase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings UpperCamelCase : Any = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) UpperCamelCase : List[str] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: UpperCamelCase : Dict = lyr( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , )[0] UpperCamelCase : Tuple = self.decoder_norm(lowerCAmelCase_ ) UpperCamelCase : List[str] = self.post_dropout(lowerCAmelCase_ ) UpperCamelCase : Union[str, Any] = self.spec_out(lowerCAmelCase_ ) return spec_out class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1e-6 ): """simple docstring""" super().__init__() UpperCamelCase : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : List[Any] = self.layer[0]( lowerCAmelCase_ , conditioning_emb=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) if encoder_hidden_states is not None: UpperCamelCase : Optional[int] = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) UpperCamelCase : Tuple = self.layer[1]( lowerCAmelCase_ , key_value_states=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , ) # Apply Film Conditional Feed Forward layer UpperCamelCase : int = self.layer[-1](lowerCAmelCase_ , lowerCAmelCase_ ) return (hidden_states,) class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : Optional[int] = TaLayerNorm(lowerCAmelCase_ ) UpperCamelCase : List[Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) UpperCamelCase : List[str] = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) UpperCamelCase : Any = nn.Dropout(lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : Any = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: UpperCamelCase : Optional[Any] = self.FiLMLayer(lowerCAmelCase_ , lowerCAmelCase_ ) # Self-attention block UpperCamelCase : List[Any] = self.attention(lowerCAmelCase_ ) UpperCamelCase : int = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : Union[str, Any] = Attention(query_dim=lowerCAmelCase_ , heads=lowerCAmelCase_ , dim_head=lowerCAmelCase_ , out_bias=lowerCAmelCase_ , scale_qk=lowerCAmelCase_ ) UpperCamelCase : str = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) UpperCamelCase : List[Any] = nn.Dropout(lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" UpperCamelCase : List[Any] = self.layer_norm(lowerCAmelCase_ ) UpperCamelCase : List[str] = self.attention( lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , attention_mask=attention_mask.squeeze(1 ) , ) UpperCamelCase : Dict = hidden_states + self.dropout(lowerCAmelCase_ ) return layer_output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : Tuple = TaDenseGatedActDense(d_model=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ ) UpperCamelCase : Union[str, Any] = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase_ ) UpperCamelCase : str = TaLayerNorm(lowerCAmelCase_ , eps=lowerCAmelCase_ ) UpperCamelCase : Optional[int] = nn.Dropout(lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : int = self.layer_norm(lowerCAmelCase_ ) if conditioning_emb is not None: UpperCamelCase : Optional[int] = self.film(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase : Optional[int] = self.DenseReluDense(lowerCAmelCase_ ) UpperCamelCase : List[str] = hidden_states + self.dropout(lowerCAmelCase_ ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[str] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) UpperCamelCase : Optional[int] = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) UpperCamelCase : int = nn.Linear(lowerCAmelCase_ , lowerCAmelCase_ , bias=lowerCAmelCase_ ) UpperCamelCase : int = nn.Dropout(lowerCAmelCase_ ) UpperCamelCase : Optional[int] = NewGELUActivation() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = self.act(self.wi_a(lowerCAmelCase_ ) ) UpperCamelCase : str = self.wi_a(lowerCAmelCase_ ) UpperCamelCase : Union[str, Any] = hidden_gelu * hidden_linear UpperCamelCase : Union[str, Any] = self.dropout(lowerCAmelCase_ ) UpperCamelCase : Dict = self.wo(lowerCAmelCase_ ) return hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1e-6 ): """simple docstring""" super().__init__() UpperCamelCase : Any = nn.Parameter(torch.ones(lowerCAmelCase_ ) ) UpperCamelCase : Optional[Any] = eps def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase_ ) UpperCamelCase : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: UpperCamelCase : List[str] = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(lowerCAmelCase_ , 3.0 )) )) class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[str] = nn.Linear(lowerCAmelCase_ , out_features * 2 , bias=lowerCAmelCase_ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = self.scale_bias(lowerCAmelCase_ ) UpperCamelCase , UpperCamelCase : Optional[Any] = torch.chunk(lowerCAmelCase_ , 2 , -1 ) UpperCamelCase : str = x * (1 + scale) + shift return x
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCAmelCase_ ( __lowercase): '''simple docstring''' __UpperCamelCase : Optional[int] = '''philschmid/bart-large-cnn-samsum''' __UpperCamelCase : Optional[int] = ( '''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ''' '''and returns a summary of the text.''' ) __UpperCamelCase : Optional[Any] = '''summarizer''' __UpperCamelCase : str = AutoTokenizer __UpperCamelCase : Tuple = AutoModelForSeqaSeqLM __UpperCamelCase : List[str] = ['''text'''] __UpperCamelCase : Dict = ['''text'''] def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.pre_processor(__a , return_tensors='''pt''' , truncation=__a ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.model.generate(**__a )[0] def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.pre_processor.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a )
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
from collections.abc import Callable def a ( SCREAMING_SNAKE_CASE_ : Callable[[float], float] , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" UpperCamelCase : Optional[int] = a UpperCamelCase : Dict = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: UpperCamelCase : int = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: UpperCamelCase : Dict = mid else: UpperCamelCase : List[str] = mid UpperCamelCase : Optional[int] = start + (end - start) / 2.0 return mid def a ( SCREAMING_SNAKE_CASE_ : float ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
__UpperCAmelCase : int = range(2, 20 + 1) __UpperCAmelCase : List[str] = [10**k for k in range(ks[-1] + 1)] __UpperCAmelCase : int = {} def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : Dict = sum(a_i[j] for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ) UpperCamelCase : List[Any] = sum(a_i[j] * base[j] for j in range(min(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) ) UpperCamelCase , UpperCamelCase : Tuple = 0, 0 UpperCamelCase : Tuple = n - i UpperCamelCase : List[str] = memo.get(SCREAMING_SNAKE_CASE_ ) if sub_memo is not None: UpperCamelCase : List[str] = sub_memo.get(SCREAMING_SNAKE_CASE_ ) if jumps is not None and len(SCREAMING_SNAKE_CASE_ ) > 0: # find and make the largest jump without going over UpperCamelCase : Optional[int] = -1 for _k in range(len(SCREAMING_SNAKE_CASE_ ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase : List[str] = _k break if max_jump >= 0: UpperCamelCase , UpperCamelCase , UpperCamelCase : int = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase : Union[str, Any] = diff + c for j in range(min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) ): UpperCamelCase , UpperCamelCase : Any = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) if new_c > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = [] else: UpperCamelCase : Union[str, Any] = {c: []} UpperCamelCase : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase , UpperCamelCase : List[str] = next_term(SCREAMING_SNAKE_CASE_ , k - 1 , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase , UpperCamelCase : Any = compute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , i + dn , SCREAMING_SNAKE_CASE_ ) diff += _diff dn += terms_jumped UpperCamelCase : Tuple = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase : List[Any] = 0 while j < len(SCREAMING_SNAKE_CASE_ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(SCREAMING_SNAKE_CASE_ , (diff, dn, k) ) return (diff, dn) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" if i >= n: return 0, i if k > len(SCREAMING_SNAKE_CASE_ ): a_i.extend([0 for _ in range(k - len(SCREAMING_SNAKE_CASE_ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase : Any = i UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = 0, 0, 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase : Optional[Any] = ds_c + ds_b diff += addend UpperCamelCase : List[str] = 0 for j in range(SCREAMING_SNAKE_CASE_ ): UpperCamelCase : Optional[int] = a_i[j] + addend UpperCamelCase , UpperCamelCase : str = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return diff, i - start_i def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Tuple = digits[j] + addend if s >= 1_0: UpperCamelCase , UpperCamelCase : List[Any] = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) UpperCamelCase : Any = addend // 1_0 + quotient else: UpperCamelCase : Optional[int] = s UpperCamelCase : Any = addend // 1_0 if addend == 0: break while addend > 0: UpperCamelCase , UpperCamelCase : Optional[Any] = divmod(SCREAMING_SNAKE_CASE_ , 1_0 ) digits.append(SCREAMING_SNAKE_CASE_ ) def a ( SCREAMING_SNAKE_CASE_ : int = 1_0**1_5 ): """simple docstring""" UpperCamelCase : Union[str, Any] = [1] UpperCamelCase : Optional[int] = 1 UpperCamelCase : Tuple = 0 while True: UpperCamelCase , UpperCamelCase : Dict = next_term(SCREAMING_SNAKE_CASE_ , 2_0 , i + dn , SCREAMING_SNAKE_CASE_ ) dn += terms_jumped if dn == n - i: break UpperCamelCase : Optional[Any] = 0 for j in range(len(SCREAMING_SNAKE_CASE_ ) ): a_n += digits[j] * 1_0**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import itertools import math def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a ( ): """simple docstring""" UpperCamelCase : Optional[Any] = 2 while True: if is_prime(_SCREAMING_SNAKE_CASE ): yield num num += 1 def a ( SCREAMING_SNAKE_CASE_ : Any = 1_0_0_0_1 ): """simple docstring""" return next(itertools.islice(prime_generator() , nth - 1 , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": print(f'''{solution() = }''')
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=0.9 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): """simple docstring""" UpperCamelCase : Any = size if size is not None else {'''shortest_edge''': 30} UpperCamelCase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} UpperCamelCase : List[Any] = parent UpperCamelCase : str = batch_size UpperCamelCase : int = num_channels UpperCamelCase : Any = min_resolution UpperCamelCase : int = max_resolution UpperCamelCase : Any = do_resize_and_center_crop UpperCamelCase : List[Any] = size UpperCamelCase : Optional[Any] = crop_pct UpperCamelCase : str = crop_size UpperCamelCase : Dict = do_normalize UpperCamelCase : Dict = image_mean UpperCamelCase : List[str] = image_std def _lowercase ( self ): """simple docstring""" return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase_ ( __snake_case, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[int] = PoolFormerImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = PoolFormerImageProcessingTester(self ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''size''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''crop_pct''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''image_std''' ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) UpperCamelCase : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCamelCase : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Union[str, Any] = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Tuple = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Optional[int] = image_processing(__UpperCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
def a ( SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : Optional[int] = [] UpperCamelCase : Optional[int] = set({'''(''', '''[''', '''{'''} ) UpperCamelCase : List[Any] = set({''')''', ''']''', '''}'''} ) UpperCamelCase : Tuple = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(lowerCAmelCase_ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(lowerCAmelCase_ ) == 0 or (len(lowerCAmelCase_ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(lowerCAmelCase_ ) == 0 def a ( ): """simple docstring""" UpperCamelCase : Dict = input('''Enter sequence of brackets: ''' ) if is_balanced(lowerCAmelCase_ ): print(lowerCAmelCase_ , '''is balanced''' ) else: print(lowerCAmelCase_ , '''is not balanced''' ) if __name__ == "__main__": main()
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("0.12.2"): raise Exception("requires fairseq >= 0.12.2") if version.parse(fairseq.__version__) > version.parse("2"): raise Exception("requires fairseq < v2") logging.set_verbosity_info() __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : List[str] = "Hello, World!" __UpperCAmelCase : int = "en_XX" def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool ): """simple docstring""" UpperCamelCase : int = Path('''data_bin''' ) UpperCamelCase : Union[str, Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(a_ ).parent ) , checkpoint_file=Path(a_ ).name , _name='''xmod_base''' , arch='''xmod_base''' , task='''multilingual_masked_lm''' , data_name_or_path=str(a_ ) , bpe='''sentencepiece''' , sentencepiece_model=str(Path(a_ ).parent / '''sentencepiece.bpe.model''' ) , src_dict=str(data_dir / '''dict.txt''' ) , ) xmod.eval() # disable dropout print(a_ ) UpperCamelCase : Any = xmod.model.encoder.sentence_encoder UpperCamelCase : List[str] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , '''bottleneck''' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCamelCase : Dict = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our X-MOD config:''' , a_ ) UpperCamelCase : List[Any] = XmodForSequenceClassification(a_ ) if classification_head else XmodForMaskedLM(a_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase : Union[str, Any] = xmod_sent_encoder.embed_tokens.weight UpperCamelCase : Tuple = xmod_sent_encoder.embed_positions.weight UpperCamelCase : List[str] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. UpperCamelCase : List[Any] = xmod_sent_encoder.layernorm_embedding.weight UpperCamelCase : Optional[int] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCamelCase : Union[str, Any] = model.roberta.encoder.layer[i] UpperCamelCase : List[str] = xmod_sent_encoder.layers[i] # self attention UpperCamelCase : Optional[int] = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('''Dimensions of self-attention weights do not match.''' ) UpperCamelCase : Optional[int] = xmod_layer.self_attn.q_proj.weight UpperCamelCase : List[str] = xmod_layer.self_attn.q_proj.bias UpperCamelCase : str = xmod_layer.self_attn.k_proj.weight UpperCamelCase : Optional[Any] = xmod_layer.self_attn.k_proj.bias UpperCamelCase : Dict = xmod_layer.self_attn.v_proj.weight UpperCamelCase : Optional[int] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase : Optional[int] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('''Dimensions of self-attention output weights do not match.''' ) UpperCamelCase : List[Any] = xmod_layer.self_attn.out_proj.weight UpperCamelCase : Union[str, Any] = xmod_layer.self_attn.out_proj.bias UpperCamelCase : str = xmod_layer.self_attn_layer_norm.weight UpperCamelCase : List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCamelCase : Optional[int] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of intermediate weights do not match.''' ) UpperCamelCase : int = xmod_layer.fca.weight UpperCamelCase : Union[str, Any] = xmod_layer.fca.bias # output UpperCamelCase : List[str] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('''Dimensions of feed-forward weights do not match.''' ) UpperCamelCase : str = xmod_layer.fca.weight UpperCamelCase : int = xmod_layer.fca.bias UpperCamelCase : List[Any] = xmod_layer.final_layer_norm.weight UpperCamelCase : List[str] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCamelCase : List[str] = xmod_layer.adapter_layer_norm.weight UpperCamelCase : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('''Lists of language adapters do not match.''' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCamelCase : Optional[int] = bert_output.adapter_modules[lang_code] UpperCamelCase : Dict = xmod_layer.adapter_modules[lang_code] UpperCamelCase : List[Any] = from_adapter.fca.weight UpperCamelCase : List[Any] = from_adapter.fca.bias UpperCamelCase : Dict = from_adapter.fca.weight UpperCamelCase : Optional[Any] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCamelCase : Dict = xmod_sent_encoder.layer_norm.weight UpperCamelCase : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCamelCase : Union[str, Any] = xmod.model.classification_heads['''mnli'''].dense.weight UpperCamelCase : Tuple = xmod.model.classification_heads['''mnli'''].dense.bias UpperCamelCase : Optional[Any] = xmod.model.classification_heads['''mnli'''].out_proj.weight UpperCamelCase : List[Any] = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head UpperCamelCase : int = xmod.model.encoder.lm_head.dense.weight UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.dense.bias UpperCamelCase : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.layer_norm.bias UpperCamelCase : List[Any] = xmod.model.encoder.lm_head.weight UpperCamelCase : Any = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase : str = xmod.encode(a_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(a_ ) UpperCamelCase : Any = model(a_ )[0] if classification_head: UpperCamelCase : Dict = xmod.model.classification_heads['''mnli'''](xmod.extract_features(a_ ) ) else: UpperCamelCase : int = xmod.model(a_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) UpperCamelCase : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 UpperCamelCase : str = torch.allclose(a_ , a_ , atol=1E-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) Path(a_ ).mkdir(parents=a_ , exist_ok=a_ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(a_ ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xmod_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __UpperCAmelCase : int = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , ): """simple docstring""" UpperCamelCase : Optional[int] = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : List[str] = patch_size UpperCamelCase : str = max_length UpperCamelCase : int = num_mel_bins UpperCamelCase : Any = is_training UpperCamelCase : int = use_labels UpperCamelCase : List[str] = hidden_size UpperCamelCase : Optional[Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : Any = intermediate_size UpperCamelCase : Tuple = hidden_act UpperCamelCase : List[Any] = hidden_dropout_prob UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = type_sequence_label_size UpperCamelCase : int = initializer_range UpperCamelCase : Optional[int] = scope UpperCamelCase : Optional[Any] = frequency_stride UpperCamelCase : Any = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) UpperCamelCase : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 UpperCamelCase : Union[str, Any] = (self.max_length - self.patch_size) // self.time_stride + 1 UpperCamelCase : str = frequency_out_dimension * time_out_dimension UpperCamelCase : Dict = num_patches + 2 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) UpperCamelCase : Any = None if self.use_labels: UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : List[Any] = self.get_config() return config, input_values, labels def _lowercase ( self ): """simple docstring""" return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = ASTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Tuple = config_and_inputs UpperCamelCase : Optional[int] = {'''input_values''': input_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __UpperCamelCase : Any = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) __UpperCamelCase : List[Any] = False __UpperCamelCase : Any = False __UpperCamelCase : Any = False __UpperCamelCase : Any = False def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = ASTModelTester(self ) UpperCamelCase : Optional[int] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : str = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Optional[Any] = [*signature.parameters.keys()] UpperCamelCase : Dict = ['''input_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Optional[int] = ASTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) UpperCamelCase , UpperCamelCase : Optional[Any] = torchaudio.load(SCREAMING_SNAKE_CASE_ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.default_feature_extractor UpperCamelCase : Any = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.default_feature_extractor UpperCamelCase , UpperCamelCase : Union[str, Any] = prepare_audio() UpperCamelCase : Union[str, Any] = audio.squeeze().numpy() UpperCamelCase : List[str] = feature_extractor(__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
706
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) UpperCamelCase : int = False if main_process_only: UpperCamelCase : int = PartialState().local_process_index == 0 return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
643
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Tuple=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" UpperCamelCase : Optional[Any] = nn.Parameter(lowercase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" UpperCamelCase : Optional[Any] = nn.Parameter(lowercase_ ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" UpperCamelCase : List[Any] = np.asarray(weights[0] ) UpperCamelCase : Any = np.asarray(weights[1] ) UpperCamelCase : str = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , ) def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): """simple docstring""" UpperCamelCase : int = np.asarray(weights[0] ) UpperCamelCase : Optional[int] = np.asarray(weights[1] ) UpperCamelCase : str = np.asarray(weights[2] ) UpperCamelCase : List[str] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowercase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowercase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowercase_ ).view(-1 , lowercase_ ).contiguous().transpose(0 , 1 ) , ) def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase : Union[str, Any] = weights[0][0][0] UpperCamelCase : Any = np.asarray(layer_norm_a[0] ) UpperCamelCase : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # lsh weights + output UpperCamelCase : List[Any] = weights[0][1] if len(lowercase_ ) < 4: set_layer_weights_in_torch_lsh(lowercase_ , torch_block.attention , lowercase_ ) else: set_layer_weights_in_torch_local(lowercase_ , torch_block.attention , lowercase_ ) # intermediate weighs UpperCamelCase : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(lowercase_ ) == 4: UpperCamelCase : Tuple = intermediate_weights[2] # layernorm 2 UpperCamelCase : int = np.asarray(intermediate_weights[0][0] ) UpperCamelCase : Optional[int] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # intermediate dense UpperCamelCase : List[Any] = np.asarray(intermediate_weights[1][0] ) UpperCamelCase : Tuple = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) # intermediate out UpperCamelCase : Union[str, Any] = np.asarray(intermediate_weights[4][0] ) UpperCamelCase : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) def a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Optional[Any] = torch_model.reformer # word embeds UpperCamelCase : List[str] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowercase_ ) , ) if isinstance(weights[3] , lowercase_ ): UpperCamelCase : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): UpperCamelCase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" UpperCamelCase : Dict = nn.Parameter(torch.tensor(lowercase_ ) ) UpperCamelCase : Optional[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowercase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): UpperCamelCase : List[Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowercase_ , lowercase_ , lowercase_ ) # output layer norm UpperCamelCase : int = np.asarray(weights[7][0] ) UpperCamelCase : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowercase_ ) , torch.tensor(lowercase_ ) , ) # output embeddings UpperCamelCase : str = np.asarray(weights[9][0] ) UpperCamelCase : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowercase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowercase_ ) , ) def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : Dict = ReformerConfig.from_json_file(lowercase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCamelCase : Dict = ReformerModelWithLMHead(lowercase_ ) with open(lowercase_ , '''rb''' ) as f: UpperCamelCase : Optional[Any] = pickle.load(lowercase_ )["weights"] set_model_weights_in_torch(lowercase_ , lowercase_ , config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowercase_ ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __UpperCAmelCase : Tuple = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
707
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} __UpperCAmelCase : Dict = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } __UpperCAmelCase : Dict = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } __UpperCAmelCase : str = { "ernie-m-base": 514, "ernie-m-large": 514, } __UpperCAmelCase : Optional[int] = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["input_ids"] __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : List[str] = RESOURCE_FILES_NAMES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = do_lower_case UpperCamelCase : Dict = sentencepiece_model_ckpt UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )} UpperCamelCase : str = {v: k for k, v in self.vocab.items()} def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if text is None: return None UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE ) UpperCamelCase , UpperCamelCase : str = '''''', [] for i, ch in enumerate(__SCREAMING_SNAKE_CASE ): if ch in self.SP_CHAR_MAPPING: UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE ) if self.is_whitespace(__SCREAMING_SNAKE_CASE ): continue normalized_text += ch char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0 if self.do_lower_case: UpperCamelCase : Tuple = text.lower() for token in split_tokens: if token[:1] == "▁": UpperCamelCase : Any = token[1:] UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) UpperCamelCase : str = end return token_mapping @property def _lowercase ( self ): """simple docstring""" return len(self.vocab ) def _lowercase ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.__dict__.copy() UpperCamelCase : str = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ): """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: UpperCamelCase : List[str] = True if self.sp_model_kwargs.get('''alpha''' ) is not None: UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = [] for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0: new_pieces.append(__SCREAMING_SNAKE_CASE ) continue else: continue UpperCamelCase : Any = 0 for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Union[str, Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) UpperCamelCase : Any = i if len(__SCREAMING_SNAKE_CASE ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Any = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__SCREAMING_SNAKE_CASE ) == 1: UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE ) if cat == "Zs": return True return False def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = {} with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = line.rstrip('''\n''' ) UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE ) return token_to_idx def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Union[str, Any] = 0 if os.path.isdir(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) UpperCamelCase : List[Any] = token_index writer.write(token + '''\n''' ) index += 1 UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' ) with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (vocab_file,)
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Tuple = { "configuration_xlm_roberta": [ "XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMRobertaConfig", "XLMRobertaOnnxConfig", ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = ["XLMRobertaTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = ["XLMRobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ "XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMRobertaForCausalLM", "XLMRobertaForMaskedLM", "XLMRobertaForMultipleChoice", "XLMRobertaForQuestionAnswering", "XLMRobertaForSequenceClassification", "XLMRobertaForTokenClassification", "XLMRobertaModel", "XLMRobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ "TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMRobertaForCausalLM", "TFXLMRobertaForMaskedLM", "TFXLMRobertaForMultipleChoice", "TFXLMRobertaForQuestionAnswering", "TFXLMRobertaForSequenceClassification", "TFXLMRobertaForTokenClassification", "TFXLMRobertaModel", "TFXLMRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ "FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxXLMRobertaForMaskedLM", "FlaxXLMRobertaForCausalLM", "FlaxXLMRobertaForMultipleChoice", "FlaxXLMRobertaForQuestionAnswering", "FlaxXLMRobertaForSequenceClassification", "FlaxXLMRobertaForTokenClassification", "FlaxXLMRobertaModel", "FlaxXLMRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
708
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __UpperCAmelCase : List[Any] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __UpperCAmelCase : List[str] = "UperNetConfig" class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" super().__init__() UpperCamelCase : str = nn.Convad( in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = nn.ReLU() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = [ nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ), UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = input for layer in self.layers: UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE ) return hidden_state class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : List[Any] = pool_scales UpperCamelCase : Dict = align_corners UpperCamelCase : Optional[int] = in_channels UpperCamelCase : Union[str, Any] = channels UpperCamelCase : List[str] = [] for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE ) self.blocks.append(__SCREAMING_SNAKE_CASE ) self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for ppm in self.blocks: UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__SCREAMING_SNAKE_CASE ) return ppm_outs class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__() UpperCamelCase : int = config UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6) UpperCamelCase : Optional[int] = in_channels UpperCamelCase : str = config.hidden_size UpperCamelCase : str = False UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCamelCase : str = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCamelCase : Union[str, Any] = nn.ModuleList() UpperCamelCase : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__SCREAMING_SNAKE_CASE ) self.fpn_convs.append(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = inputs[-1] UpperCamelCase : int = [x] psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE ) return output def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) ) # build top-down path UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:] UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCamelCase : int = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 ) UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ): """simple docstring""" super().__init__() UpperCamelCase : Dict = config UpperCamelCase : Optional[Any] = config.auxiliary_in_channels UpperCamelCase : Union[str, Any] = config.auxiliary_channels UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs UpperCamelCase : Optional[Any] = config.auxiliary_concat_input UpperCamelCase : List[str] = in_index UpperCamelCase : Any = (kernel_size // 2) * dilation UpperCamelCase : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: UpperCamelCase : str = nn.Identity() else: UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _lowercase ( self ): """simple docstring""" self.apply(self._init_weights ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = encoder_hidden_states[self.in_index] UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE ) if self.concat_input: UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE ) return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[Any] = UperNetConfig __UpperCamelCase : Optional[int] = "pixel_values" __UpperCamelCase : Dict = True def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _lowercase ( self ): """simple docstring""" self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : str = value __UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, ) class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ): """simple docstring""" UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs( __SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs.feature_maps UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = None if self.auxiliary_head is not None: UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = nn.functional.interpolate( __SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCamelCase : Optional[Any] = (logits,) + outputs[1:] else: UpperCamelCase : int = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
643
0
import os def a ( ): """simple docstring""" UpperCamelCase : str = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : int = os.path.join(SCREAMING_SNAKE_CASE_ , '''triangle.txt''' ) with open(SCREAMING_SNAKE_CASE_ ) as f: UpperCamelCase : int = f.readlines() UpperCamelCase : str = [] for line in triangle: UpperCamelCase : Union[str, Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(SCREAMING_SNAKE_CASE_ ) ) a.append(SCREAMING_SNAKE_CASE_ ) for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): for j in range(len(a[i] ) ): UpperCamelCase : Optional[Any] = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCamelCase : Optional[int] = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
709
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCAmelCase : Optional[int] = 500000 __UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__) __UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): """simple docstring""" UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ ) @get_duration def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ): """simple docstring""" UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ ) def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCamelCase : List[str] = generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ ) def tokenize(SCREAMING_SNAKE_CASE_ : Dict ): return tokenizer(examples['''text'''] ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''numpy''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''pandas''' ): UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
643
0
from __future__ import annotations class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" UpperCamelCase : Any = key def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) UpperCamelCase : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) UpperCamelCase : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) UpperCamelCase : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) UpperCamelCase : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 ): """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class UpperCAmelCase_ ( unittest.TestCase): def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=18 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.48_145_466, 0.4_578_275, 0.40_821_073] , __SCREAMING_SNAKE_CASE=[0.26_862_954, 0.26_130_258, 0.27_577_711] , __SCREAMING_SNAKE_CASE=True , ): """simple docstring""" UpperCamelCase : Any = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase : Optional[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase : Optional[Any] = parent UpperCamelCase : Optional[Any] = batch_size UpperCamelCase : List[str] = num_channels UpperCamelCase : Tuple = image_size UpperCamelCase : Union[str, Any] = min_resolution UpperCamelCase : List[str] = max_resolution UpperCamelCase : Union[str, Any] = do_resize UpperCamelCase : int = size UpperCamelCase : Tuple = do_center_crop UpperCamelCase : List[Any] = crop_size UpperCamelCase : List[str] = do_normalize UpperCamelCase : List[Any] = image_mean UpperCamelCase : Any = image_std UpperCamelCase : Union[str, Any] = do_convert_rgb def _lowercase ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def _lowercase ( self , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCamelCase : Union[str, Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCamelCase : int = [] for i in range(self.batch_size ): UpperCamelCase : Optional[int] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCamelCase : Tuple = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCamelCase : int = [torch.from_numpy(UpperCamelCase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_, unittest.TestCase): __UpperCamelCase : Dict = ChineseCLIPImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = ChineseCLIPImageProcessingTester(self , do_center_crop=UpperCamelCase__ ) @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_convert_rgb''' ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCamelCase : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : str = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Optional[Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : int = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input UpperCamelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Optional[Any] = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE_, unittest.TestCase): __UpperCamelCase : Tuple = ChineseCLIPImageProcessor if is_vision_available() else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=UpperCamelCase__ ) UpperCamelCase : Optional[Any] = 3 @property def _lowercase ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_convert_rgb''' ) ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase : List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input UpperCamelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase : Tuple = image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
711
import torch from transformers import AutoModel class UpperCAmelCase_ ( torch.nn.Module): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 ) UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ): """simple docstring""" return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = W_supports['''sizes'''].tolist() UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item() UpperCamelCase : Any = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(__SCREAMING_SNAKE_CASE ): if i == 0: UpperCamelCase : Optional[int] = 0 else: UpperCamelCase : Tuple = support_sizes[i - 1] UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]] UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]] UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) ) UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) ) else: UpperCamelCase : str = p_start UpperCamelCase : Optional[int] = p_end return p_starts, p_ends
643
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Tuple = logging.get_logger(__name__) __UpperCAmelCase : int = "▁" __UpperCAmelCase : str = {"vocab_file": "spiece.model"} __UpperCAmelCase : Optional[Any] = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } __UpperCAmelCase : int = { "google/reformer-crime-and-punishment": 524288, } class UpperCAmelCase_ ( lowerCAmelCase__): '''simple docstring''' __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = ["input_ids", "attention_mask"] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE=[] , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , ) UpperCamelCase : int = vocab_file UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCamelCase ) @property def _lowercase ( self ): """simple docstring""" return self.sp_model.get_piece_size() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" UpperCamelCase : List[str] = self.__dict__.copy() UpperCamelCase : Optional[int] = None return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCamelCase : Union[str, Any] = {} UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.piece_to_id(_lowerCamelCase ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCamelCase : Optional[Any] = self.sp_model.IdToPiece(_lowerCamelCase ) return token def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = [] UpperCamelCase : List[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCamelCase ) + token UpperCamelCase : Union[str, Any] = [] else: current_sub_tokens.append(_lowerCamelCase ) out_string += self.sp_model.decode(_lowerCamelCase ) return out_string.strip() def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : List[str] = os.path.join( _lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCamelCase , '''wb''' ) as fi: UpperCamelCase : Any = self.sp_model.serialized_model_proto() fi.write(_lowerCamelCase ) return (out_vocab_file,)
712
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = DebertaTokenizer __UpperCamelCase : Optional[int] = True __UpperCamelCase : Optional[int] = DebertaTokenizerFast def _lowercase ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase : Optional[int] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''} UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.get_tokenizer() UpperCamelCase : int = '''lower newer''' UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token] UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.get_tokenizer() UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' ) UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCamelCase : str = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCamelCase : int = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCamelCase : List[str] = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
643
0
import logging from transformers import PretrainedConfig __UpperCAmelCase : Union[str, Any] = logging.getLogger(__name__) __UpperCAmelCase : List[str] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class UpperCAmelCase_ ( _A): '''simple docstring''' __UpperCamelCase : List[Any] = "bertabs" def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.2 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=0.2 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = vocab_size UpperCamelCase : Optional[Any] = max_pos UpperCamelCase : List[Any] = enc_layers UpperCamelCase : List[str] = enc_hidden_size UpperCamelCase : str = enc_heads UpperCamelCase : Optional[Any] = enc_ff_size UpperCamelCase : Any = enc_dropout UpperCamelCase : int = dec_layers UpperCamelCase : List[str] = dec_hidden_size UpperCamelCase : Dict = dec_heads UpperCamelCase : Any = dec_ff_size UpperCamelCase : str = dec_dropout
713
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase_ ( _a): '''simple docstring''' def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCamelCase : Optional[int] = input_file.read() UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE ) return match def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file: UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCamelCase : Tuple = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = Path('''./datasets''' ) UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
643
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class UpperCAmelCase_ ( __lowercase): '''simple docstring''' __UpperCamelCase : List[str] = 'data2vec-text' def __init__( self , __SCREAMING_SNAKE_CASE=30_522 , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) UpperCamelCase : List[str] = vocab_size UpperCamelCase : str = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Dict = num_attention_heads UpperCamelCase : List[str] = hidden_act UpperCamelCase : int = intermediate_size UpperCamelCase : Dict = hidden_dropout_prob UpperCamelCase : Optional[Any] = attention_probs_dropout_prob UpperCamelCase : List[Any] = max_position_embeddings UpperCamelCase : Optional[Any] = type_vocab_size UpperCamelCase : str = initializer_range UpperCamelCase : Any = layer_norm_eps UpperCamelCase : List[Any] = position_embedding_type UpperCamelCase : Tuple = use_cache UpperCamelCase : Optional[int] = classifier_dropout class UpperCAmelCase_ ( __lowercase): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
714
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase_ : '''simple docstring''' __UpperCamelCase : Any = XGLMConfig __UpperCamelCase : Dict = {} __UpperCamelCase : List[str] = "gelu" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ): """simple docstring""" UpperCamelCase : Any = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : str = seq_length UpperCamelCase : List[str] = is_training UpperCamelCase : Tuple = use_input_mask UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : int = vocab_size UpperCamelCase : Optional[int] = d_model UpperCamelCase : Any = num_hidden_layers UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : Optional[Any] = ffn_dim UpperCamelCase : Optional[int] = activation_function UpperCamelCase : List[str] = activation_dropout UpperCamelCase : Any = attention_dropout UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = initializer_range UpperCamelCase : int = None UpperCamelCase : Dict = 0 UpperCamelCase : int = 2 UpperCamelCase : Any = 1 def _lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('''facebook/xglm-564M''' ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) UpperCamelCase : int = None if self.use_input_mask: UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = self.get_config() UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def _lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Dict = config_and_inputs UpperCamelCase : List[str] = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () __UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else () __UpperCamelCase : Any = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) __UpperCamelCase : Optional[int] = False __UpperCamelCase : List[Any] = False __UpperCamelCase : List[Any] = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = TFXGLMModelTester(self ) UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def _lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' ) def _lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @slow def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ): """simple docstring""" UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) tf.random.set_seed(0 ) UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' ) UpperCamelCase : int = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0''' ): UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] ) UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) UpperCamelCase : Tuple = '''left''' # use different length sentences to test batching UpperCamelCase : Any = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = inputs['''input_ids'''] UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 ) UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 ) UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
643
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase : int = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : str = ['ConvNextFeatureExtractor'] __UpperCAmelCase : Tuple = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Tuple = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
715
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : int = logging.get_logger(__name__) __UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : str = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __UpperCAmelCase : Union[str, Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off __UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = VOCAB_FILES_NAMES __UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] __UpperCamelCase : Any = MBartTokenizer __UpperCamelCase : List[int] = [] __UpperCamelCase : List[int] = [] def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token super().__init__( vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = vocab_file UpperCamelCase : List[str] = False if not self.vocab_file else True UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX''' UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowercase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCamelCase : List[str] = src_lang UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = tgt_lang_id return inputs def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Optional[Any] = src_lang UpperCamelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _lowercase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = [] UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = [] UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Optional[int] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
643
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __UpperCAmelCase : List[Any] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __UpperCAmelCase : Any = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __UpperCAmelCase : Any = { '''RUCAIBox/mvp''': 1024, } class UpperCAmelCase_ ( __UpperCAmelCase): '''simple docstring''' __UpperCamelCase : Tuple = VOCAB_FILES_NAMES __UpperCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : Dict = ['''input_ids''', '''attention_mask'''] __UpperCamelCase : Optional[int] = MvpTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="replace" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , errors=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase : Any = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Tuple = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase : Any = '''post_processor''' UpperCamelCase : Union[str, Any] = getattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase : Optional[Any] = tuple(state['''sep'''] ) if "cls" in state: UpperCamelCase : Dict = tuple(state['''cls'''] ) UpperCamelCase : Optional[int] = False if state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase : List[str] = add_prefix_space UpperCamelCase : Dict = True if state.get('''trim_offsets''' , __SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase : List[Any] = trim_offsets UpperCamelCase : List[str] = True if changes_to_apply: UpperCamelCase : str = getattr(__SCREAMING_SNAKE_CASE , state.pop('''type''' ) ) UpperCamelCase : List[Any] = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else value UpperCamelCase : List[str] = value def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[int] = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[str] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Tuple = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Any = [self.sep_token_id] UpperCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
716
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCAmelCase : Dict = False class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' pass @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCamelCase : str = torch.manual_seed(0 ) UpperCamelCase : Union[str, Any] = pipe( image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
643
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCAmelCase : List[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( UpperCamelCase_): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
from __future__ import annotations from typing import Any class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE = 6 ): """simple docstring""" a_ : int = None a_ : int = None self.create_linked_list(__A ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" a_ : Any = Node() a_ : Dict = current_node a_ : List[str] = current_node a_ : int = current_node for _ in range(1 , __A ): a_ : Tuple = Node() a_ : Optional[int] = current_node a_ : int = previous_node a_ : Optional[Any] = current_node a_ : Any = self.front a_ : Optional[int] = previous_node def _lowercase ( self ): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _lowercase ( self ): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): a_ : List[str] = self.rear.next if self.rear: a_ : List[str] = data def _lowercase ( self ): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: a_ : List[str] = self.front.data a_ : Union[str, Any] = None return data a_ : Any = self.front a_ : List[Any] = old_front.next a_ : Union[str, Any] = old_front.data a_ : Optional[Any] = None return data def _lowercase ( self ): """simple docstring""" if self.is_empty(): raise Exception('''Empty Queue''' ) def _lowercase ( self ): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class UpperCAmelCase_ : '''simple docstring''' def __init__( self ): """simple docstring""" a_ : Optional[Any] = None a_ : int = None a_ : Tuple = None if __name__ == "__main__": import doctest doctest.testmod()
718
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Dict = { "vocab_file": { "junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt", "junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt", "junnyu/roformer_chinese_char_small": ( "https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt" ), "junnyu/roformer_chinese_char_base": ( "https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt" ), "junnyu/roformer_small_discriminator": ( "https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt" ), "junnyu/roformer_small_generator": ( "https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt" ), } } __UpperCAmelCase : Tuple = { "junnyu/roformer_chinese_small": 1536, "junnyu/roformer_chinese_base": 1536, "junnyu/roformer_chinese_char_small": 512, "junnyu/roformer_chinese_char_base": 512, "junnyu/roformer_small_discriminator": 128, "junnyu/roformer_small_generator": 128, } __UpperCAmelCase : Any = { "junnyu/roformer_chinese_small": {"do_lower_case": True}, "junnyu/roformer_chinese_base": {"do_lower_case": True}, "junnyu/roformer_chinese_char_small": {"do_lower_case": True}, "junnyu/roformer_chinese_char_base": {"do_lower_case": True}, "junnyu/roformer_small_discriminator": {"do_lower_case": True}, "junnyu/roformer_small_generator": {"do_lower_case": True}, } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : str = VOCAB_FILES_NAMES __UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = RoFormerTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents ): UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) UpperCamelCase : Optional[int] = do_lower_case UpperCamelCase : Optional[Any] = strip_accents UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = do_lower_case def __getstate__( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.__dict__.copy() UpperCamelCase : Any = BertPreTokenizer() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = d UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab() UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Dict = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Any = BertPreTokenizer() return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
643
0
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase : Dict = logging.get_logger(__name__) __UpperCAmelCase : Tuple = { "Visual-Attention-Network/van-base": ( "https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json" ), } class UpperCAmelCase_ ( __snake_case): '''simple docstring''' __UpperCamelCase : Dict = "van" def __init__( self , __SCREAMING_SNAKE_CASE=224 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[64, 128, 320, 512] , __SCREAMING_SNAKE_CASE=[3, 3, 12, 3] , __SCREAMING_SNAKE_CASE=[8, 8, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=1e-2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**_lowercase ) UpperCamelCase : Optional[Any] = image_size UpperCamelCase : int = num_channels UpperCamelCase : Dict = patch_sizes UpperCamelCase : int = strides UpperCamelCase : List[str] = hidden_sizes UpperCamelCase : Optional[int] = depths UpperCamelCase : Any = mlp_ratios UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[str] = layer_norm_eps UpperCamelCase : Tuple = layer_scale_init_value UpperCamelCase : Optional[Any] = drop_path_rate UpperCamelCase : Optional[int] = dropout_rate
719
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : list[int] ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return array UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) # Compute the variables UpperCamelCase : Union[str, Any] = _max - _min + 1 UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCamelCase : Optional[int] = i - _min UpperCamelCase : Any = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCamelCase : str = 0 for i in range(SCREAMING_SNAKE_CASE_ ): while holes_repeat[i] > 0: UpperCamelCase : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase : Any = input("Enter numbers separated by comma:\n") __UpperCAmelCase : int = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
643
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __UpperCAmelCase : List[Any] = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = '''albert''' def __init__( self , __SCREAMING_SNAKE_CASE=30_000 , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=16_384 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE="gelu_new" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) UpperCamelCase : Tuple = vocab_size UpperCamelCase : str = embedding_size UpperCamelCase : List[Any] = hidden_size UpperCamelCase : Union[str, Any] = num_hidden_layers UpperCamelCase : Dict = num_hidden_groups UpperCamelCase : List[str] = num_attention_heads UpperCamelCase : List[Any] = inner_group_num UpperCamelCase : Optional[int] = hidden_act UpperCamelCase : Any = intermediate_size UpperCamelCase : Tuple = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : str = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : str = initializer_range UpperCamelCase : Tuple = layer_norm_eps UpperCamelCase : Optional[Any] = classifier_dropout_prob UpperCamelCase : Any = position_embedding_type class UpperCAmelCase_ ( _a): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
720
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __UpperCAmelCase : List[str] = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase : Optional[int] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __UpperCAmelCase : Any = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } __UpperCAmelCase : str = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Dict = ['input_ids', 'attention_mask'] __UpperCamelCase : Optional[int] = DistilBertTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) UpperCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): UpperCamelCase : Tuple = getattr(_a , normalizer_state.pop('''type''' ) ) UpperCamelCase : Optional[Any] = do_lower_case UpperCamelCase : str = strip_accents UpperCamelCase : Union[str, Any] = tokenize_chinese_chars UpperCamelCase : Optional[int] = normalizer_class(**_a ) UpperCamelCase : Optional[Any] = do_lower_case def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ): """simple docstring""" UpperCamelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Optional[int] = [self.sep_token_id] UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : List[str] = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
721
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) ) if __name__ == "__main__": # read original image __UpperCAmelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value __UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape # set different points to rotate image __UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __UpperCAmelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __UpperCAmelCase : List[str] = plt.figure(1) __UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
643
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} __UpperCAmelCase : Dict = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } __UpperCAmelCase : Dict = { """allenai/longformer-base-4096""": 4096, """allenai/longformer-large-4096""": 4096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def a ( ): """simple docstring""" UpperCamelCase : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCamelCase : Optional[int] = bs[:] UpperCamelCase : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCamelCase ) cs.append(2**8 + n ) n += 1 UpperCamelCase : int = [chr(_lowerCamelCase ) for n in cs] return dict(zip(_lowerCamelCase , _lowerCamelCase ) ) def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ): """simple docstring""" UpperCamelCase : Optional[int] = set() UpperCamelCase : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase : List[Any] = char return pairs class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[Any] = VOCAB_FILES_NAMES __UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : str = ["input_ids", "attention_mask"] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="replace" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token UpperCamelCase : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token UpperCamelCase : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token UpperCamelCase : str = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token UpperCamelCase : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token UpperCamelCase : Optional[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase : Dict = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding='''utf-8''' ) as vocab_handle: UpperCamelCase : List[str] = json.load(UpperCamelCase__ ) UpperCamelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} UpperCamelCase : List[Any] = errors # how to handle errors in decoding UpperCamelCase : int = bytes_to_unicode() UpperCamelCase : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding='''utf-8''' ) as merges_handle: UpperCamelCase : Tuple = merges_handle.read().split('''\n''' )[1:-1] UpperCamelCase : str = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase : Dict = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) UpperCamelCase : Optional[int] = {} UpperCamelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase : str = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _lowercase ( self ): """simple docstring""" return len(self.encoder ) def _lowercase ( self ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase : str = tuple(UpperCamelCase__ ) UpperCamelCase : Any = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: UpperCamelCase : Dict = min(UpperCamelCase__ , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(UpperCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase : str = bigram UpperCamelCase : Tuple = [] UpperCamelCase : int = 0 while i < len(UpperCamelCase__ ): try: UpperCamelCase : Union[str, Any] = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase : Optional[Any] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase : int = tuple(UpperCamelCase__ ) UpperCamelCase : Optional[Any] = new_word if len(UpperCamelCase__ ) == 1: break else: UpperCamelCase : Dict = get_pairs(UpperCamelCase__ ) UpperCamelCase : Union[str, Any] = ''' '''.join(UpperCamelCase__ ) UpperCamelCase : Dict = word return word def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = [] for token in re.findall(self.pat , UpperCamelCase__ ): UpperCamelCase : int = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(''' ''' ) ) return bpe_tokens def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.decoder.get(UpperCamelCase__ ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Optional[Any] = ''''''.join(UpperCamelCase__ ) UpperCamelCase : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : List[Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase : Union[str, Any] = os.path.join( UpperCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + '''\n''' ) UpperCamelCase : List[str] = 0 with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCamelCase : str = token_index writer.write(''' '''.join(UpperCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase : Tuple = [self.cls_token_id] UpperCamelCase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : str = [self.sep_token_id] UpperCamelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): UpperCamelCase : Tuple = ''' ''' + text return (text, kwargs)
700
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : List[str] = { "microsoft/conditional-detr-resnet-50": ( "https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json" ), } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "conditional_detr" __UpperCamelCase : Optional[Any] = ["past_key_values"] __UpperCamelCase : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Tuple = backbone_config.get('''model_type''' ) UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = use_timm_backbone UpperCamelCase : int = backbone_config UpperCamelCase : Any = num_channels UpperCamelCase : Optional[Any] = num_queries UpperCamelCase : Tuple = d_model UpperCamelCase : Optional[Any] = encoder_ffn_dim UpperCamelCase : Optional[int] = encoder_layers UpperCamelCase : Union[str, Any] = encoder_attention_heads UpperCamelCase : Optional[Any] = decoder_ffn_dim UpperCamelCase : Optional[int] = decoder_layers UpperCamelCase : Optional[Any] = decoder_attention_heads UpperCamelCase : Any = dropout UpperCamelCase : List[Any] = attention_dropout UpperCamelCase : List[Any] = activation_dropout UpperCamelCase : List[str] = activation_function UpperCamelCase : Optional[int] = init_std UpperCamelCase : Optional[Any] = init_xavier_std UpperCamelCase : Union[str, Any] = encoder_layerdrop UpperCamelCase : Optional[Any] = decoder_layerdrop UpperCamelCase : Tuple = encoder_layers UpperCamelCase : Optional[Any] = auxiliary_loss UpperCamelCase : Union[str, Any] = position_embedding_type UpperCamelCase : Optional[int] = backbone UpperCamelCase : Dict = use_pretrained_backbone UpperCamelCase : Tuple = dilation # Hungarian matcher UpperCamelCase : Union[str, Any] = class_cost UpperCamelCase : List[Any] = bbox_cost UpperCamelCase : Optional[Any] = giou_cost # Loss coefficients UpperCamelCase : Optional[Any] = mask_loss_coefficient UpperCamelCase : Optional[int] = dice_loss_coefficient UpperCamelCase : Optional[Any] = cls_loss_coefficient UpperCamelCase : Optional[int] = bbox_loss_coefficient UpperCamelCase : Optional[int] = giou_loss_coefficient UpperCamelCase : Optional[int] = focal_alpha super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @property def _lowercase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _lowercase ( self ): """simple docstring""" return self.d_model def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: UpperCamelCase : List[Any] = self.backbone_config.to_dict() UpperCamelCase : List[Any] = self.__class__.model_type return output class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-5 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , ): """simple docstring""" UpperCamelCase : Union[str, Any] = parent UpperCamelCase : Optional[int] = out_indices if out_indices is not None else [4] UpperCamelCase : List[str] = stage_names UpperCamelCase : Tuple = out_features UpperCamelCase : List[Any] = backbone UpperCamelCase : Union[str, Any] = batch_size UpperCamelCase : List[str] = image_size UpperCamelCase : Dict = num_channels UpperCamelCase : Union[str, Any] = use_pretrained_backbone UpperCamelCase : Dict = is_training def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Optional[int] = self.get_config() return config, pixel_values def _lowercase ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = TimmBackbone(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): UpperCamelCase : Dict = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase : List[Any] = config_and_inputs UpperCamelCase : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class UpperCAmelCase_ ( snake_case_, snake_case_, snake_case_, unittest.TestCase): '''simple docstring''' __UpperCamelCase : str = (TimmBackbone,) if is_torch_available() else () __UpperCamelCase : int = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} __UpperCamelCase : Optional[Any] = False __UpperCamelCase : str = False __UpperCamelCase : int = False __UpperCamelCase : str = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = TimmBackboneModelTester(self ) UpperCamelCase : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = '''resnet18''' UpperCamelCase : List[Any] = '''microsoft/resnet-18''' UpperCamelCase : Union[str, Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) UpperCamelCase : List[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) UpperCamelCase : Any = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _lowercase ( self ): """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Optional[Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : Tuple = [*signature.parameters.keys()] UpperCamelCase : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = True UpperCamelCase : int = self.has_attentions # no need to test all models as different heads yield the same functionality UpperCamelCase : Tuple = self.all_model_classes[0] UpperCamelCase : int = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : str = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = outputs[0][-1] # Encoder-/Decoder-only models UpperCamelCase : Optional[Any] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: UpperCamelCase : List[str] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _lowercase ( self ): """simple docstring""" UpperCamelCase , UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None UpperCamelCase : Tuple = copy.deepcopy(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = None UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = model(**__SCREAMING_SNAKE_CASE ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights UpperCamelCase : Dict = copy.deepcopy(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = False UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[str] = model(**__SCREAMING_SNAKE_CASE )
701
import requests from bsa import BeautifulSoup def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ): """simple docstring""" UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' ) UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
643
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCAmelCase_ ( _UpperCAmelCase): '''simple docstring''' __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : Optional[Any] = False __UpperCamelCase : Any = 3.0 class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def _lowercase ( self ): """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=lowercase__ ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() UpperCamelCase : List[Any] = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) UpperCamelCase : List[str] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1_024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , lowercase__ ) @require_multi_gpu def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowercase__ , env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase : List[Any] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) __UpperCAmelCase : Optional[int] = Accelerator(kwargs_handlers=[ddp_scaler]) __UpperCAmelCase : Optional[Any] = torch.nn.Linear(100, 200) __UpperCAmelCase : Tuple = accelerator.prepare(model) # Check the values changed in kwargs __UpperCAmelCase : Union[str, Any] = "" __UpperCAmelCase : str = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
702
def a ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] ) UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:] UpperCamelCase : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
643
0
from __future__ import annotations def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : Union[str, Any] = set(SCREAMING_SNAKE_CASE_ ), [start] while stack: UpperCamelCase : Optional[int] = stack.pop() explored.add(SCREAMING_SNAKE_CASE_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(SCREAMING_SNAKE_CASE_ ) return explored __UpperCAmelCase : Optional[int] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
703
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : str = logging.get_logger(__name__) __UpperCAmelCase : Dict = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Optional[int] = "yolos" def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : int = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : int = image_size UpperCamelCase : Any = patch_size UpperCamelCase : str = num_channels UpperCamelCase : str = qkv_bias UpperCamelCase : Tuple = num_detection_tokens UpperCamelCase : List[Any] = use_mid_position_embeddings UpperCamelCase : Dict = auxiliary_loss # Hungarian matcher UpperCamelCase : Optional[Any] = class_cost UpperCamelCase : Union[str, Any] = bbox_cost UpperCamelCase : Any = giou_cost # Loss coefficients UpperCamelCase : List[Any] = bbox_loss_coefficient UpperCamelCase : Union[str, Any] = giou_loss_coefficient UpperCamelCase : Dict = eos_coefficient class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = version.parse("1.11") @property def _lowercase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _lowercase ( self ): """simple docstring""" return 1e-4 @property def _lowercase ( self ): """simple docstring""" return 12
643
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : List[str] = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : int = 'huggingface/label-files' UpperCamelCase : Tuple = 'imagenet-1k-id2label.json' UpperCamelCase : Dict = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase : Dict = {int(__lowercase ): v for k, v in idalabel.items()} UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCamelCase : Dict = 'std_conv' if 'bit' in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" UpperCamelCase : Union[str, Any] = BitConfig( conv_layer=__lowercase , num_labels=1_0_0_0 , idalabel=__lowercase , labelaid=__lowercase , ) return config def a ( SCREAMING_SNAKE_CASE_ : Dict ): """simple docstring""" if "stem.conv" in name: UpperCamelCase : str = name.replace('''stem.conv''' , '''bit.embedder.convolution''' ) if "blocks" in name: UpperCamelCase : Optional[Any] = name.replace('''blocks''' , '''layers''' ) if "head.fc" in name: UpperCamelCase : Any = name.replace('''head.fc''' , '''classifier.1''' ) if name.startswith('''norm''' ): UpperCamelCase : Tuple = 'bit.' + name if "bit" not in name and "classifier" not in name: UpperCamelCase : List[Any] = 'bit.encoder.' + name return name def a ( ): """simple docstring""" UpperCamelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : str = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str]=False ): """simple docstring""" UpperCamelCase : Any = get_config(__lowercase ) # load original model from timm UpperCamelCase : List[str] = create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() # load state_dict of original model UpperCamelCase : List[str] = timm_model.state_dict() for key in state_dict.copy().keys(): UpperCamelCase : List[str] = state_dict.pop(__lowercase ) UpperCamelCase : Dict = val.squeeze() if 'head' in key else val # load HuggingFace model UpperCamelCase : Union[str, Any] = BitForImageClassification(__lowercase ) model.eval() model.load_state_dict(__lowercase ) # create image processor UpperCamelCase : List[str] = create_transform(**resolve_data_config({} , model=__lowercase ) ) UpperCamelCase : Dict = transform.transforms UpperCamelCase : Tuple = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } UpperCamelCase : List[Any] = BitImageProcessor( do_resize=__lowercase , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__lowercase , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__lowercase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCamelCase : Tuple = prepare_img() UpperCamelCase : List[Any] = transform(__lowercase ).unsqueeze(0 ) UpperCamelCase : str = processor(__lowercase , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__lowercase , __lowercase ) # verify logits with torch.no_grad(): UpperCamelCase : Optional[Any] = model(__lowercase ) UpperCamelCase : Optional[int] = outputs.logits print('''Logits:''' , logits[0, :3] ) print('''Predicted class:''' , model.config.idalabel[logits.argmax(-1 ).item()] ) UpperCamelCase : Optional[int] = timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase , outputs.logits , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model {model_name} and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F"""Pushing model {model_name} and processor to the hub""" ) model.push_to_hub(F"""ybelkada/{model_name}""" ) processor.push_to_hub(F"""ybelkada/{model_name}""" ) if __name__ == "__main__": __UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
704
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
643
0
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] = 1 / sqrt(2 ) ): """simple docstring""" UpperCamelCase : Dict = tau * frequency / samplerate UpperCamelCase : Optional[Any] = sin(__snake_case ) UpperCamelCase : Tuple = cos(__snake_case ) UpperCamelCase : Union[str, Any] = _sin / (2 * q_factor) UpperCamelCase : Union[str, Any] = (1 - _cos) / 2 UpperCamelCase : Tuple = 1 - _cos UpperCamelCase : List[str] = 1 + alpha UpperCamelCase : List[str] = -2 * _cos UpperCamelCase : Tuple = 1 - alpha UpperCamelCase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] = 1 / sqrt(2 ) ): """simple docstring""" UpperCamelCase : Tuple = tau * frequency / samplerate UpperCamelCase : Tuple = sin(__snake_case ) UpperCamelCase : int = cos(__snake_case ) UpperCamelCase : List[Any] = _sin / (2 * q_factor) UpperCamelCase : Dict = (1 + _cos) / 2 UpperCamelCase : Optional[Any] = -1 - _cos UpperCamelCase : Optional[Any] = 1 + alpha UpperCamelCase : Optional[int] = -2 * _cos UpperCamelCase : List[Any] = 1 - alpha UpperCamelCase : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int = 1 / sqrt(2 ) ): """simple docstring""" UpperCamelCase : Optional[Any] = tau * frequency / samplerate UpperCamelCase : Optional[int] = sin(__snake_case ) UpperCamelCase : Optional[int] = cos(__snake_case ) UpperCamelCase : Optional[Any] = _sin / (2 * q_factor) UpperCamelCase : Dict = _sin / 2 UpperCamelCase : Optional[int] = 0 UpperCamelCase : Optional[int] = -ba UpperCamelCase : List[Any] = 1 + alpha UpperCamelCase : str = -2 * _cos UpperCamelCase : int = 1 - alpha UpperCamelCase : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any = 1 / sqrt(2 ) ): """simple docstring""" UpperCamelCase : Any = tau * frequency / samplerate UpperCamelCase : int = sin(__snake_case ) UpperCamelCase : List[Any] = cos(__snake_case ) UpperCamelCase : Dict = _sin / (2 * q_factor) UpperCamelCase : Any = 1 - alpha UpperCamelCase : Union[str, Any] = -2 * _cos UpperCamelCase : Any = 1 + alpha UpperCamelCase : str = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int = 1 / sqrt(2 ) , ): """simple docstring""" UpperCamelCase : int = tau * frequency / samplerate UpperCamelCase : Tuple = sin(__snake_case ) UpperCamelCase : Any = cos(__snake_case ) UpperCamelCase : List[str] = _sin / (2 * q_factor) UpperCamelCase : List[str] = 1_0 ** (gain_db / 4_0) UpperCamelCase : Optional[int] = 1 + alpha * big_a UpperCamelCase : List[str] = -2 * _cos UpperCamelCase : List[Any] = 1 - alpha * big_a UpperCamelCase : Union[str, Any] = 1 + alpha / big_a UpperCamelCase : str = -2 * _cos UpperCamelCase : Optional[Any] = 1 - alpha / big_a UpperCamelCase : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int = 1 / sqrt(2 ) , ): """simple docstring""" UpperCamelCase : str = tau * frequency / samplerate UpperCamelCase : Optional[int] = sin(__snake_case ) UpperCamelCase : Dict = cos(__snake_case ) UpperCamelCase : Optional[int] = _sin / (2 * q_factor) UpperCamelCase : Optional[Any] = 1_0 ** (gain_db / 4_0) UpperCamelCase : int = (big_a + 1) - (big_a - 1) * _cos UpperCamelCase : Tuple = (big_a + 1) + (big_a - 1) * _cos UpperCamelCase : Optional[int] = (big_a - 1) - (big_a + 1) * _cos UpperCamelCase : str = (big_a - 1) + (big_a + 1) * _cos UpperCamelCase : int = 2 * sqrt(__snake_case ) * alpha UpperCamelCase : List[Any] = big_a * (pmc + aaa) UpperCamelCase : Optional[Any] = 2 * big_a * mpc UpperCamelCase : Dict = big_a * (pmc - aaa) UpperCamelCase : Tuple = ppmc + aaa UpperCamelCase : Optional[int] = -2 * pmpc UpperCamelCase : Optional[int] = ppmc - aaa UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any = 1 / sqrt(2 ) , ): """simple docstring""" UpperCamelCase : Optional[int] = tau * frequency / samplerate UpperCamelCase : Union[str, Any] = sin(__snake_case ) UpperCamelCase : Optional[int] = cos(__snake_case ) UpperCamelCase : Dict = _sin / (2 * q_factor) UpperCamelCase : List[Any] = 1_0 ** (gain_db / 4_0) UpperCamelCase : List[Any] = (big_a + 1) - (big_a - 1) * _cos UpperCamelCase : List[Any] = (big_a + 1) + (big_a - 1) * _cos UpperCamelCase : Dict = (big_a - 1) - (big_a + 1) * _cos UpperCamelCase : Optional[int] = (big_a - 1) + (big_a + 1) * _cos UpperCamelCase : str = 2 * sqrt(__snake_case ) * alpha UpperCamelCase : Optional[Any] = big_a * (ppmc + aaa) UpperCamelCase : Union[str, Any] = -2 * big_a * pmpc UpperCamelCase : Any = big_a * (ppmc - aaa) UpperCamelCase : Dict = pmc + aaa UpperCamelCase : List[str] = 2 * mpc UpperCamelCase : Dict = pmc - aaa UpperCamelCase : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
705
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): """simple docstring""" UpperCamelCase : List[str] = k_size // 2 UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) ) return g def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase : str = height - k_size + 1 UpperCamelCase : Optional[int] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase : Tuple = 0 for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase : Dict = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ ) # reshape and get the dst image UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ ) return dst if __name__ == "__main__": # read original image __UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg") # turn image in gray scale value __UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size __UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1) __UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow("gaussian filter with 3x3 mask", gaussianaxa) imshow("gaussian filter with 5x5 mask", gaussianaxa) waitKey()
643
0