code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
|---|---|---|---|---|
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase : Tuple = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Union[str, Any] = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
__UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
__UpperCAmelCase : Dict = logging.get_logger(__name__)
__UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__UpperCAmelCase : Dict = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
__UpperCAmelCase : Tuple = {
"junnyu/roformer_chinese_small": 1536,
"junnyu/roformer_chinese_base": 1536,
"junnyu/roformer_chinese_char_small": 512,
"junnyu/roformer_chinese_char_base": 512,
"junnyu/roformer_small_discriminator": 128,
"junnyu/roformer_small_generator": 128,
}
__UpperCAmelCase : Any = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : str = VOCAB_FILES_NAMES
__UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase : Any = RoFormerTokenizer
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(
__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case
or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents
):
UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) )
UpperCamelCase : Optional[int] = do_lower_case
UpperCamelCase : Optional[Any] = strip_accents
UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = do_lower_case
def __getstate__( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.__dict__.copy()
UpperCamelCase : Any = BertPreTokenizer()
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = d
UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab()
UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE )
return tuple(__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Any = BertPreTokenizer()
return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 643
| 0
|
import random
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : bool = False ):
"""simple docstring"""
UpperCamelCase : dict = {i: [] for i in range(SCREAMING_SNAKE_CASE_ )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(SCREAMING_SNAKE_CASE_ )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(SCREAMING_SNAKE_CASE_ ):
for j in range(i + 1 , SCREAMING_SNAKE_CASE_ ):
if random.random() < probability:
graph[i].append(SCREAMING_SNAKE_CASE_ )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(SCREAMING_SNAKE_CASE_ )
return graph
def a ( SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
return {
i: [j for j in range(SCREAMING_SNAKE_CASE_ ) if i != j] for i in range(SCREAMING_SNAKE_CASE_ )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 719
|
from __future__ import annotations
def a ( SCREAMING_SNAKE_CASE_ : list[int] ):
"""simple docstring"""
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return array
UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )
# Compute the variables
UpperCamelCase : Union[str, Any] = _max - _min + 1
UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
UpperCamelCase : Optional[int] = i - _min
UpperCamelCase : Any = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
UpperCamelCase : str = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
while holes_repeat[i] > 0:
UpperCamelCase : List[Any] = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase : Any = input("Enter numbers separated by comma:\n")
__UpperCAmelCase : int = [int(x) for x in user_input.split(",")]
print(pigeon_sort(unsorted))
| 643
| 0
|
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = (IPNDMScheduler,)
__UpperCamelCase : str = (("num_inference_steps", 50),)
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = {'''num_train_timesteps''': 1_000}
config.update(**__SCREAMING_SNAKE_CASE )
return config
def _lowercase ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = dict(self.forward_default_kwargs )
UpperCamelCase : int = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = self.dummy_sample
UpperCamelCase : Dict = 0.1 * sample
UpperCamelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCamelCase : List[Any] = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
UpperCamelCase : Optional[int] = dummy_past_residuals[:]
if time_step is None:
UpperCamelCase : Union[str, Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
UpperCamelCase : List[str] = dummy_past_residuals[:]
UpperCamelCase : List[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
UpperCamelCase : Optional[int] = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
UpperCamelCase : int = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
UpperCamelCase : int = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowercase ( self ):
"""simple docstring"""
pass
def _lowercase ( self , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[Any] = dict(self.forward_default_kwargs )
UpperCamelCase : Optional[Any] = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = self.dummy_sample
UpperCamelCase : Union[str, Any] = 0.1 * sample
UpperCamelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCamelCase : Any = self.get_scheduler_config()
UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE )
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals (must be after setting timesteps)
UpperCamelCase : str = dummy_past_residuals[:]
if time_step is None:
UpperCamelCase : List[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__SCREAMING_SNAKE_CASE )
UpperCamelCase : str = scheduler_class.from_pretrained(__SCREAMING_SNAKE_CASE )
# copy over dummy past residuals
new_scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
# copy over dummy past residual (must be after setting timesteps)
UpperCamelCase : Tuple = dummy_past_residuals[:]
UpperCamelCase : List[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
UpperCamelCase : Dict = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
UpperCamelCase : Tuple = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
UpperCamelCase : str = new_scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical"
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[str] = self.scheduler_classes[0]
UpperCamelCase : Any = self.get_scheduler_config(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = 10
UpperCamelCase : Optional[Any] = self.dummy_model()
UpperCamelCase : Dict = self.dummy_sample_deter
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for i, t in enumerate(scheduler.timesteps ):
UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
return sample
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = dict(self.forward_default_kwargs )
UpperCamelCase : Dict = kwargs.pop('''num_inference_steps''' , __SCREAMING_SNAKE_CASE )
for scheduler_class in self.scheduler_classes:
UpperCamelCase : List[str] = self.get_scheduler_config()
UpperCamelCase : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = self.dummy_sample
UpperCamelCase : Union[str, Any] = 0.1 * sample
if num_inference_steps is not None and hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
elif num_inference_steps is not None and not hasattr(__SCREAMING_SNAKE_CASE , '''set_timesteps''' ):
UpperCamelCase : Optional[Any] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCamelCase : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCamelCase : Optional[Any] = dummy_past_residuals[:]
UpperCamelCase : List[Any] = scheduler.timesteps[5]
UpperCamelCase : List[Any] = scheduler.timesteps[6]
UpperCamelCase : int = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
UpperCamelCase : Union[str, Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCamelCase : Dict = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
UpperCamelCase : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _lowercase ( self ):
"""simple docstring"""
for timesteps in [100, 1_000]:
self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE , time_step=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__SCREAMING_SNAKE_CASE , time_step=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = self.full_loop()
UpperCamelCase : Dict = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) )
assert abs(result_mean.item() - 2_540_529 ) < 10
| 720
|
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
__UpperCAmelCase : List[Any] = True
except ImportError:
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def a ( SCREAMING_SNAKE_CASE_ : Namespace ):
"""simple docstring"""
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
@staticmethod
def _lowercase ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' )
add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' )
add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' )
add_new_model_parser.add_argument(
'''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' )
add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE )
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = testing
UpperCamelCase : Any = testing_file
UpperCamelCase : Dict = path
def _lowercase ( self ):
"""simple docstring"""
warnings.warn(
'''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. '''
'''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality '''
'''checks, you should use `transformers-cli add-new-model-like` instead.''' )
if not _has_cookiecutter:
raise ImportError(
'''Model creation dependencies are required to use the `add_new_model` command. Install them by running '''
'''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]]
if len(__SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(
'''Several directories starting with `cookiecutter-template-` in current working directory. '''
'''Please clean your directory by removing all folders starting with `cookiecutter-template-` or '''
'''change your working directory.''' )
UpperCamelCase : Dict = (
Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model'''
# Execute cookiecutter
if not self._testing:
cookiecutter(str(__SCREAMING_SNAKE_CASE ) )
else:
with open(self._testing_file , '''r''' ) as configuration_file:
UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0]
# Retrieve configuration
with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file:
UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = configuration['''lowercase_modelname''']
UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax''']
os.remove(f"""{directory}/configuration.json""" )
UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"""
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE )
# Tests require submodules as they have parent imports
with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ):
pass
shutil.move(
f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , )
shutil.move(
f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , )
def remove_copy_lines(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
UpperCamelCase : Any = f.readlines()
with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(__SCREAMING_SNAKE_CASE )
if output_pytorch:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" )
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" )
if output_flax:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , )
shutil.move(
f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Create temp file
UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp()
UpperCamelCase : Tuple = False
with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file:
with open(__SCREAMING_SNAKE_CASE ) as old_file:
for line in old_file:
new_file.write(__SCREAMING_SNAKE_CASE )
if line_to_copy_below in line:
UpperCamelCase : Optional[int] = True
for line_to_copy in lines_to_copy:
new_file.write(__SCREAMING_SNAKE_CASE )
if not line_found:
raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" )
# Copy the file permissions from the old file to the new file
copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Remove original file
remove(__SCREAMING_SNAKE_CASE )
# Move new file
move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def skip_units(__SCREAMING_SNAKE_CASE ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE ) as datafile:
UpperCamelCase : int = []
UpperCamelCase : Dict = False
UpperCamelCase : List[Any] = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
UpperCamelCase : Dict = line.split('''"''' )[1]
UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE )
elif "# Below: " in line and "##" not in line:
UpperCamelCase : Dict = line.split('''"''' )[1]
UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = []
elif "# Replace with" in line and "##" not in line:
UpperCamelCase : Tuple = []
elif "##" not in line:
lines_to_copy.append(__SCREAMING_SNAKE_CASE )
remove(__SCREAMING_SNAKE_CASE )
replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" )
os.rmdir(__SCREAMING_SNAKE_CASE )
| 643
| 0
|
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return 0.0
def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : List[str] = min([-2_0, np.min(fft_results[1 : samplerate // 2 - 1] )] )
UpperCamelCase : str = max([2_0, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def a ( SCREAMING_SNAKE_CASE_ : FilterType , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : List[Any] = 5_1_2
UpperCamelCase : str = [1] + [0] * (size - 1)
UpperCamelCase : Dict = [filter_type.process(SCREAMING_SNAKE_CASE_ ) for item in inputs]
UpperCamelCase : int = [0] * (samplerate - size) # zero-padding
outputs += filler
UpperCamelCase : int = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : str = 2_0 * np.logaa(SCREAMING_SNAKE_CASE_ )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(2_4 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
# Display within reasonable bounds
UpperCamelCase : str = get_bounds(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
plt.ylim(max([-8_0, bounds[0]] ) , min([8_0, bounds[1]] ) )
plt.ylabel('''Gain (dB)''' )
plt.plot(SCREAMING_SNAKE_CASE_ )
plt.show()
def a ( SCREAMING_SNAKE_CASE_ : FilterType , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : Optional[int] = 5_1_2
UpperCamelCase : Union[str, Any] = [1] + [0] * (size - 1)
UpperCamelCase : str = [filter_type.process(SCREAMING_SNAKE_CASE_ ) for item in inputs]
UpperCamelCase : List[str] = [0] * (samplerate - size) # zero-padding
outputs += filler
UpperCamelCase : List[str] = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE_ ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(2_4 , samplerate / 2 - 1 )
plt.xlabel('''Frequency (Hz)''' )
plt.xscale('''log''' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('''Phase shift (Radians)''' )
plt.plot(np.unwrap(SCREAMING_SNAKE_CASE_ , -2 * pi ) )
plt.show()
| 721
|
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) )
if __name__ == "__main__":
# read original image
__UpperCAmelCase : Tuple = cva.imread(
str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg")
)
# turn image in gray scale value
__UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
__UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape
# set different points to rotate image
__UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
__UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
__UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
__UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
__UpperCAmelCase : Union[str, Any] = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
__UpperCAmelCase : List[str] = plt.figure(1)
__UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, "gray")
plt.title(titles[i])
plt.axis("off")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 643
| 0
|
import json
import os
import re
import sys
import urllib.request
import requests
from bsa import BeautifulSoup
__UpperCAmelCase : str = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36"
" (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582"
}
def a ( SCREAMING_SNAKE_CASE_ : str = "dhaka" , SCREAMING_SNAKE_CASE_ : int = 5 ):
"""simple docstring"""
UpperCamelCase : List[str] = min(SCREAMING_SNAKE_CASE_ , 5_0 ) # Prevent abuse!
UpperCamelCase : str = {
'''q''': query,
'''tbm''': '''isch''',
'''hl''': '''en''',
'''ijn''': '''0''',
}
UpperCamelCase : int = requests.get('''https://www.google.com/search''' , params=SCREAMING_SNAKE_CASE_ , headers=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = BeautifulSoup(html.text , '''html.parser''' )
UpperCamelCase : Union[str, Any] = ''''''.join(
re.findall(R'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''' ) ) ) )
UpperCamelCase : int = json.dumps(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = json.loads(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = re.findall(
R'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , SCREAMING_SNAKE_CASE_ , )
if not matched_google_image_data:
return 0
UpperCamelCase : Dict = re.sub(
R'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(SCREAMING_SNAKE_CASE_ ) , )
UpperCamelCase : str = re.findall(
R'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , SCREAMING_SNAKE_CASE_ , )
for index, fixed_full_res_image in enumerate(SCREAMING_SNAKE_CASE_ ):
if index >= max_images:
return index
UpperCamelCase : Dict = bytes(SCREAMING_SNAKE_CASE_ , '''ascii''' ).decode(
'''unicode-escape''' )
UpperCamelCase : Optional[Any] = bytes(SCREAMING_SNAKE_CASE_ , '''ascii''' ).decode(
'''unicode-escape''' )
UpperCamelCase : Tuple = urllib.request.build_opener()
UpperCamelCase : Optional[Any] = [
(
'''User-Agent''',
'''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'''
''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''',
)
]
urllib.request.install_opener(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = F"""query_{query.replace(" " , "_" )}"""
if not os.path.exists(SCREAMING_SNAKE_CASE_ ):
os.makedirs(SCREAMING_SNAKE_CASE_ )
urllib.request.urlretrieve( # noqa: S310
SCREAMING_SNAKE_CASE_ , F"""{path_name}/original_size_img_{index}.jpg""" )
return index
if __name__ == "__main__":
try:
__UpperCAmelCase : str = download_images_from_google_query(sys.argv[1])
print(f'''{image_count} images were downloaded to disk.''')
except IndexError:
print("Please provide a search term.")
raise
| 700
|
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCAmelCase : List[str] = {
"microsoft/conditional-detr-resnet-50": (
"https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"
),
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[int] = "conditional_detr"
__UpperCamelCase : Optional[Any] = ["past_key_values"]
__UpperCamelCase : Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : Tuple = backbone_config.get('''model_type''' )
UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type]
UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = use_timm_backbone
UpperCamelCase : int = backbone_config
UpperCamelCase : Any = num_channels
UpperCamelCase : Optional[Any] = num_queries
UpperCamelCase : Tuple = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Optional[int] = encoder_layers
UpperCamelCase : Union[str, Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Optional[Any] = decoder_attention_heads
UpperCamelCase : Any = dropout
UpperCamelCase : List[Any] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : List[str] = activation_function
UpperCamelCase : Optional[int] = init_std
UpperCamelCase : Optional[Any] = init_xavier_std
UpperCamelCase : Union[str, Any] = encoder_layerdrop
UpperCamelCase : Optional[Any] = decoder_layerdrop
UpperCamelCase : Tuple = encoder_layers
UpperCamelCase : Optional[Any] = auxiliary_loss
UpperCamelCase : Union[str, Any] = position_embedding_type
UpperCamelCase : Optional[int] = backbone
UpperCamelCase : Dict = use_pretrained_backbone
UpperCamelCase : Tuple = dilation
# Hungarian matcher
UpperCamelCase : Union[str, Any] = class_cost
UpperCamelCase : List[Any] = bbox_cost
UpperCamelCase : Optional[Any] = giou_cost
# Loss coefficients
UpperCamelCase : Optional[Any] = mask_loss_coefficient
UpperCamelCase : Optional[int] = dice_loss_coefficient
UpperCamelCase : Optional[Any] = cls_loss_coefficient
UpperCamelCase : Optional[int] = bbox_loss_coefficient
UpperCamelCase : Optional[int] = giou_loss_coefficient
UpperCamelCase : Optional[int] = focal_alpha
super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def _lowercase ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def _lowercase ( self ):
"""simple docstring"""
return self.d_model
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
UpperCamelCase : List[Any] = self.backbone_config.to_dict()
UpperCamelCase : List[Any] = self.__class__.model_type
return output
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Dict = version.parse("1.11")
@property
def _lowercase ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def _lowercase ( self ):
"""simple docstring"""
return 1e-5
@property
def _lowercase ( self ):
"""simple docstring"""
return 12
| 643
| 0
|
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = None
__UpperCamelCase : List[str] = None
@property
def _lowercase ( self ):
"""simple docstring"""
return self.feat_extract_tester.prepare_feat_extract_dict()
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''feature_size''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''sampling_rate''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''padding_value''' ) )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.feat_extract_tester.prepare_inputs_for_common()
UpperCamelCase : Any = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : Dict = feat_extract.model_input_names[0]
UpperCamelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ) for x, y in zip(__SCREAMING_SNAKE_CASE , processed_features[input_name] ) ) )
UpperCamelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' )
UpperCamelCase : Optional[int] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCamelCase : List[Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : str = feat_extract.model_input_names[0]
UpperCamelCase : Any = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' )
UpperCamelCase : Union[str, Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCamelCase : Tuple = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : Tuple = feat_extract.model_input_names[0]
UpperCamelCase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' )
UpperCamelCase : Any = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
UpperCamelCase : Union[str, Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
def _inputs_have_equal_length(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Union[str, Any] = len(input[0] )
for input_slice in input[1:]:
if len(__SCREAMING_SNAKE_CASE ) != length:
return False
return True
def _inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
return False
for input_slice_a, input_slice_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if not np.allclose(np.asarray(__SCREAMING_SNAKE_CASE ) , np.asarray(__SCREAMING_SNAKE_CASE ) , atol=1e-3 ):
return False
return True
UpperCamelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common(numpify=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = feat_extract.model_input_names[0]
UpperCamelCase : List[Any] = BatchFeature({input_name: speech_inputs} )
UpperCamelCase : Union[str, Any] = self.feat_extract_tester.seq_length_diff
UpperCamelCase : str = self.feat_extract_tester.max_seq_length + pad_diff
UpperCamelCase : Any = self.feat_extract_tester.min_seq_length
UpperCamelCase : Optional[Any] = self.feat_extract_tester.batch_size
UpperCamelCase : List[str] = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
UpperCamelCase : str = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = input_a[input_name]
UpperCamelCase : Union[str, Any] = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' )
UpperCamelCase : Tuple = input_a[input_name]
UpperCamelCase : Tuple = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[-1] ) )
UpperCamelCase : str = input_a[input_name]
UpperCamelCase : List[str] = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )
UpperCamelCase : Union[str, Any] = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' )[input_name]
UpperCamelCase : int = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , return_tensors='''np''' )
UpperCamelCase : Any = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
UpperCamelCase : str = feat_extract.pad(__SCREAMING_SNAKE_CASE , pad_to_multiple_of=10 )
UpperCamelCase : List[str] = input_a[input_name]
UpperCamelCase : int = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , pad_to_multiple_of=10 )
UpperCamelCase : Union[str, Any] = input_a[input_name]
UpperCamelCase : Optional[int] = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = input_a[input_name]
UpperCamelCase : Union[str, Any] = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , pad_to_multiple_of=10 , max_length=__SCREAMING_SNAKE_CASE , return_tensors='''np''' , )
UpperCamelCase : Tuple = input_a[input_name]
self.assertTrue(all(len(__SCREAMING_SNAKE_CASE ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
UpperCamelCase : str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(__SCREAMING_SNAKE_CASE ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
UpperCamelCase : List[Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _lowercase ( self , __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
def _inputs_have_equal_length(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Optional[int] = len(input[0] )
for input_slice in input[1:]:
if len(__SCREAMING_SNAKE_CASE ) != length:
return False
return True
def _inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ):
return False
for input_slice_a, input_slice_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if not np.allclose(np.asarray(__SCREAMING_SNAKE_CASE ) , np.asarray(__SCREAMING_SNAKE_CASE ) , atol=1e-3 ):
return False
return True
UpperCamelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = feat_extract.model_input_names[0]
UpperCamelCase : str = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
UpperCamelCase : Tuple = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = input_a[input_name]
UpperCamelCase : Dict = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) )
UpperCamelCase : Optional[int] = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
# truncate to smallest with np
UpperCamelCase : List[str] = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = input_a[input_name]
UpperCamelCase : str = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' )
UpperCamelCase : Union[str, Any] = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
# truncate to middle
UpperCamelCase : str = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''np''' , )
UpperCamelCase : Optional[int] = input_a[input_name]
UpperCamelCase : Optional[int] = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = input_a[input_name]
UpperCamelCase : Any = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' )
UpperCamelCase : Optional[int] = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(_inputs_are_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''max_length''' , truncation=__SCREAMING_SNAKE_CASE )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
UpperCamelCase : List[str] = 12
UpperCamelCase : str = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : str = input_a[input_name]
UpperCamelCase : Tuple = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : int = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
UpperCamelCase : Tuple = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
UpperCamelCase : Union[str, Any] = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
self.assertFalse(_inputs_have_equal_length(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self ):
"""simple docstring"""
self._check_padding(numpify=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
self._check_padding(numpify=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
self._check_truncation(numpify=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
self._check_truncation(numpify=__SCREAMING_SNAKE_CASE )
@require_torch
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common()
UpperCamelCase : Tuple = feat_extract.model_input_names[0]
UpperCamelCase : Dict = BatchFeature({input_name: speech_inputs} )
UpperCamelCase : Any = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )[input_name]
UpperCamelCase : Any = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
UpperCamelCase : int = self.feat_extract_tester.prepare_inputs_for_common()
UpperCamelCase : List[Any] = feat_extract.model_input_names[0]
UpperCamelCase : Tuple = BatchFeature({input_name: speech_inputs} )
UpperCamelCase : Any = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )[input_name]
UpperCamelCase : int = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''tf''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = self.feat_extract_dict
UpperCamelCase : Dict = True
UpperCamelCase : Union[str, Any] = self.feature_extraction_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = self.feat_extract_tester.prepare_inputs_for_common()
UpperCamelCase : str = [len(__SCREAMING_SNAKE_CASE ) for x in speech_inputs]
UpperCamelCase : Dict = feat_extract.model_input_names[0]
UpperCamelCase : Optional[Any] = BatchFeature({input_name: speech_inputs} )
UpperCamelCase : Any = feat_extract.pad(__SCREAMING_SNAKE_CASE , padding='''longest''' , return_tensors='''np''' )
self.assertIn('''attention_mask''' , __SCREAMING_SNAKE_CASE )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.feat_extract_dict
UpperCamelCase : Optional[Any] = True
UpperCamelCase : Tuple = self.feature_extraction_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = self.feat_extract_tester.prepare_inputs_for_common()
UpperCamelCase : List[Any] = [len(__SCREAMING_SNAKE_CASE ) for x in speech_inputs]
UpperCamelCase : Tuple = feat_extract.model_input_names[0]
UpperCamelCase : int = BatchFeature({input_name: speech_inputs} )
UpperCamelCase : Dict = min(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = feat_extract.pad(
__SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , return_tensors='''np''' )
self.assertIn('''attention_mask''' , __SCREAMING_SNAKE_CASE )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 701
|
import requests
from bsa import BeautifulSoup
def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ):
"""simple docstring"""
UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' )
UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 643
| 0
|
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
__UpperCAmelCase : Optional[int] = logging.get_logger(__name__)
__UpperCAmelCase : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
__UpperCAmelCase : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase_ :
'''simple docstring'''
__UpperCamelCase : str = field(
default=_a, metadata={"help": "Model type selected in the list: " + ", ".join(_a)})
__UpperCamelCase : str = field(
default=_a, metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
__UpperCamelCase : int = field(
default=128, metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
}, )
__UpperCamelCase : int = field(
default=128, metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."}, )
__UpperCamelCase : int = field(
default=64, metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
}, )
__UpperCamelCase : int = field(
default=30, metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
}, )
__UpperCamelCase : bool = field(
default=_a, metadata={"help": "Overwrite the cached training and evaluation sets"})
__UpperCamelCase : bool = field(
default=_a, metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
__UpperCamelCase : float = field(
default=0.0, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
__UpperCamelCase : int = field(
default=20, metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
__UpperCamelCase : int = field(
default=0, metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
}, )
__UpperCamelCase : int = field(default=1, metadata={"help": "multiple threads for converting example to features"})
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[int] = "train"
__UpperCamelCase : Union[str, Any] = "dev"
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : SquadDataTrainingArguments
__UpperCamelCase : List[SquadFeatures]
__UpperCamelCase : Split
__UpperCamelCase : bool
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = Split.train , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pt" , ):
"""simple docstring"""
UpperCamelCase : Optional[int] = args
UpperCamelCase : List[str] = is_language_sensitive
UpperCamelCase : str = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
try:
UpperCamelCase : str = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
UpperCamelCase : int = mode
# Load data features from cache or dataset file
UpperCamelCase : List[str] = '''v2''' if args.version_2_with_negative else '''v1'''
UpperCamelCase : Any = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
UpperCamelCase : Tuple = cached_features_file + '''.lock'''
with FileLock(__SCREAMING_SNAKE_CASE ):
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
UpperCamelCase : Union[str, Any] = time.time()
UpperCamelCase : Optional[int] = torch.load(__SCREAMING_SNAKE_CASE )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
UpperCamelCase : Tuple = self.old_features['''features''']
UpperCamelCase : List[str] = self.old_features.get('''dataset''' , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = self.old_features.get('''examples''' , __SCREAMING_SNAKE_CASE )
logger.info(
f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"""
''' future run''' )
else:
if mode == Split.dev:
UpperCamelCase : Optional[int] = self.processor.get_dev_examples(args.data_dir )
else:
UpperCamelCase : int = self.processor.get_train_examples(args.data_dir )
UpperCamelCase : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__SCREAMING_SNAKE_CASE , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Union[str, Any] = time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , __SCREAMING_SNAKE_CASE , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = self.features[i]
UpperCamelCase : Optional[Any] = torch.tensor(feature.input_ids , dtype=torch.long )
UpperCamelCase : int = torch.tensor(feature.attention_mask , dtype=torch.long )
UpperCamelCase : Any = torch.tensor(feature.token_type_ids , dtype=torch.long )
UpperCamelCase : str = torch.tensor(feature.cls_index , dtype=torch.long )
UpperCamelCase : Tuple = torch.tensor(feature.p_mask , dtype=torch.float )
UpperCamelCase : int = torch.tensor(feature.is_impossible , dtype=torch.float )
UpperCamelCase : List[Any] = {
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
UpperCamelCase : str = torch.tensor(feature.start_position , dtype=torch.long )
UpperCamelCase : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 702
|
def a ( SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] )
UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:]
UpperCamelCase : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 643
| 0
|
# This is the module that test_patching.py uses to test patch_submodule()
import os # noqa: this is just for tests
import os as renamed_os # noqa: this is just for tests
from os import path # noqa: this is just for tests
from os import path as renamed_path # noqa: this is just for tests
from os.path import join # noqa: this is just for tests
from os.path import join as renamed_join # noqa: this is just for tests
__UpperCAmelCase : Any = open # noqa: we just need to have a builtin inside this module to test it properly
| 703
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase : str = logging.get_logger(__name__)
__UpperCAmelCase : Dict = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[int] = "yolos"
def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = hidden_size
UpperCamelCase : List[Any] = num_hidden_layers
UpperCamelCase : int = num_attention_heads
UpperCamelCase : Dict = intermediate_size
UpperCamelCase : Dict = hidden_act
UpperCamelCase : int = hidden_dropout_prob
UpperCamelCase : Any = attention_probs_dropout_prob
UpperCamelCase : Optional[Any] = initializer_range
UpperCamelCase : List[Any] = layer_norm_eps
UpperCamelCase : int = image_size
UpperCamelCase : Any = patch_size
UpperCamelCase : str = num_channels
UpperCamelCase : str = qkv_bias
UpperCamelCase : Tuple = num_detection_tokens
UpperCamelCase : List[Any] = use_mid_position_embeddings
UpperCamelCase : Dict = auxiliary_loss
# Hungarian matcher
UpperCamelCase : Optional[Any] = class_cost
UpperCamelCase : Union[str, Any] = bbox_cost
UpperCamelCase : Any = giou_cost
# Loss coefficients
UpperCamelCase : List[Any] = bbox_loss_coefficient
UpperCamelCase : Union[str, Any] = giou_loss_coefficient
UpperCamelCase : Dict = eos_coefficient
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : List[str] = version.parse("1.11")
@property
def _lowercase ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _lowercase ( self ):
"""simple docstring"""
return 1e-4
@property
def _lowercase ( self ):
"""simple docstring"""
return 12
| 643
| 0
|
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
__UpperCAmelCase : Dict = False
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCamelCase : str = torch.manual_seed(0 )
UpperCamelCase : Union[str, Any] = pipe(
image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 704
|
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:]
UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 643
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase : Optional[int] = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Optional[int] = [
"SEW_PRETRAINED_MODEL_ARCHIVE_LIST",
"SEWForCTC",
"SEWForSequenceClassification",
"SEWModel",
"SEWPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
__UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 705
|
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
"""simple docstring"""
UpperCamelCase : List[str] = k_size // 2
UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) )
return g
def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1]
# dst image height and width
UpperCamelCase : str = height - k_size + 1
UpperCamelCase : Optional[int] = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) )
UpperCamelCase : Tuple = 0
for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] )
UpperCamelCase : Dict = window
row += 1
# turn the kernel into shape(k*k, 1)
UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ )
# reshape and get the dst image
UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ )
return dst
if __name__ == "__main__":
# read original image
__UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg")
# turn image in gray scale value
__UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
__UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1)
__UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow("gaussian filter with 3x3 mask", gaussianaxa)
imshow("gaussian filter with 5x5 mask", gaussianaxa)
waitKey()
| 643
| 0
|
'''simple docstring'''
import math
import tensorflow as tf
from packaging import version
def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase : List[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) ))
return x * cdf
def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ):
"""simple docstring"""
UpperCamelCase : List[str] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = tf.cast(math.pi , x.dtype )
UpperCamelCase : int = tf.cast(0.044715 , x.dtype )
UpperCamelCase : List[str] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(SCREAMING_SNAKE_CASE_ , 3 )) ))
return x * cdf
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ )
return x * tf.tanh(tf.math.softplus(SCREAMING_SNAKE_CASE_ ) )
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = tf.cast(0.044715 , x.dtype )
UpperCamelCase : Optional[Any] = tf.cast(0.7978845608 , x.dtype )
return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) ))
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
UpperCamelCase : Tuple = tf.convert_to_tensor(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : str = tf.cast(1.702 , x.dtype )
return x * tf.math.sigmoid(coeff * x )
def a ( SCREAMING_SNAKE_CASE_ : Dict ):
"""simple docstring"""
return tf.clip_by_value(_gelu(SCREAMING_SNAKE_CASE_ ) , -1_0 , 1_0 )
def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int=-1 ):
"""simple docstring"""
UpperCamelCase : Optional[int] = tf.split(SCREAMING_SNAKE_CASE_ , 2 , axis=SCREAMING_SNAKE_CASE_ )
return a * tf.math.sigmoid(SCREAMING_SNAKE_CASE_ )
if version.parse(tf.version.VERSION) >= version.parse("2.4"):
def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ):
"""simple docstring"""
return tf.keras.activations.gelu(SCREAMING_SNAKE_CASE_ , approximate=SCREAMING_SNAKE_CASE_ )
__UpperCAmelCase : str = tf.keras.activations.gelu
__UpperCAmelCase : str = approximate_gelu_wrap
else:
__UpperCAmelCase : Union[str, Any] = _gelu
__UpperCAmelCase : Union[str, Any] = _gelu_new
__UpperCAmelCase : str = {
"gelu": gelu,
"gelu_10": gelu_aa,
"gelu_fast": gelu_fast,
"gelu_new": gelu_new,
"glu": glu,
"mish": mish,
"quick_gelu": quick_gelu,
"relu": tf.keras.activations.relu,
"sigmoid": tf.keras.activations.sigmoid,
"silu": tf.keras.activations.swish,
"swish": tf.keras.activations.swish,
"tanh": tf.keras.activations.tanh,
}
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ):
"""simple docstring"""
if activation_string in ACTaFN:
return ACTaFN[activation_string]
else:
raise KeyError(F"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
| 706
|
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ):
"""simple docstring"""
if not is_tqdm_available():
raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' )
UpperCamelCase : int = False
if main_process_only:
UpperCamelCase : int = PartialState().local_process_index == 0
return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
| 643
| 0
|
from math import factorial
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Dict = real
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : Union[str, Any] = [1] * rank
else:
UpperCamelCase : List[str] = rank
def __repr__( self ):
"""simple docstring"""
return (
f"""{self.real}+"""
f"""{"+".join(str(__SCREAMING_SNAKE_CASE )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}"""
)
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , __SCREAMING_SNAKE_CASE )
def __add__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return Dual(self.real + other , self.duals )
UpperCamelCase : List[str] = self.duals.copy()
UpperCamelCase : Any = other.duals.copy()
if len(__SCREAMING_SNAKE_CASE ) > len(__SCREAMING_SNAKE_CASE ):
o_dual.extend([1] * (len(__SCREAMING_SNAKE_CASE ) - len(__SCREAMING_SNAKE_CASE )) )
elif len(__SCREAMING_SNAKE_CASE ) < len(__SCREAMING_SNAKE_CASE ):
s_dual.extend([1] * (len(__SCREAMING_SNAKE_CASE ) - len(__SCREAMING_SNAKE_CASE )) )
UpperCamelCase : Union[str, Any] = []
for i in range(len(__SCREAMING_SNAKE_CASE ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , __SCREAMING_SNAKE_CASE )
__UpperCamelCase : Dict = __add__
def __sub__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self + other * -1
def __mul__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : int = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , __SCREAMING_SNAKE_CASE )
__UpperCamelCase : str = __mul__
def __truediv__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : List[str] = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , __SCREAMING_SNAKE_CASE )
raise ValueError
def __floordiv__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : int = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , __SCREAMING_SNAKE_CASE )
raise ValueError
def __pow__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if n < 0 or isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise ValueError('''power must be a positive integer''' )
if n == 0:
return 1
if n == 1:
return self
UpperCamelCase : Optional[Any] = self
for _ in range(n - 1 ):
x *= self
return x
def a ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Tuple ):
"""simple docstring"""
if not callable(SCREAMING_SNAKE_CASE_ ):
raise ValueError('''differentiate() requires a function as input for func''' )
if not isinstance(SCREAMING_SNAKE_CASE_ , (float, int) ):
raise ValueError('''differentiate() requires a float as input for position''' )
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''differentiate() requires an int as input for order''' )
UpperCamelCase : str = Dual(SCREAMING_SNAKE_CASE_ , 1 )
UpperCamelCase : List[str] = func(SCREAMING_SNAKE_CASE_ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ):
"""simple docstring"""
return y**2 * y**4
print(differentiate(f, 9, 2))
| 707
|
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase : Any = logging.get_logger(__name__)
__UpperCAmelCase : int = "▁"
__UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
__UpperCAmelCase : Dict = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
__UpperCAmelCase : Dict = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
__UpperCAmelCase : str = {
"ernie-m-base": 514,
"ernie-m-large": 514,
}
__UpperCAmelCase : Optional[int] = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : List[str] = ["input_ids"]
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : List[str] = RESOURCE_FILES_NAMES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[str] = do_lower_case
UpperCamelCase : Dict = sentencepiece_model_ckpt
UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )}
UpperCamelCase : str = {v: k for k, v in self.vocab.items()}
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if text is None:
return None
UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE )
UpperCamelCase , UpperCamelCase : str = '''''', []
for i, ch in enumerate(__SCREAMING_SNAKE_CASE ):
if ch in self.SP_CHAR_MAPPING:
UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE )
if self.is_whitespace(__SCREAMING_SNAKE_CASE ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) )
UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0
if self.do_lower_case:
UpperCamelCase : Tuple = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCamelCase : Any = token[1:]
UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset
UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCamelCase : str = end
return token_mapping
@property
def _lowercase ( self ):
"""simple docstring"""
return len(self.vocab )
def _lowercase ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = self.__dict__.copy()
UpperCamelCase : str = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCamelCase : Optional[int] = {}
UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCamelCase : List[str] = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = []
for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0:
new_pieces.append(__SCREAMING_SNAKE_CASE )
continue
else:
continue
UpperCamelCase : Any = 0
for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCamelCase : Union[str, Any] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCamelCase : Any = i
if len(__SCREAMING_SNAKE_CASE ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip()
return out_string
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip()
return out_string
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase : Any = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3)
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__SCREAMING_SNAKE_CASE ) == 1:
UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE )
if cat == "Zs":
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = {}
with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Tuple = line.rstrip('''\n''' )
UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE )
return token_to_idx
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = 0
if os.path.isdir(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Dict = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCamelCase : List[Any] = token_index
writer.write(token + '''\n''' )
index += 1
UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' )
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (vocab_file,)
| 643
| 0
|
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ):
"""simple docstring"""
if not is_tqdm_available():
raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' )
UpperCamelCase : int = False
if main_process_only:
UpperCamelCase : int = PartialState().local_process_index == 0
return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
| 708
|
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
__UpperCAmelCase : List[Any] = [
"openmmlab/upernet-convnext-tiny",
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
__UpperCAmelCase : List[str] = "UperNetConfig"
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ):
"""simple docstring"""
super().__init__()
UpperCamelCase : str = nn.Convad(
in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = nn.ReLU()
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE )
return output
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : List[Any] = [
nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ),
UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = input
for layer in self.layers:
UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE )
return hidden_state
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : List[Any] = pool_scales
UpperCamelCase : Dict = align_corners
UpperCamelCase : Optional[int] = in_channels
UpperCamelCase : Union[str, Any] = channels
UpperCamelCase : List[str] = []
for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE )
self.blocks.append(__SCREAMING_SNAKE_CASE )
self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = []
for ppm in self.blocks:
UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = nn.functional.interpolate(
__SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners )
ppm_outs.append(__SCREAMING_SNAKE_CASE )
return ppm_outs
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : int = config
UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6)
UpperCamelCase : Optional[int] = in_channels
UpperCamelCase : str = config.hidden_size
UpperCamelCase : str = False
UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
UpperCamelCase : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
UpperCamelCase : Union[str, Any] = nn.ModuleList()
UpperCamelCase : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 )
UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(__SCREAMING_SNAKE_CASE )
self.fpn_convs.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def _lowercase ( self ):
"""simple docstring"""
self.apply(self._init_weights )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = inputs[-1]
UpperCamelCase : int = [x]
psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) )
UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 )
UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE )
return output
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) )
# build top-down path
UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:]
UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners )
# build outputs
UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
UpperCamelCase : int = nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners )
UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 )
UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE )
return output
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ):
"""simple docstring"""
super().__init__()
UpperCamelCase : Dict = config
UpperCamelCase : Optional[Any] = config.auxiliary_in_channels
UpperCamelCase : Union[str, Any] = config.auxiliary_channels
UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs
UpperCamelCase : Optional[Any] = config.auxiliary_concat_input
UpperCamelCase : List[str] = in_index
UpperCamelCase : Any = (kernel_size // 2) * dilation
UpperCamelCase : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) )
if self.num_convs == 0:
UpperCamelCase : str = nn.Identity()
else:
UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE )
if self.concat_input:
UpperCamelCase : Union[str, Any] = UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 )
UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def _lowercase ( self ):
"""simple docstring"""
self.apply(self._init_weights )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = encoder_hidden_states[self.in_index]
UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE )
if self.concat_input:
UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE )
return output
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[Any] = UperNetConfig
__UpperCamelCase : Optional[int] = "pixel_values"
__UpperCamelCase : Dict = True
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def _lowercase ( self ):
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : str = value
__UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels )
UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC )
def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ):
"""simple docstring"""
UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions
UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs(
__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = outputs.feature_maps
UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = None
if self.auxiliary_head is not None:
UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = nn.functional.interpolate(
__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
UpperCamelCase : Optional[Any] = (logits,) + outputs[1:]
else:
UpperCamelCase : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 643
| 0
|
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
UpperCamelCase : Dict = filter(lambda SCREAMING_SNAKE_CASE_ : p.requires_grad , model.parameters() )
UpperCamelCase : int = sum([np.prod(p.size() ) for p in model_parameters] )
return params
__UpperCAmelCase : List[str] = logging.getLogger(__name__)
def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict ):
"""simple docstring"""
if metric == "rouge2":
UpperCamelCase : str = '''{val_avg_rouge2:.4f}-{step_count}'''
elif metric == "bleu":
UpperCamelCase : Optional[Any] = '''{val_avg_bleu:.4f}-{step_count}'''
elif metric == "em":
UpperCamelCase : int = '''{val_avg_em:.4f}-{step_count}'''
else:
raise NotImplementedError(
F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this"""
''' function.''' )
UpperCamelCase : Tuple = ModelCheckpoint(
dirpath=SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , monitor=F"""val_{metric}""" , mode='''max''' , save_top_k=3 , every_n_epochs=1 , )
return checkpoint_callback
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ):
"""simple docstring"""
return EarlyStopping(
monitor=F"""val_{metric}""" , mode='''min''' if '''loss''' in metric else '''max''' , patience=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , )
class UpperCAmelCase_ ( pl.Callback):
'''simple docstring'''
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = {f"""lr_group_{i}""": param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(__SCREAMING_SNAKE_CASE )
@rank_zero_only
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
logger.info(f"""***** {type_path} results at step {trainer.global_step:05d} *****""" )
UpperCamelCase : Union[str, Any] = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} )
# Log results
UpperCamelCase : List[str] = Path(pl_module.hparams.output_dir )
if type_path == "test":
UpperCamelCase : Union[str, Any] = od / '''test_results.txt'''
UpperCamelCase : Any = od / '''test_generations.txt'''
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
UpperCamelCase : Optional[int] = od / f"""{type_path}_results/{trainer.global_step:05d}.txt"""
UpperCamelCase : Tuple = od / f"""{type_path}_generations/{trainer.global_step:05d}.txt"""
results_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
generations_file.parent.mkdir(exist_ok=__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , '''a+''' ) as writer:
for key in sorted(__SCREAMING_SNAKE_CASE ):
if key in ["log", "progress_bar", "preds"]:
continue
UpperCamelCase : Any = metrics[key]
if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ):
UpperCamelCase : Any = val.item()
UpperCamelCase : Dict = f"""{key}: {val:.6f}\n"""
writer.write(__SCREAMING_SNAKE_CASE )
if not save_generations:
return
if "preds" in metrics:
UpperCamelCase : int = '''\n'''.join(metrics['''preds'''] )
generations_file.open('''w+''' ).write(__SCREAMING_SNAKE_CASE )
@rank_zero_only
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
try:
UpperCamelCase : Optional[int] = pl_module.model.model.num_parameters()
except AttributeError:
UpperCamelCase : Dict = pl_module.model.num_parameters()
UpperCamelCase : int = count_trainable_parameters(__SCREAMING_SNAKE_CASE )
# mp stands for million parameters
trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} )
@rank_zero_only
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , '''test''' )
@rank_zero_only
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 709
|
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__UpperCAmelCase : Optional[int] = 500000
__UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__)
__UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ )
@get_duration
def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ):
"""simple docstring"""
UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ )
def a ( ):
"""simple docstring"""
UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
UpperCamelCase : List[str] = generate_example_dataset(
os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ )
def tokenize(SCREAMING_SNAKE_CASE_ : Dict ):
return tokenizer(examples['''text'''] )
UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''numpy''' ):
UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''pandas''' ):
UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 643
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_tf_available,
is_torch_available,
)
__UpperCAmelCase : int = {
"configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"],
"processing_speech_to_text": ["Speech2TextProcessor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[Any] = ["Speech2TextTokenizer"]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Optional[int] = ["Speech2TextFeatureExtractor"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : int = [
"TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFSpeech2TextForConditionalGeneration",
"TFSpeech2TextModel",
"TFSpeech2TextPreTrainedModel",
]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Tuple = [
"SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Speech2TextForConditionalGeneration",
"Speech2TextModel",
"Speech2TextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig
from .processing_speech_to_text import SpeechaTextProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speech_to_text import SpeechaTextTokenizer
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_speech_to_text import (
TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFSpeechaTextForConditionalGeneration,
TFSpeechaTextModel,
TFSpeechaTextPreTrainedModel,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_to_text import (
SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechaTextForConditionalGeneration,
SpeechaTextModel,
SpeechaTextPreTrainedModel,
)
else:
import sys
__UpperCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 710
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 643
| 0
|
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def a ( SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
if not is_accelerate_available():
return method
UpperCamelCase : Dict = version.parse(accelerate.__version__ ).base_version
if version.parse(SCREAMING_SNAKE_CASE_ ) < version.parse('''0.17.0''' ):
return method
def wrapper(self : str , *SCREAMING_SNAKE_CASE_ : List[Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ):
if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ):
self._hf_hook.pre_forward(self )
return method(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
return wrapper
| 711
|
import torch
from transformers import AutoModel
class UpperCAmelCase_ ( torch.nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ):
"""simple docstring"""
super(__SCREAMING_SNAKE_CASE , self ).__init__()
UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 )
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ):
"""simple docstring"""
return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = W_supports['''sizes'''].tolist()
UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item()
UpperCamelCase : Any = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = None
UpperCamelCase : Any = None
UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id
UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(__SCREAMING_SNAKE_CASE ):
if i == 0:
UpperCamelCase : Optional[int] = 0
else:
UpperCamelCase : Tuple = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : str = p_start
UpperCamelCase : Optional[int] = p_end
return p_starts, p_ends
| 643
| 0
|
import os
import socket
from contextlib import contextmanager
import torch
from ..commands.config.default import write_basic_config # noqa: F401
from ..state import PartialState
from .dataclasses import DistributedType
from .imports import is_deepspeed_available, is_tpu_available
from .transformer_engine import convert_model
from .versions import is_torch_version
if is_deepspeed_available():
from deepspeed import DeepSpeedEngine
if is_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] ):
"""simple docstring"""
if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(SCREAMING_SNAKE_CASE_ , '''_dynamo''' ):
return False
return isinstance(SCREAMING_SNAKE_CASE_ , torch._dynamo.eval_frame.OptimizedModule )
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : bool = True ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel)
UpperCamelCase : int = is_compiled_module(SCREAMING_SNAKE_CASE_ )
if is_compiled:
UpperCamelCase : Any = model
UpperCamelCase : Union[str, Any] = model._orig_mod
if is_deepspeed_available():
options += (DeepSpeedEngine,)
while isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = model.module
if not keep_fpaa_wrapper:
UpperCamelCase : List[str] = getattr(SCREAMING_SNAKE_CASE_ , '''forward''' )
UpperCamelCase : Optional[Any] = model.__dict__.pop('''_original_forward''' , SCREAMING_SNAKE_CASE_ )
if original_forward is not None:
while hasattr(SCREAMING_SNAKE_CASE_ , '''__wrapped__''' ):
UpperCamelCase : int = forward.__wrapped__
if forward == original_forward:
break
UpperCamelCase : Union[str, Any] = forward
if getattr(SCREAMING_SNAKE_CASE_ , '''_converted_to_transformer_engine''' , SCREAMING_SNAKE_CASE_ ):
convert_model(SCREAMING_SNAKE_CASE_ , to_transformer_engine=SCREAMING_SNAKE_CASE_ )
if is_compiled:
UpperCamelCase : Union[str, Any] = model
UpperCamelCase : Dict = compiled_model
return model
def a ( ):
"""simple docstring"""
PartialState().wait_for_everyone()
def a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ):
"""simple docstring"""
if PartialState().distributed_type == DistributedType.TPU:
xm.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif PartialState().local_process_index == 0:
torch.save(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@contextmanager
def a ( **SCREAMING_SNAKE_CASE_ : Optional[int] ):
"""simple docstring"""
for key, value in kwargs.items():
UpperCamelCase : Optional[int] = str(SCREAMING_SNAKE_CASE_ )
yield
for key in kwargs:
if key.upper() in os.environ:
del os.environ[key.upper()]
def a ( SCREAMING_SNAKE_CASE_ : Tuple ):
"""simple docstring"""
if not hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__''' ) and not hasattr(SCREAMING_SNAKE_CASE_ , '''__name__''' ):
UpperCamelCase : str = getattr(SCREAMING_SNAKE_CASE_ , '''__class__''' , SCREAMING_SNAKE_CASE_ )
if hasattr(SCREAMING_SNAKE_CASE_ , '''__qualname__''' ):
return obj.__qualname__
if hasattr(SCREAMING_SNAKE_CASE_ , '''__name__''' ):
return obj.__name__
return str(SCREAMING_SNAKE_CASE_ )
def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict ):
"""simple docstring"""
for key, value in source.items():
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Union[str, Any] = destination.setdefault(SCREAMING_SNAKE_CASE_ , {} )
merge_dicts(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Optional[Any] = value
return destination
def a ( SCREAMING_SNAKE_CASE_ : int = None ):
"""simple docstring"""
if port is None:
UpperCamelCase : Dict = 2_9_5_0_0
with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s:
return s.connect_ex(('''localhost''', port) ) == 0
| 712
|
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase_ ( _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : Optional[int] = True
__UpperCamelCase : Optional[int] = DebertaTokenizerFast
def _lowercase ( self ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''}
UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = '''lower newer'''
UpperCamelCase : Union[str, Any] = '''lower newer'''
return input_text, output_text
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.get_tokenizer()
UpperCamelCase : int = '''lower newer'''
UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token]
UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.get_tokenizer()
UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' )
UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCamelCase : str = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']]
# fmt: off
UpperCamelCase : int = {
'''input_ids''': [
[1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
UpperCamelCase : List[str] = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE )
for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 643
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__UpperCAmelCase : Union[str, Any] = {
"configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[Any] = [
"RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"ResNetForImageClassification",
"ResNetModel",
"ResNetPreTrainedModel",
"ResNetBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Dict = [
"TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFResNetForImageClassification",
"TFResNetModel",
"TFResNetPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[str] = [
"FlaxResNetForImageClassification",
"FlaxResNetModel",
"FlaxResNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
__UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 713
|
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file:
UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
UpperCamelCase : Optional[int] = input_file.read()
UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE )
return match
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file:
UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
UpperCamelCase : Tuple = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = Path('''./datasets''' )
UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = Path('''./datasets''' )
UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 643
| 0
|
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = parent
UpperCamelCase : Dict = out_indices if out_indices is not None else [4]
UpperCamelCase : List[str] = stage_names
UpperCamelCase : Any = out_features
UpperCamelCase : List[Any] = backbone
UpperCamelCase : Tuple = batch_size
UpperCamelCase : int = image_size
UpperCamelCase : Optional[int] = num_channels
UpperCamelCase : Optional[int] = use_pretrained_backbone
UpperCamelCase : Optional[int] = is_training
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : List[Any] = self.get_config()
return config, pixel_values
def _lowercase ( self ):
"""simple docstring"""
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = TimmBackbone(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase : int = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.prepare_config_and_inputs()
UpperCamelCase : List[str] = config_and_inputs
UpperCamelCase : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class UpperCAmelCase_ ( _a, _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : str = (TimmBackbone,) if is_torch_available() else ()
__UpperCamelCase : List[str] = {"feature-extraction": TimmBackbone} if is_torch_available() else {}
__UpperCamelCase : str = False
__UpperCamelCase : Optional[Any] = False
__UpperCamelCase : Union[str, Any] = False
__UpperCamelCase : Any = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = TimmBackboneModelTester(self )
UpperCamelCase : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = '''resnet18'''
UpperCamelCase : List[Any] = '''microsoft/resnet-18'''
UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,) )
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] )
UpperCamelCase : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] )
UpperCamelCase : str = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] )
self.assertEqual(timm_model.out_indices , transformers_model.out_indices )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
@unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone initialization is managed on the timm side''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''model weights aren\'t tied in TimmBackbone.''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''model weights aren\'t tied in TimmBackbone.''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''Safetensors is not supported by timm.''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def _lowercase ( self ):
"""simple docstring"""
pass
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : Tuple = [*signature.parameters.keys()]
UpperCamelCase : List[str] = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Dict = True
UpperCamelCase : Optional[int] = self.has_attentions
# no need to test all models as different heads yield the same functionality
UpperCamelCase : Optional[Any] = self.all_model_classes[0]
UpperCamelCase : Tuple = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
UpperCamelCase : str = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = outputs[0][-1]
# Encoder-/Decoder-only models
UpperCamelCase : List[Any] = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
UpperCamelCase : Union[str, Any] = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(hidden_states.grad )
if self.has_attentions:
self.assertIsNotNone(attentions.grad )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : List[Any] = model(**__SCREAMING_SNAKE_CASE )
self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) )
self.assertEqual(len(model.channels ) , len(config.out_indices ) )
# Check output of last stage is taken if out_features=None, out_indices=None
UpperCamelCase : Optional[int] = copy.deepcopy(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = None
UpperCamelCase : Dict = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : Optional[int] = model(**__SCREAMING_SNAKE_CASE )
self.assertEqual(len(result.feature_maps ) , 1 )
self.assertEqual(len(model.channels ) , 1 )
# Check backbone can be initialized with fresh weights
UpperCamelCase : int = copy.deepcopy(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = False
UpperCamelCase : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE )
| 714
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
'''simple docstring'''
__UpperCamelCase : Any = XGLMConfig
__UpperCamelCase : Dict = {}
__UpperCamelCase : List[str] = "gelu"
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ):
"""simple docstring"""
UpperCamelCase : Any = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : str = seq_length
UpperCamelCase : List[str] = is_training
UpperCamelCase : Tuple = use_input_mask
UpperCamelCase : Union[str, Any] = use_labels
UpperCamelCase : int = vocab_size
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Any = num_hidden_layers
UpperCamelCase : List[str] = num_attention_heads
UpperCamelCase : Optional[Any] = ffn_dim
UpperCamelCase : Optional[int] = activation_function
UpperCamelCase : List[str] = activation_dropout
UpperCamelCase : Any = attention_dropout
UpperCamelCase : str = max_position_embeddings
UpperCamelCase : Union[str, Any] = initializer_range
UpperCamelCase : int = None
UpperCamelCase : Dict = 0
UpperCamelCase : int = 2
UpperCamelCase : Any = 1
def _lowercase ( self ):
"""simple docstring"""
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCamelCase : int = None
if self.use_input_mask:
UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Tuple = self.get_config()
UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self ):
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Dict = config_and_inputs
UpperCamelCase : List[str] = {
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCamelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : List[Any] = False
__UpperCamelCase : List[Any] = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = TFXGLMModelTester(self )
UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def _lowercase ( self ):
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
@slow
def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
UpperCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] )
UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = (
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : Tuple = '''left'''
# use different length sentences to test batching
UpperCamelCase : Any = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = inputs['''input_ids''']
UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 )
UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 )
UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
| 643
| 0
|
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=_a)
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : str = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True})
__UpperCamelCase : ClassVar[Features] = Features({"image": Image()})
__UpperCamelCase : ClassVar[Features] = Features({"labels": ClassLabel})
__UpperCamelCase : str = "image"
__UpperCamelCase : str = "labels"
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , __SCREAMING_SNAKE_CASE ):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" )
UpperCamelCase : str = copy.deepcopy(self )
UpperCamelCase : Optional[Any] = self.label_schema.copy()
UpperCamelCase : Union[str, Any] = features[self.label_column]
UpperCamelCase : Union[str, Any] = label_schema
return task_template
@property
def _lowercase ( self ):
"""simple docstring"""
return {
self.image_column: "image",
self.label_column: "labels",
}
| 715
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : int = logging.get_logger(__name__)
__UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
__UpperCAmelCase : str = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
__UpperCAmelCase : Union[str, Any] = {
"facebook/mbart-large-en-ro": 1024,
"facebook/mbart-large-cc25": 1024,
}
# fmt: off
__UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
__UpperCamelCase : Any = MBartTokenizer
__UpperCamelCase : List[int] = []
__UpperCamelCase : List[int] = []
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Dict = vocab_file
UpperCamelCase : List[str] = False if not self.vocab_file else True
UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
UpperCamelCase : List[Any] = {
lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX'''
UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang )
UpperCamelCase : str = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _lowercase ( self ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : str = [self.sep_token_id]
UpperCamelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
UpperCamelCase : List[str] = src_lang
UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = tgt_lang_id
return inputs
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = src_lang
UpperCamelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _lowercase ( self ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = []
UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code]
UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens )
UpperCamelCase : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = []
UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
UpperCamelCase : Optional[int] = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
UpperCamelCase : Optional[int] = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 643
| 0
|
import unittest
from transformers import (
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TextClassificationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow
from .test_pipelines_common import ANY
# These 2 model types require different inputs than those of the usual text models.
__UpperCAmelCase : Union[str, Any] = {"LayoutLMv2Config", "LayoutLMv3Config"}
@is_pipeline_test
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
__UpperCamelCase : Optional[Any] = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if model_mapping is not None:
__UpperCamelCase : Tuple = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP}
if tf_model_mapping is not None:
__UpperCamelCase : List[str] = {
config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP
}
@require_torch
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' )
UpperCamelCase : Optional[int] = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
UpperCamelCase : Optional[int] = text_classifier('''This is great !''' , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] )
UpperCamelCase : List[Any] = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
] , )
UpperCamelCase : Optional[Any] = text_classifier('''This is great !''' , top_k=1 )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
# Legacy behavior
UpperCamelCase : List[str] = text_classifier('''This is great !''' , return_all_scores=__SCREAMING_SNAKE_CASE )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
UpperCamelCase : int = text_classifier('''This is great !''' , return_all_scores=__SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] )
UpperCamelCase : str = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}],
] , )
UpperCamelCase : List[str] = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [
{'''label''': '''LABEL_0''', '''score''': 0.504},
{'''label''': '''LABEL_0''', '''score''': 0.504},
] , )
@require_torch
def _lowercase ( self ):
"""simple docstring"""
import torch
UpperCamelCase : Optional[int] = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , )
UpperCamelCase : List[Any] = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
@require_tf
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = pipeline(
task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' )
UpperCamelCase : Optional[int] = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] )
@slow
@require_torch
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = pipeline('''text-classification''' )
UpperCamelCase : Tuple = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
UpperCamelCase : int = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
UpperCamelCase : Tuple = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] )
@slow
@require_tf
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = pipeline('''text-classification''' , framework='''tf''' )
UpperCamelCase : Union[str, Any] = text_classifier('''This is great !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] )
UpperCamelCase : Optional[int] = text_classifier('''This is bad !''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] )
UpperCamelCase : int = text_classifier('''Birds are a type of animal''' )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Dict = TextClassificationPipeline(model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE )
return text_classifier, ["HuggingFace is in", "This is another test"]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = text_classifier.model
# Small inputs because BartTokenizer tiny has maximum position embeddings = 22
UpperCamelCase : Tuple = '''HuggingFace is in'''
UpperCamelCase : Tuple = text_classifier(__SCREAMING_SNAKE_CASE )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )}] )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
UpperCamelCase : int = ['''HuggingFace is in ''', '''Paris is in France''']
UpperCamelCase : Any = text_classifier(__SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )}, {'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() )
# Forcing to get all results with `top_k=None`
# This is NOT the legacy format
UpperCamelCase : int = text_classifier(__SCREAMING_SNAKE_CASE , top_k=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = len(model.config.idalabel.values() )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [[{'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )}] * N, [{'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )}] * N] , )
UpperCamelCase : Tuple = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''}
UpperCamelCase : Union[str, Any] = text_classifier(__SCREAMING_SNAKE_CASE )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , {'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )} , )
self.assertTrue(outputs['''label'''] in model.config.idalabel.values() )
# This might be used a text pair, but tokenizer + pipe interaction
# makes it hard to understand that it's not using the pair properly
# https://github.com/huggingface/transformers/issues/17305
# We disabled this usage instead as it was outputting wrong outputs.
UpperCamelCase : str = [['''HuggingFace is in ''', '''Paris is in France''']]
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
text_classifier(__SCREAMING_SNAKE_CASE )
# This used to be valid for doing text pairs
# We're keeping it working because of backward compatibility
UpperCamelCase : str = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'''label''': ANY(__SCREAMING_SNAKE_CASE ), '''score''': ANY(__SCREAMING_SNAKE_CASE )}] , )
self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
| 716
|
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
__UpperCAmelCase : Dict = False
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCamelCase : str = torch.manual_seed(0 )
UpperCamelCase : Union[str, Any] = pipe(
image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 643
| 0
|
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
return x if y == 0 else greatest_common_divisor(SCREAMING_SNAKE_CASE_ , x % y )
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
return (x * y) // greatest_common_divisor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def a ( SCREAMING_SNAKE_CASE_ : int = 2_0 ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = 1
for i in range(1 , n + 1 ):
UpperCamelCase : int = lcm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return g
if __name__ == "__main__":
print(f'''{solution() = }''')
| 717
|
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
__UpperCAmelCase : Dict = logging.get_logger(__name__)
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Any = ["input_features"]
def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[str] = n_fft
UpperCamelCase : Dict = hop_length
UpperCamelCase : Dict = chunk_length
UpperCamelCase : List[str] = chunk_length * sampling_rate
UpperCamelCase : Dict = self.n_samples // hop_length
UpperCamelCase : str = sampling_rate
UpperCamelCase : Union[str, Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[str] = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , )
UpperCamelCase : int = log_spec[:, :-1]
UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 )
UpperCamelCase : Any = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ):
"""simple docstring"""
if attention_mask is not None:
UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa )
UpperCamelCase : Optional[Any] = []
for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ):
UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
UpperCamelCase : Optional[int] = padding_value
normed_input_values.append(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
UpperCamelCase : Union[str, Any] = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T]
UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} )
# convert into correct format for padding
UpperCamelCase : Optional[Any] = self.pad(
__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm(
padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , )
UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 )
# make sure list is in array format
UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 )
UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]]
if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features]
else:
UpperCamelCase : Dict = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length]
if return_tensors is not None:
UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE )
return padded_inputs
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ )
UpperCamelCase : List[str] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 643
| 0
|
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
__UpperCAmelCase : Any = datasets.utils.logging.get_logger(__name__)
@dataclass
class UpperCAmelCase_ ( datasets.BuilderConfig):
'''simple docstring'''
__UpperCamelCase : int = 10000
__UpperCamelCase : Optional[List[str]] = None
__UpperCamelCase : Optional[datasets.Features] = None
class UpperCAmelCase_ ( datasets.ArrowBasedBuilder):
'''simple docstring'''
__UpperCamelCase : str = ParquetConfig
def _lowercase ( self ):
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
a_ : Optional[Any] = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__SCREAMING_SNAKE_CASE , (str, list, tuple) ):
a_ : Tuple = data_files
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
a_ : Optional[int] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
a_ : Union[str, Any] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
a_ : int = []
for split_name, files in data_files.items():
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
a_ : Any = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
a_ : List[str] = [dl_manager.iter_files(__SCREAMING_SNAKE_CASE ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f:
a_ : Optional[Any] = datasets.Features.from_arrow_schema(pq.read_schema(__SCREAMING_SNAKE_CASE ) )
break
splits.append(datasets.SplitGenerator(name=__SCREAMING_SNAKE_CASE , gen_kwargs={'''files''': files} ) )
return splits
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
a_ : List[Any] = table_cast(__SCREAMING_SNAKE_CASE , self.info.features.arrow_schema )
return pa_table
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
a_ : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(__SCREAMING_SNAKE_CASE ) ):
with open(__SCREAMING_SNAKE_CASE , '''rb''' ) as f:
a_ : List[Any] = pq.ParquetFile(__SCREAMING_SNAKE_CASE )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
a_ : int = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"""{file_idx}_{batch_idx}""", self._cast_table(__SCREAMING_SNAKE_CASE )
except ValueError as e:
logger.error(f"""Failed to read file '{file}' with error {type(__SCREAMING_SNAKE_CASE )}: {e}""" )
raise
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
__UpperCAmelCase : Dict = logging.get_logger(__name__)
__UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__UpperCAmelCase : Dict = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
__UpperCAmelCase : Tuple = {
"junnyu/roformer_chinese_small": 1536,
"junnyu/roformer_chinese_base": 1536,
"junnyu/roformer_chinese_char_small": 512,
"junnyu/roformer_chinese_char_base": 512,
"junnyu/roformer_small_discriminator": 128,
"junnyu/roformer_small_generator": 128,
}
__UpperCAmelCase : Any = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : str = VOCAB_FILES_NAMES
__UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase : Any = RoFormerTokenizer
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(
__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case
or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents
):
UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) )
UpperCamelCase : Optional[int] = do_lower_case
UpperCamelCase : Optional[Any] = strip_accents
UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = do_lower_case
def __getstate__( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.__dict__.copy()
UpperCamelCase : Any = BertPreTokenizer()
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = d
UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab()
UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE )
return tuple(__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Any = BertPreTokenizer()
return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 643
| 0
|
import enum
import shutil
import sys
__UpperCAmelCase : Union[str, Any] = shutil.get_terminal_size()
__UpperCAmelCase : Tuple = {"UP": "A", "DOWN": "B", "RIGHT": "C", "LEFT": "D"}
class UpperCAmelCase_ ( enum.Enum):
'''simple docstring'''
__UpperCamelCase : List[Any] = 0
__UpperCamelCase : Tuple = 1
def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any]="" ):
"""simple docstring"""
sys.stdout.write(str(SCREAMING_SNAKE_CASE_ ) + end )
sys.stdout.flush()
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int="" ):
"""simple docstring"""
forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , SCREAMING_SNAKE_CASE_ )
def a ( ):
"""simple docstring"""
forceWrite('''\r''' )
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" )
def a ( ):
"""simple docstring"""
forceWrite(''' ''' * TERMINAL_WIDTH )
reset_cursor()
def a ( ):
"""simple docstring"""
reset_cursor()
forceWrite('''-''' * TERMINAL_WIDTH )
| 719
|
from __future__ import annotations
def a ( SCREAMING_SNAKE_CASE_ : list[int] ):
"""simple docstring"""
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return array
UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )
# Compute the variables
UpperCamelCase : Union[str, Any] = _max - _min + 1
UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
UpperCamelCase : Optional[int] = i - _min
UpperCamelCase : Any = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
UpperCamelCase : str = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
while holes_repeat[i] > 0:
UpperCamelCase : List[Any] = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase : Any = input("Enter numbers separated by comma:\n")
__UpperCAmelCase : int = [int(x) for x in user_input.split(",")]
print(pigeon_sort(unsorted))
| 643
| 0
|
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase_ ( _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : Optional[int] = True
__UpperCamelCase : Optional[int] = DebertaTokenizerFast
def _lowercase ( self ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''}
UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = '''lower newer'''
UpperCamelCase : Union[str, Any] = '''lower newer'''
return input_text, output_text
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.get_tokenizer()
UpperCamelCase : int = '''lower newer'''
UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token]
UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.get_tokenizer()
UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' )
UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCamelCase : str = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']]
# fmt: off
UpperCamelCase : int = {
'''input_ids''': [
[1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
UpperCamelCase : List[str] = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE )
for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 720
|
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
__UpperCAmelCase : List[Any] = True
except ImportError:
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def a ( SCREAMING_SNAKE_CASE_ : Namespace ):
"""simple docstring"""
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
@staticmethod
def _lowercase ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' )
add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' )
add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' )
add_new_model_parser.add_argument(
'''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' )
add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE )
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = testing
UpperCamelCase : Any = testing_file
UpperCamelCase : Dict = path
def _lowercase ( self ):
"""simple docstring"""
warnings.warn(
'''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. '''
'''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality '''
'''checks, you should use `transformers-cli add-new-model-like` instead.''' )
if not _has_cookiecutter:
raise ImportError(
'''Model creation dependencies are required to use the `add_new_model` command. Install them by running '''
'''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]]
if len(__SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(
'''Several directories starting with `cookiecutter-template-` in current working directory. '''
'''Please clean your directory by removing all folders starting with `cookiecutter-template-` or '''
'''change your working directory.''' )
UpperCamelCase : Dict = (
Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model'''
# Execute cookiecutter
if not self._testing:
cookiecutter(str(__SCREAMING_SNAKE_CASE ) )
else:
with open(self._testing_file , '''r''' ) as configuration_file:
UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0]
# Retrieve configuration
with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file:
UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = configuration['''lowercase_modelname''']
UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax''']
os.remove(f"""{directory}/configuration.json""" )
UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"""
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE )
# Tests require submodules as they have parent imports
with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ):
pass
shutil.move(
f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , )
shutil.move(
f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , )
def remove_copy_lines(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
UpperCamelCase : Any = f.readlines()
with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(__SCREAMING_SNAKE_CASE )
if output_pytorch:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" )
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" )
if output_flax:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , )
shutil.move(
f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Create temp file
UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp()
UpperCamelCase : Tuple = False
with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file:
with open(__SCREAMING_SNAKE_CASE ) as old_file:
for line in old_file:
new_file.write(__SCREAMING_SNAKE_CASE )
if line_to_copy_below in line:
UpperCamelCase : Optional[int] = True
for line_to_copy in lines_to_copy:
new_file.write(__SCREAMING_SNAKE_CASE )
if not line_found:
raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" )
# Copy the file permissions from the old file to the new file
copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Remove original file
remove(__SCREAMING_SNAKE_CASE )
# Move new file
move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def skip_units(__SCREAMING_SNAKE_CASE ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE ) as datafile:
UpperCamelCase : int = []
UpperCamelCase : Dict = False
UpperCamelCase : List[Any] = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
UpperCamelCase : Dict = line.split('''"''' )[1]
UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE )
elif "# Below: " in line and "##" not in line:
UpperCamelCase : Dict = line.split('''"''' )[1]
UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = []
elif "# Replace with" in line and "##" not in line:
UpperCamelCase : Tuple = []
elif "##" not in line:
lines_to_copy.append(__SCREAMING_SNAKE_CASE )
remove(__SCREAMING_SNAKE_CASE )
replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" )
os.rmdir(__SCREAMING_SNAKE_CASE )
| 643
| 0
|
from __future__ import annotations
def a ( SCREAMING_SNAKE_CASE_ : list[float] ):
"""simple docstring"""
UpperCamelCase : Tuple = 0.00
UpperCamelCase : Any = 0
for resistor in resistors:
if resistor <= 0:
UpperCamelCase : List[Any] = F"""Resistor at index {index} has a negative or zero value!"""
raise ValueError(SCREAMING_SNAKE_CASE_ )
first_sum += 1 / float(SCREAMING_SNAKE_CASE_ )
index += 1
return 1 / first_sum
def a ( SCREAMING_SNAKE_CASE_ : list[float] ):
"""simple docstring"""
UpperCamelCase : Dict = 0.00
UpperCamelCase : Dict = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
UpperCamelCase : Optional[Any] = F"""Resistor at index {index} has a negative value!"""
raise ValueError(SCREAMING_SNAKE_CASE_ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721
|
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) )
if __name__ == "__main__":
# read original image
__UpperCAmelCase : Tuple = cva.imread(
str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg")
)
# turn image in gray scale value
__UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
__UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape
# set different points to rotate image
__UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
__UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
__UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
__UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
__UpperCAmelCase : Union[str, Any] = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
__UpperCAmelCase : List[str] = plt.figure(1)
__UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, "gray")
plt.title(titles[i])
plt.axis("off")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 643
| 0
|
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
__UpperCAmelCase : Optional[int] = datasets.logging.get_logger(__name__)
__UpperCAmelCase : List[str] = "\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n"
__UpperCAmelCase : Any = "\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project's README at https://github.com/google-research/bleurt#readme for more information.\n"
__UpperCAmelCase : List[Any] = "\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n 'scores': List of scores.\nExamples:\n\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> bleurt = datasets.load_metric(\"bleurt\")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [1.03, 1.04]\n"
__UpperCAmelCase : Dict = {
"bleurt-tiny-128": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip",
"bleurt-tiny-512": "https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip",
"bleurt-base-128": "https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip",
"bleurt-base-512": "https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip",
"bleurt-large-128": "https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip",
"bleurt-large-512": "https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip",
"BLEURT-20-D3": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip",
"BLEURT-20-D6": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip",
"BLEURT-20-D12": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip",
"BLEURT-20": "https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class UpperCAmelCase_ ( datasets.Metric):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.config_name == "default":
logger.warning(
'''Using default BLEURT-Base checkpoint for sequence maximum length 128. '''
'''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' )
UpperCamelCase : int = '''bleurt-base-128'''
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCamelCase : Optional[Any] = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCamelCase : Optional[int] = self.config_name.upper()
else:
raise KeyError(
f"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCamelCase : Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCamelCase : Optional[Any] = score.BleurtScorer(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = self.scorer.score(references=__SCREAMING_SNAKE_CASE , candidates=__SCREAMING_SNAKE_CASE )
return {"scores": scores}
| 700
|
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCAmelCase : List[str] = {
"microsoft/conditional-detr-resnet-50": (
"https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"
),
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[int] = "conditional_detr"
__UpperCamelCase : Optional[Any] = ["past_key_values"]
__UpperCamelCase : Union[str, Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=300 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=6 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=256 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="sine" , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.25 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
UpperCamelCase : str = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : Tuple = backbone_config.get('''model_type''' )
UpperCamelCase : Optional[Any] = CONFIG_MAPPING[backbone_model_type]
UpperCamelCase : Any = config_class.from_dict(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = use_timm_backbone
UpperCamelCase : int = backbone_config
UpperCamelCase : Any = num_channels
UpperCamelCase : Optional[Any] = num_queries
UpperCamelCase : Tuple = d_model
UpperCamelCase : Optional[Any] = encoder_ffn_dim
UpperCamelCase : Optional[int] = encoder_layers
UpperCamelCase : Union[str, Any] = encoder_attention_heads
UpperCamelCase : Optional[Any] = decoder_ffn_dim
UpperCamelCase : Optional[int] = decoder_layers
UpperCamelCase : Optional[Any] = decoder_attention_heads
UpperCamelCase : Any = dropout
UpperCamelCase : List[Any] = attention_dropout
UpperCamelCase : List[Any] = activation_dropout
UpperCamelCase : List[str] = activation_function
UpperCamelCase : Optional[int] = init_std
UpperCamelCase : Optional[Any] = init_xavier_std
UpperCamelCase : Union[str, Any] = encoder_layerdrop
UpperCamelCase : Optional[Any] = decoder_layerdrop
UpperCamelCase : Tuple = encoder_layers
UpperCamelCase : Optional[Any] = auxiliary_loss
UpperCamelCase : Union[str, Any] = position_embedding_type
UpperCamelCase : Optional[int] = backbone
UpperCamelCase : Dict = use_pretrained_backbone
UpperCamelCase : Tuple = dilation
# Hungarian matcher
UpperCamelCase : Union[str, Any] = class_cost
UpperCamelCase : List[Any] = bbox_cost
UpperCamelCase : Optional[Any] = giou_cost
# Loss coefficients
UpperCamelCase : Optional[Any] = mask_loss_coefficient
UpperCamelCase : Optional[int] = dice_loss_coefficient
UpperCamelCase : Optional[Any] = cls_loss_coefficient
UpperCamelCase : Optional[int] = bbox_loss_coefficient
UpperCamelCase : Optional[int] = giou_loss_coefficient
UpperCamelCase : Optional[int] = focal_alpha
super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def _lowercase ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def _lowercase ( self ):
"""simple docstring"""
return self.d_model
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
UpperCamelCase : List[Any] = self.backbone_config.to_dict()
UpperCamelCase : List[Any] = self.__class__.model_type
return output
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Dict = version.parse("1.11")
@property
def _lowercase ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
('''pixel_mask''', {0: '''batch'''}),
] )
@property
def _lowercase ( self ):
"""simple docstring"""
return 1e-5
@property
def _lowercase ( self ):
"""simple docstring"""
return 12
| 643
| 0
|
from numpy import exp, pi, sqrt
def a ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : float = 0.0 , SCREAMING_SNAKE_CASE_ : float = 1.0 ):
"""simple docstring"""
return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701
|
import requests
from bsa import BeautifulSoup
def a ( SCREAMING_SNAKE_CASE_ : str = "AAPL" ):
"""simple docstring"""
UpperCamelCase : Dict = F"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}"""
UpperCamelCase : Any = BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE_ ).text , '''html.parser''' )
UpperCamelCase : Dict = '''My(6px) Pos(r) smartphone_Mt(6px)'''
return soup.find('''div''' , class_=class_ ).find('''span''' ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
| 643
| 0
|
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__UpperCAmelCase : List[str] = logging.getLogger(__name__)
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
UpperCamelCase : int = self.layer[current_layer](__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , head_mask[current_layer] )
UpperCamelCase : List[str] = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.", _a, )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = BertEncoderWithPabee(__SCREAMING_SNAKE_CASE )
self.init_weights()
UpperCamelCase : Optional[Any] = 0
UpperCamelCase : Optional[Any] = 0
UpperCamelCase : List[Any] = 0
UpperCamelCase : List[str] = 0
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = threshold
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = patience
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = 0
UpperCamelCase : Dict = 0
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = self.inference_layers_num / self.inference_instances_num
UpperCamelCase : Any = (
f"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="""
f""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"""
)
print(__SCREAMING_SNAKE_CASE )
@add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , ):
"""simple docstring"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' )
elif input_ids is not None:
UpperCamelCase : List[str] = input_ids.size()
elif inputs_embeds is not None:
UpperCamelCase : str = inputs_embeds.size()[:-1]
else:
raise ValueError('''You have to specify either input_ids or inputs_embeds''' )
UpperCamelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
UpperCamelCase : Union[str, Any] = torch.ones(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE )
if token_type_ids is None:
UpperCamelCase : Any = torch.zeros(__SCREAMING_SNAKE_CASE , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
UpperCamelCase : torch.Tensor = self.get_extended_attention_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
UpperCamelCase : Union[str, Any] = encoder_hidden_states.size()
UpperCamelCase : List[Any] = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
UpperCamelCase : Any = torch.ones(__SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = self.invert_attention_mask(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Any = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
UpperCamelCase : List[Any] = self.get_head_mask(__SCREAMING_SNAKE_CASE , self.config.num_hidden_layers )
UpperCamelCase : int = self.embeddings(
input_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = embedding_output
if self.training:
UpperCamelCase : Any = []
for i in range(self.config.num_hidden_layers ):
UpperCamelCase : Dict = self.encoder.adaptive_forward(
__SCREAMING_SNAKE_CASE , current_layer=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = self.pooler(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = output_layers[i](output_dropout(__SCREAMING_SNAKE_CASE ) )
res.append(__SCREAMING_SNAKE_CASE )
elif self.patience == 0: # Use all layers for inference
UpperCamelCase : int = self.encoder(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Dict = self.pooler(encoder_outputs[0] )
UpperCamelCase : Optional[Any] = [output_layers[self.config.num_hidden_layers - 1](__SCREAMING_SNAKE_CASE )]
else:
UpperCamelCase : Optional[Any] = 0
UpperCamelCase : Optional[int] = None
UpperCamelCase : int = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
UpperCamelCase : Optional[int] = self.encoder.adaptive_forward(
__SCREAMING_SNAKE_CASE , current_layer=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = self.pooler(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = output_layers[i](__SCREAMING_SNAKE_CASE )
if regression:
UpperCamelCase : Optional[Any] = logits.detach()
if patient_result is not None:
UpperCamelCase : Dict = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
UpperCamelCase : Optional[int] = 0
else:
UpperCamelCase : int = logits.detach().argmax(dim=1 )
if patient_result is not None:
UpperCamelCase : List[Any] = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(__SCREAMING_SNAKE_CASE ) ):
patient_counter += 1
else:
UpperCamelCase : str = 0
UpperCamelCase : int = logits
if patient_counter == self.patience:
break
UpperCamelCase : Tuple = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ", _a, )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = config.num_labels
UpperCamelCase : List[Any] = BertModelWithPabee(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = nn.Dropout(config.hidden_dropout_prob )
UpperCamelCase : Optional[int] = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , ):
"""simple docstring"""
UpperCamelCase : Tuple = self.bert(
input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
UpperCamelCase : Any = (logits[-1],)
if labels is not None:
UpperCamelCase : Dict = None
UpperCamelCase : int = 0
for ix, logits_item in enumerate(__SCREAMING_SNAKE_CASE ):
if self.num_labels == 1:
# We are doing regression
UpperCamelCase : Any = MSELoss()
UpperCamelCase : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
UpperCamelCase : List[Any] = CrossEntropyLoss()
UpperCamelCase : int = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
UpperCamelCase : Any = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
UpperCamelCase : List[str] = (total_loss / total_weights,) + outputs
return outputs
| 702
|
def a ( SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCamelCase : List[str] = len(bin(SCREAMING_SNAKE_CASE_ )[3:] )
UpperCamelCase : List[str] = bin(abs(SCREAMING_SNAKE_CASE_ ) - (1 << binary_number_length) )[3:]
UpperCamelCase : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE_ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 643
| 0
|
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = {}
def _lowercase ( self ):
"""simple docstring"""
print(self.vertex )
for i in self.vertex:
print(__SCREAMING_SNAKE_CASE , ''' -> ''' , ''' -> '''.join([str(__SCREAMING_SNAKE_CASE ) for j in self.vertex[i]] ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if from_vertex in self.vertex:
self.vertex[from_vertex].append(__SCREAMING_SNAKE_CASE )
else:
# else make a new vertex
UpperCamelCase : int = [to_vertex]
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = True
print(__SCREAMING_SNAKE_CASE , end=''' ''' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__UpperCAmelCase : Dict = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("DFS:")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 703
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase : str = logging.get_logger(__name__)
__UpperCAmelCase : Dict = {
"hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json",
# See all YOLOS models at https://huggingface.co/models?filter=yolos
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[int] = "yolos"
def __init__( self , __SCREAMING_SNAKE_CASE=768 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=3_072 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=[512, 864] , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.1 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = hidden_size
UpperCamelCase : List[Any] = num_hidden_layers
UpperCamelCase : int = num_attention_heads
UpperCamelCase : Dict = intermediate_size
UpperCamelCase : Dict = hidden_act
UpperCamelCase : int = hidden_dropout_prob
UpperCamelCase : Any = attention_probs_dropout_prob
UpperCamelCase : Optional[Any] = initializer_range
UpperCamelCase : List[Any] = layer_norm_eps
UpperCamelCase : int = image_size
UpperCamelCase : Any = patch_size
UpperCamelCase : str = num_channels
UpperCamelCase : str = qkv_bias
UpperCamelCase : Tuple = num_detection_tokens
UpperCamelCase : List[Any] = use_mid_position_embeddings
UpperCamelCase : Dict = auxiliary_loss
# Hungarian matcher
UpperCamelCase : Optional[Any] = class_cost
UpperCamelCase : Union[str, Any] = bbox_cost
UpperCamelCase : Any = giou_cost
# Loss coefficients
UpperCamelCase : List[Any] = bbox_loss_coefficient
UpperCamelCase : Union[str, Any] = giou_loss_coefficient
UpperCamelCase : Dict = eos_coefficient
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : List[str] = version.parse("1.11")
@property
def _lowercase ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _lowercase ( self ):
"""simple docstring"""
return 1e-4
@property
def _lowercase ( self ):
"""simple docstring"""
return 12
| 643
| 0
|
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
UpperCamelCase : Union[str, Any] = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = '''sshleifer/tiny-gpt2'''
UpperCamelCase : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Optional[int] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = '''sgugger/tiny-distilbert-classification'''
UpperCamelCase : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , only_pretrain_model=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = '''sshleifer/tiny-gpt2'''
UpperCamelCase : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , torchscript=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = '''sshleifer/tiny-gpt2'''
UpperCamelCase : str = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , fpaa=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[str] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = '''sshleifer/tiny-gpt2'''
UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
# set architectures equal to `None`
UpperCamelCase : Optional[int] = None
UpperCamelCase : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : str = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] )
UpperCamelCase : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = '''sshleifer/tiny-gpt2'''
UpperCamelCase : List[str] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : str = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == '''cpu''' , '''Can\'t do half precision''' )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = '''sshleifer/tiny-gpt2'''
UpperCamelCase : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__SCREAMING_SNAKE_CASE , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Optional[Any] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = '''sshleifer/tiny-gpt2'''
UpperCamelCase : str = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : int = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] )
UpperCamelCase : Tuple = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = '''sshleifer/tinier_bart'''
UpperCamelCase : List[Any] = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] )
UpperCamelCase : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = '''sshleifer/tiny-gpt2'''
UpperCamelCase : Any = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Tuple = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] )
UpperCamelCase : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = '''sshleifer/tinier_bart'''
UpperCamelCase : Any = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Optional[Any] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE , configs=[config] )
UpperCamelCase : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , save_to_csv=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , '''inf_time.csv''' ) , train_memory_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , '''train_mem.csv''' ) , inference_memory_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , '''inf_mem.csv''' ) , train_time_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , '''train_time.csv''' ) , env_info_csv_file=os.path.join(__SCREAMING_SNAKE_CASE , '''env.csv''' ) , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Tuple = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
benchmark.run()
self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , '''train_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , '''train_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , '''env.csv''' ) ).exists() )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(__SCREAMING_SNAKE_CASE ):
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''sequential''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''cumulative''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''current''' ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase : Any = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__SCREAMING_SNAKE_CASE , inference=__SCREAMING_SNAKE_CASE , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__SCREAMING_SNAKE_CASE , '''log.txt''' ) , log_print=__SCREAMING_SNAKE_CASE , trace_memory_line_by_line=__SCREAMING_SNAKE_CASE , multi_process=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = PyTorchBenchmark(__SCREAMING_SNAKE_CASE )
UpperCamelCase : str = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(__SCREAMING_SNAKE_CASE , '''log.txt''' ) ).exists() )
| 704
|
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
UpperCamelCase : int = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b"
UpperCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:]
UpperCamelCase : Tuple = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) )
return "0b" + "".join(
str(int('''1''' in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 643
| 0
|
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__UpperCAmelCase : Tuple = logging.get_logger(__name__)
__UpperCAmelCase : Dict = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ):
"""simple docstring"""
for attribute in key.split('''.''' ):
UpperCamelCase : Any = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if weight_type is not None:
UpperCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape
else:
UpperCamelCase : Dict = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
UpperCamelCase : Optional[Any] = value
elif weight_type == "weight_g":
UpperCamelCase : int = value
elif weight_type == "weight_v":
UpperCamelCase : Tuple = value
elif weight_type == "bias":
UpperCamelCase : str = value
else:
UpperCamelCase : str = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
UpperCamelCase : Any = []
UpperCamelCase : Optional[int] = fairseq_model.state_dict()
UpperCamelCase : int = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
UpperCamelCase : Optional[int] = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == '''group''' , )
UpperCamelCase : Optional[int] = True
else:
for key, mapped_key in MAPPING.items():
UpperCamelCase : List[str] = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
UpperCamelCase : str = True
if "*" in mapped_key:
UpperCamelCase : Optional[Any] = name.split(SCREAMING_SNAKE_CASE_ )[0].split('''.''' )[-2]
UpperCamelCase : str = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE_ )
if "weight_g" in name:
UpperCamelCase : Optional[int] = '''weight_g'''
elif "weight_v" in name:
UpperCamelCase : Optional[int] = '''weight_v'''
elif "weight" in name:
UpperCamelCase : Tuple = '''weight'''
elif "bias" in name:
UpperCamelCase : Dict = '''bias'''
else:
UpperCamelCase : int = None
set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE_ )
logger.warning(F"""Unused weights: {unused_weights}""" )
def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ):
"""simple docstring"""
UpperCamelCase : int = full_name.split('''conv_layers.''' )[-1]
UpperCamelCase : Optional[int] = name.split('''.''' )
UpperCamelCase : Optional[int] = int(items[0] )
UpperCamelCase : Union[str, Any] = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
UpperCamelCase : Any = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
UpperCamelCase : List[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
UpperCamelCase : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
UpperCamelCase : Optional[int] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE_ )
def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = SEWConfig()
if is_finetuned:
UpperCamelCase : Any = model.wav_encoder.wav_model.cfg
else:
UpperCamelCase : List[str] = model.cfg
UpperCamelCase : str = fs_config.conv_bias
UpperCamelCase : Any = eval(fs_config.conv_feature_layers )
UpperCamelCase : Optional[int] = [x[0] for x in conv_layers]
UpperCamelCase : Optional[int] = [x[1] for x in conv_layers]
UpperCamelCase : str = [x[2] for x in conv_layers]
UpperCamelCase : Union[str, Any] = '''gelu'''
UpperCamelCase : int = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group'''
UpperCamelCase : Optional[Any] = 0.0
UpperCamelCase : Union[str, Any] = fs_config.activation_fn.name
UpperCamelCase : int = fs_config.encoder_embed_dim
UpperCamelCase : Union[str, Any] = 0.02
UpperCamelCase : Union[str, Any] = fs_config.encoder_ffn_embed_dim
UpperCamelCase : str = 1E-5
UpperCamelCase : int = fs_config.encoder_layerdrop
UpperCamelCase : List[str] = fs_config.encoder_attention_heads
UpperCamelCase : Union[str, Any] = fs_config.conv_pos_groups
UpperCamelCase : Union[str, Any] = fs_config.conv_pos
UpperCamelCase : Dict = len(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Tuple = fs_config.encoder_layers
UpperCamelCase : int = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
UpperCamelCase : List[Any] = model.cfg
UpperCamelCase : Optional[int] = fs_config.final_dropout
UpperCamelCase : Optional[Any] = fs_config.layerdrop
UpperCamelCase : Any = fs_config.activation_dropout
UpperCamelCase : Union[str, Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
UpperCamelCase : Tuple = fs_config.attention_dropout
UpperCamelCase : Optional[Any] = fs_config.dropout_input
UpperCamelCase : Optional[int] = fs_config.dropout
UpperCamelCase : List[str] = fs_config.mask_channel_length
UpperCamelCase : Union[str, Any] = fs_config.mask_channel_prob
UpperCamelCase : List[Any] = fs_config.mask_length
UpperCamelCase : List[str] = fs_config.mask_prob
UpperCamelCase : Any = '''Wav2Vec2FeatureExtractor'''
UpperCamelCase : List[str] = '''Wav2Vec2CTCTokenizer'''
return config
@torch.no_grad()
def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : str=True ):
"""simple docstring"""
if is_finetuned:
UpperCamelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
UpperCamelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] )
if config_path is not None:
UpperCamelCase : Union[str, Any] = SEWConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Dict = convert_config(model[0] , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Any = model[0].eval()
UpperCamelCase : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False
UpperCamelCase : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , )
if is_finetuned:
if dict_path:
UpperCamelCase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE_ )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
UpperCamelCase : List[Any] = target_dict.pad_index
UpperCamelCase : List[str] = target_dict.bos_index
UpperCamelCase : Optional[Any] = target_dict.pad_index
UpperCamelCase : List[Any] = target_dict.bos_index
UpperCamelCase : Optional[Any] = target_dict.eos_index
UpperCamelCase : List[Any] = len(target_dict.symbols )
UpperCamelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.json''' )
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(SCREAMING_SNAKE_CASE_ ) )
return
os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(target_dict.indices , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = WavaVecaCTCTokenizer(
SCREAMING_SNAKE_CASE_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=SCREAMING_SNAKE_CASE_ , )
UpperCamelCase : List[str] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = SEWForCTC(SCREAMING_SNAKE_CASE_ )
else:
UpperCamelCase : Any = SEWModel(SCREAMING_SNAKE_CASE_ )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ )
recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
__UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__UpperCAmelCase : List[str] = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| 705
|
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def a ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
"""simple docstring"""
UpperCamelCase : List[str] = k_size // 2
UpperCamelCase , UpperCamelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
UpperCamelCase : Dict = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE_ ) + square(SCREAMING_SNAKE_CASE_ )) / (2 * square(SCREAMING_SNAKE_CASE_ )) )
return g
def a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase , UpperCamelCase : Tuple = image.shape[0], image.shape[1]
# dst image height and width
UpperCamelCase : str = height - k_size + 1
UpperCamelCase : Optional[int] = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
UpperCamelCase : List[Any] = zeros((dst_height * dst_width, k_size * k_size) )
UpperCamelCase : Tuple = 0
for i, j in product(range(SCREAMING_SNAKE_CASE_ ) , range(SCREAMING_SNAKE_CASE_ ) ):
UpperCamelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] )
UpperCamelCase : Dict = window
row += 1
# turn the kernel into shape(k*k, 1)
UpperCamelCase : Optional[int] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE_ )
# reshape and get the dst image
UpperCamelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).astype(SCREAMING_SNAKE_CASE_ )
return dst
if __name__ == "__main__":
# read original image
__UpperCAmelCase : Union[str, Any] = imread(r"../image_data/lena.jpg")
# turn image in gray scale value
__UpperCAmelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
__UpperCAmelCase : Optional[int] = gaussian_filter(gray, 3, sigma=1)
__UpperCAmelCase : List[Any] = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow("gaussian filter with 3x3 mask", gaussianaxa)
imshow("gaussian filter with 5x5 mask", gaussianaxa)
waitKey()
| 643
| 0
|
'''simple docstring'''
import collections
import importlib.util
import os
import re
from pathlib import Path
__UpperCAmelCase : Any = "src/transformers"
# Matches is_xxx_available()
__UpperCAmelCase : List[Any] = re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
__UpperCAmelCase : List[str] = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
__UpperCAmelCase : Any = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
__UpperCAmelCase : List[str] = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
__UpperCAmelCase : Tuple = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
__UpperCAmelCase : Optional[int] = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
__UpperCAmelCase : str = re.compile("^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
__UpperCAmelCase : int = re.compile("^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
__UpperCAmelCase : Any = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
__UpperCAmelCase : List[str] = re.compile(r"^\s*try:")
# Catches a line with else:
__UpperCAmelCase : Any = re.compile(r"^\s*else:")
def a ( SCREAMING_SNAKE_CASE_ : List[str] ):
"""simple docstring"""
if _re_test_backend.search(SCREAMING_SNAKE_CASE_ ) is None:
return None
UpperCamelCase : Tuple = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE_ )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE_ )
def a ( SCREAMING_SNAKE_CASE_ : Dict ):
"""simple docstring"""
with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
UpperCamelCase : Any = f.readlines()
UpperCamelCase : Dict = 0
while line_index < len(SCREAMING_SNAKE_CASE_ ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE_ ):
return None
# First grab the objects without a specific backend in _import_structure
UpperCamelCase : List[Any] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
UpperCamelCase : Any = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : int = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE_ ).groups()[0]
UpperCamelCase : int = re.findall('''\[([^\]]+)\]''' , SCREAMING_SNAKE_CASE_ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
UpperCamelCase : Union[str, Any] = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE_ )
if single_line_import_search is not None:
UpperCamelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(SCREAMING_SNAKE_CASE_ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE_ )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
UpperCamelCase : int = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
UpperCamelCase : int = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCamelCase : List[str] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCamelCase : List[str] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
UpperCamelCase : Dict = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE_ ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ) is not None:
UpperCamelCase : List[Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' )
UpperCamelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE_ )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ) is not None:
UpperCamelCase : Optional[Any] = _re_between_brackets.search(SCREAMING_SNAKE_CASE_ ).groups()[0].split(''', ''' )
UpperCamelCase : List[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE_ ) > 0]
objects.extend(SCREAMING_SNAKE_CASE_ )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE_ ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE_ ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 1_2 + '''"''' ):
objects.append(line[1_3:-3] )
line_index += 1
UpperCamelCase : Any = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
UpperCamelCase : int = []
while (
line_index < len(SCREAMING_SNAKE_CASE_ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
UpperCamelCase : Union[str, Any] = lines[line_index]
UpperCamelCase : Union[str, Any] = _re_import.search(SCREAMING_SNAKE_CASE_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
UpperCamelCase : Optional[Any] = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE_ ):
# If the line is an if is_backend_available, we grab all objects associated.
UpperCamelCase : Dict = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
UpperCamelCase : str = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
UpperCamelCase : Union[str, Any] = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
UpperCamelCase : Union[str, Any] = lines[line_index]
UpperCamelCase : Optional[Any] = _re_import.search(SCREAMING_SNAKE_CASE_ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
UpperCamelCase : Any = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict ):
"""simple docstring"""
def find_duplicates(SCREAMING_SNAKE_CASE_ : List[Any] ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE_ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
UpperCamelCase : Union[str, Any] = []
for key in import_dict_objects.keys():
UpperCamelCase : Optional[int] = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
UpperCamelCase : List[str] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
UpperCamelCase : Optional[Any] = '''base imports''' if key == '''none''' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def a ( ):
"""simple docstring"""
UpperCamelCase : List[Any] = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE_ ):
if "__init__.py" in files:
UpperCamelCase : str = os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' )
UpperCamelCase : List[str] = parse_init(SCREAMING_SNAKE_CASE_ )
if objects is not None:
UpperCamelCase : Union[str, Any] = analyze_results(*SCREAMING_SNAKE_CASE_ )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : Union[str, Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise ValueError('''\n\n'''.join(SCREAMING_SNAKE_CASE_ ) )
def a ( ):
"""simple docstring"""
UpperCamelCase : List[Any] = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE_ ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(SCREAMING_SNAKE_CASE_ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE_ ) / folder).glob('''*.py''' ) ) ) == 0:
continue
UpperCamelCase : Tuple = str((Path(SCREAMING_SNAKE_CASE_ ) / folder).relative_to(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Optional[int] = short_path.replace(os.path.sep , '''.''' )
submodules.append(SCREAMING_SNAKE_CASE_ )
for fname in files:
if fname == "__init__.py":
continue
UpperCamelCase : List[str] = str((Path(SCREAMING_SNAKE_CASE_ ) / fname).relative_to(SCREAMING_SNAKE_CASE_ ) )
UpperCamelCase : Union[str, Any] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE_ )
return submodules
__UpperCAmelCase : Union[str, Any] = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
]
def a ( ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = importlib.util.spec_from_file_location(
'''transformers''' , os.path.join(SCREAMING_SNAKE_CASE_ , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
UpperCamelCase : Union[str, Any] = spec.loader.load_module()
UpperCamelCase : Dict = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE_ ) > 0:
UpperCamelCase : List[Any] = '''\n'''.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registered in the main init of Transformers:\n'''
F"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 706
|
from .imports import is_tqdm_available
if is_tqdm_available():
from tqdm.auto import tqdm as _tqdm
from ..state import PartialState
def a ( SCREAMING_SNAKE_CASE_ : bool = True , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ):
"""simple docstring"""
if not is_tqdm_available():
raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' )
UpperCamelCase : int = False
if main_process_only:
UpperCamelCase : int = PartialState().local_process_index == 0
return _tqdm(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , disable=SCREAMING_SNAKE_CASE_ )
| 643
| 0
|
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__UpperCAmelCase : Dict = logging.get_logger(__name__)
__UpperCAmelCase : Dict = {
"xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json",
"xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json",
"xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json",
"xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json",
"xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json",
"xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json",
"xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json",
"xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json",
"xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json",
"xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json",
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Tuple = "xlm"
__UpperCamelCase : List[Any] = {
"hidden_size": "emb_dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
"n_words": "vocab_size", # For backward compatibility
}
def __init__( self , __SCREAMING_SNAKE_CASE=30_145 , __SCREAMING_SNAKE_CASE=2_048 , __SCREAMING_SNAKE_CASE=12 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=2_048**-0.5 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="first" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : str = vocab_size
UpperCamelCase : int = emb_dim
UpperCamelCase : List[str] = n_layers
UpperCamelCase : Any = n_heads
UpperCamelCase : List[str] = dropout
UpperCamelCase : Optional[Any] = attention_dropout
UpperCamelCase : List[Any] = gelu_activation
UpperCamelCase : Optional[Any] = sinusoidal_embeddings
UpperCamelCase : Union[str, Any] = causal
UpperCamelCase : Tuple = asm
UpperCamelCase : Union[str, Any] = n_langs
UpperCamelCase : int = use_lang_emb
UpperCamelCase : int = layer_norm_eps
UpperCamelCase : str = bos_index
UpperCamelCase : List[str] = eos_index
UpperCamelCase : int = pad_index
UpperCamelCase : Optional[int] = unk_index
UpperCamelCase : Dict = mask_index
UpperCamelCase : int = is_encoder
UpperCamelCase : Any = max_position_embeddings
UpperCamelCase : Tuple = embed_init_std
UpperCamelCase : Optional[Any] = init_std
UpperCamelCase : Union[str, Any] = summary_type
UpperCamelCase : int = summary_use_proj
UpperCamelCase : Optional[int] = summary_activation
UpperCamelCase : Dict = summary_proj_to_labels
UpperCamelCase : Union[str, Any] = summary_first_dropout
UpperCamelCase : int = start_n_top
UpperCamelCase : Optional[int] = end_n_top
UpperCamelCase : Optional[Any] = mask_token_id
UpperCamelCase : Optional[Any] = lang_id
if "n_words" in kwargs:
UpperCamelCase : str = kwargs['''n_words''']
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
@property
def _lowercase ( self ):
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase : Dict = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
UpperCamelCase : Any = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 707
|
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase : Any = logging.get_logger(__name__)
__UpperCAmelCase : int = "▁"
__UpperCAmelCase : Tuple = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
__UpperCAmelCase : Dict = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
__UpperCAmelCase : Dict = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
__UpperCAmelCase : str = {
"ernie-m-base": 514,
"ernie-m-large": 514,
}
__UpperCAmelCase : Optional[int] = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : List[str] = ["input_ids"]
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : List[Any] = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : List[str] = RESOURCE_FILES_NAMES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="utf8" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , vocab_file=__SCREAMING_SNAKE_CASE , encoding=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[str] = do_lower_case
UpperCamelCase : Dict = sentencepiece_model_ckpt
UpperCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__SCREAMING_SNAKE_CASE )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCamelCase : Optional[Any] = self.load_vocab(filepath=__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : int = {self.sp_model.id_to_piece(__SCREAMING_SNAKE_CASE ): id for id in range(self.sp_model.get_piece_size() )}
UpperCamelCase : str = {v: k for k, v in self.vocab.items()}
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if text is None:
return None
UpperCamelCase : str = self.tokenize(__SCREAMING_SNAKE_CASE )
UpperCamelCase , UpperCamelCase : str = '''''', []
for i, ch in enumerate(__SCREAMING_SNAKE_CASE ):
if ch in self.SP_CHAR_MAPPING:
UpperCamelCase : Optional[int] = self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Optional[Any] = unicodedata.normalize('''NFKC''' , __SCREAMING_SNAKE_CASE )
if self.is_whitespace(__SCREAMING_SNAKE_CASE ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__SCREAMING_SNAKE_CASE ) )
UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = normalized_text, [], 0
if self.do_lower_case:
UpperCamelCase : Tuple = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCamelCase : Any = token[1:]
UpperCamelCase : Optional[int] = text[offset:].index(__SCREAMING_SNAKE_CASE ) + offset
UpperCamelCase : List[Any] = start + len(__SCREAMING_SNAKE_CASE )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCamelCase : str = end
return token_mapping
@property
def _lowercase ( self ):
"""simple docstring"""
return len(self.vocab )
def _lowercase ( self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = self.__dict__.copy()
UpperCamelCase : str = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCamelCase : Optional[int] = {}
UpperCamelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for c in text) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCamelCase : List[str] = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCamelCase : Any = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCamelCase : Tuple = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCamelCase : int = self.sp_model.EncodeAsPieces(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Optional[Any] = self.sp_model.SampleEncodeAsPieces(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = []
for pi, piece in enumerate(__SCREAMING_SNAKE_CASE ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__SCREAMING_SNAKE_CASE ) and pi != 0:
new_pieces.append(__SCREAMING_SNAKE_CASE )
continue
else:
continue
UpperCamelCase : Any = 0
for i, chunk in enumerate(__SCREAMING_SNAKE_CASE ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__SCREAMING_SNAKE_CASE ) or self.is_punct(__SCREAMING_SNAKE_CASE ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCamelCase : Union[str, Any] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCamelCase : Any = i
if len(__SCREAMING_SNAKE_CASE ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip()
return out_string
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip()
return out_string
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.reverse_vocab.get(__SCREAMING_SNAKE_CASE , self.unk_token )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCamelCase : Any = [self.cls_token_id]
UpperCamelCase : str = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__SCREAMING_SNAKE_CASE ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__SCREAMING_SNAKE_CASE ) + 1) + [1] * (len(__SCREAMING_SNAKE_CASE ) + 3)
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__SCREAMING_SNAKE_CASE ) == 1:
UpperCamelCase : Optional[int] = unicodedata.category(__SCREAMING_SNAKE_CASE )
if cat == "Zs":
return True
return False
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = {}
with io.open(__SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Tuple = line.rstrip('''\n''' )
UpperCamelCase : List[Any] = int(__SCREAMING_SNAKE_CASE )
return token_to_idx
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = 0
if os.path.isdir(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Dict = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCamelCase : Union[str, Any] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCamelCase : List[Any] = token_index
writer.write(token + '''\n''' )
index += 1
UpperCamelCase : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , '''sentencepiece.bpe.model''' )
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
UpperCamelCase : List[Any] = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (vocab_file,)
| 643
| 0
|
from math import pow, sqrt
def a ( *SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
UpperCamelCase : Tuple = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values )
return result
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError('''Input Error: Molar mass values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
def a ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float ):
"""simple docstring"""
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
else ValueError(
'''Input Error: Molar mass and effusion rate values must greater than 0.''' )
)
| 708
|
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
__UpperCAmelCase : List[Any] = [
"openmmlab/upernet-convnext-tiny",
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
__UpperCAmelCase : List[str] = "UperNetConfig"
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , ):
"""simple docstring"""
super().__init__()
UpperCamelCase : str = nn.Convad(
in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : int = nn.BatchNormad(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = nn.ReLU()
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = self.conv(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = self.batch_norm(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = self.activation(__SCREAMING_SNAKE_CASE )
return output
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : List[Any] = [
nn.AdaptiveAvgPoolad(__SCREAMING_SNAKE_CASE ),
UperNetConvModule(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = input
for layer in self.layers:
UpperCamelCase : int = layer(__SCREAMING_SNAKE_CASE )
return hidden_state
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : List[Any] = pool_scales
UpperCamelCase : Dict = align_corners
UpperCamelCase : Optional[int] = in_channels
UpperCamelCase : Union[str, Any] = channels
UpperCamelCase : List[str] = []
for i, pool_scale in enumerate(__SCREAMING_SNAKE_CASE ):
UpperCamelCase : Union[str, Any] = UperNetPyramidPoolingBlock(pool_scale=__SCREAMING_SNAKE_CASE , in_channels=__SCREAMING_SNAKE_CASE , channels=__SCREAMING_SNAKE_CASE )
self.blocks.append(__SCREAMING_SNAKE_CASE )
self.add_module(str(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = []
for ppm in self.blocks:
UpperCamelCase : List[str] = ppm(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = nn.functional.interpolate(
__SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners )
ppm_outs.append(__SCREAMING_SNAKE_CASE )
return ppm_outs
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__()
UpperCamelCase : int = config
UpperCamelCase : List[str] = config.pool_scales # e.g. (1, 2, 3, 6)
UpperCamelCase : Optional[int] = in_channels
UpperCamelCase : str = config.hidden_size
UpperCamelCase : str = False
UpperCamelCase : List[str] = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
UpperCamelCase : Optional[int] = UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
UpperCamelCase : str = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
UpperCamelCase : Union[str, Any] = nn.ModuleList()
UpperCamelCase : Union[str, Any] = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
UpperCamelCase : List[Any] = UperNetConvModule(__SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 )
UpperCamelCase : int = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(__SCREAMING_SNAKE_CASE )
self.fpn_convs.append(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def _lowercase ( self ):
"""simple docstring"""
self.apply(self._init_weights )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = inputs[-1]
UpperCamelCase : int = [x]
psp_outs.extend(self.psp_modules(__SCREAMING_SNAKE_CASE ) )
UpperCamelCase : Any = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 )
UpperCamelCase : Union[str, Any] = self.bottleneck(__SCREAMING_SNAKE_CASE )
return output
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(__SCREAMING_SNAKE_CASE ) )
# build top-down path
UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
UpperCamelCase : Optional[int] = laterals[i - 1].shape[2:]
UpperCamelCase : Optional[Any] = laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=__SCREAMING_SNAKE_CASE , mode='''bilinear''' , align_corners=self.align_corners )
# build outputs
UpperCamelCase : str = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
UpperCamelCase : int = nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners )
UpperCamelCase : str = torch.cat(__SCREAMING_SNAKE_CASE , dim=1 )
UpperCamelCase : Tuple = self.fpn_bottleneck(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE )
return output
class UpperCAmelCase_ ( nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 2 , __SCREAMING_SNAKE_CASE = 3 , __SCREAMING_SNAKE_CASE = 1 ):
"""simple docstring"""
super().__init__()
UpperCamelCase : Dict = config
UpperCamelCase : Optional[Any] = config.auxiliary_in_channels
UpperCamelCase : Union[str, Any] = config.auxiliary_channels
UpperCamelCase : Union[str, Any] = config.auxiliary_num_convs
UpperCamelCase : Optional[Any] = config.auxiliary_concat_input
UpperCamelCase : List[str] = in_index
UpperCamelCase : Any = (kernel_size // 2) * dilation
UpperCamelCase : Optional[Any] = []
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , dilation=__SCREAMING_SNAKE_CASE ) )
if self.num_convs == 0:
UpperCamelCase : str = nn.Identity()
else:
UpperCamelCase : Dict = nn.Sequential(*__SCREAMING_SNAKE_CASE )
if self.concat_input:
UpperCamelCase : Union[str, Any] = UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=__SCREAMING_SNAKE_CASE , padding=kernel_size // 2 )
UpperCamelCase : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def _lowercase ( self ):
"""simple docstring"""
self.apply(self._init_weights )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = encoder_hidden_states[self.in_index]
UpperCamelCase : str = self.convs(__SCREAMING_SNAKE_CASE )
if self.concat_input:
UpperCamelCase : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
UpperCamelCase : Union[str, Any] = self.classifier(__SCREAMING_SNAKE_CASE )
return output
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Optional[Any] = UperNetConfig
__UpperCamelCase : Optional[int] = "pixel_values"
__UpperCamelCase : Dict = True
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def _lowercase ( self ):
"""simple docstring"""
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
"""simple docstring"""
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : str = value
__UpperCAmelCase : List[Any] = r"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
__UpperCAmelCase : Union[str, Any] = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.", _a, )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
super().__init__(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
UpperCamelCase : int = UperNetHead(__SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels )
UpperCamelCase : int = UperNetFCNHead(__SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=__SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC )
def _lowercase ( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ):
"""simple docstring"""
UpperCamelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
UpperCamelCase : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCamelCase : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions
UpperCamelCase : Tuple = self.backbone.forward_with_filtered_kwargs(
__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , output_attentions=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = outputs.feature_maps
UpperCamelCase : Union[str, Any] = self.decode_head(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = nn.functional.interpolate(__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = None
if self.auxiliary_head is not None:
UpperCamelCase : int = self.auxiliary_head(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = nn.functional.interpolate(
__SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
UpperCamelCase : Optional[int] = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
UpperCamelCase : Tuple = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = loss_fct(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
UpperCamelCase : Optional[Any] = (logits,) + outputs[1:]
else:
UpperCamelCase : int = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=__SCREAMING_SNAKE_CASE , logits=__SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 643
| 0
|
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase : Optional[Any] = logging.get_logger(__name__)
__UpperCAmelCase : str = {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json",
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Any = "xlnet"
__UpperCamelCase : Optional[Any] = ["mems"]
__UpperCamelCase : Dict = {
"n_token": "vocab_size", # Backward compatibility
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , __SCREAMING_SNAKE_CASE=32_000 , __SCREAMING_SNAKE_CASE=1_024 , __SCREAMING_SNAKE_CASE=24 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=4_096 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="bi" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-12 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE="last" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="tanh" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=2 , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = vocab_size
UpperCamelCase : Dict = d_model
UpperCamelCase : str = n_layer
UpperCamelCase : List[Any] = n_head
if d_model % n_head != 0:
raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
f"""`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})""" )
UpperCamelCase : List[str] = d_model // n_head
UpperCamelCase : Optional[Any] = ff_activation
UpperCamelCase : Any = d_inner
UpperCamelCase : Optional[int] = untie_r
UpperCamelCase : str = attn_type
UpperCamelCase : List[str] = initializer_range
UpperCamelCase : int = layer_norm_eps
UpperCamelCase : List[Any] = dropout
UpperCamelCase : Dict = mem_len
UpperCamelCase : Optional[Any] = reuse_len
UpperCamelCase : List[Any] = bi_data
UpperCamelCase : Union[str, Any] = clamp_len
UpperCamelCase : str = same_length
UpperCamelCase : Union[str, Any] = summary_type
UpperCamelCase : List[str] = summary_use_proj
UpperCamelCase : Dict = summary_activation
UpperCamelCase : Union[str, Any] = summary_last_dropout
UpperCamelCase : Tuple = start_n_top
UpperCamelCase : int = end_n_top
UpperCamelCase : Optional[int] = bos_token_id
UpperCamelCase : Union[str, Any] = pad_token_id
UpperCamelCase : str = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , __SCREAMING_SNAKE_CASE , )
UpperCamelCase : Any = kwargs['''use_cache''']
UpperCamelCase : Dict = use_mems_eval
UpperCamelCase : Dict = use_mems_train
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def _lowercase ( self ):
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 709
|
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__UpperCAmelCase : Optional[int] = 500000
__UpperCAmelCase , __UpperCAmelCase : Any = os.path.split(__file__)
__UpperCAmelCase : int = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json"))
@get_duration
def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
"""simple docstring"""
UpperCamelCase : Tuple = dataset.map(**SCREAMING_SNAKE_CASE_ )
@get_duration
def a ( SCREAMING_SNAKE_CASE_ : datasets.Dataset , **SCREAMING_SNAKE_CASE_ : Any ):
"""simple docstring"""
UpperCamelCase : int = dataset.filter(**SCREAMING_SNAKE_CASE_ )
def a ( ):
"""simple docstring"""
UpperCamelCase : Optional[int] = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
UpperCamelCase : Dict = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
UpperCamelCase : List[str] = generate_example_dataset(
os.path.join(SCREAMING_SNAKE_CASE_ , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE_ , num_examples=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=SCREAMING_SNAKE_CASE_ )
def tokenize(SCREAMING_SNAKE_CASE_ : Dict ):
return tokenizer(examples['''text'''] )
UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[Any] = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''numpy''' ):
UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''pandas''' ):
UpperCamelCase : int = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
UpperCamelCase : Dict = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
UpperCamelCase : Tuple = map(SCREAMING_SNAKE_CASE_ , function=lambda SCREAMING_SNAKE_CASE_ : None , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = map(SCREAMING_SNAKE_CASE_ , function=SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Dict = filter(SCREAMING_SNAKE_CASE_ )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(SCREAMING_SNAKE_CASE_ , '''wb''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE_ ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter()
| 643
| 0
|
from __future__ import annotations
def a ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : Optional[int] = 0
UpperCamelCase : int = len(SCREAMING_SNAKE_CASE_ ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
UpperCamelCase : Tuple = i + 1
else:
UpperCamelCase : List[Any] = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(f'''{two_pointer([2, 7, 11, 15], 9) = }''')
| 710
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 643
| 0
|
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('''socket.socket''' )
@patch('''builtins.open''' )
def a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] ):
"""simple docstring"""
UpperCamelCase : int = Mock()
UpperCamelCase : Any = conn, Mock()
UpperCamelCase : List[Any] = iter([1, None] )
UpperCamelCase : Optional[Any] = lambda SCREAMING_SNAKE_CASE_ : next(SCREAMING_SNAKE_CASE_ )
# ===== invoke =====
send_file(filename='''mytext.txt''' , testing=SCREAMING_SNAKE_CASE_ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 711
|
import torch
from transformers import AutoModel
class UpperCAmelCase_ ( torch.nn.Module):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE="sayef/fsner-bert-base-uncased" ):
"""simple docstring"""
super(__SCREAMING_SNAKE_CASE , self ).__init__()
UpperCamelCase : List[str] = AutoModel.from_pretrained(__SCREAMING_SNAKE_CASE , return_dict=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = torch.nn.CosineSimilarity(3 , 1e-08 )
UpperCamelCase : List[Any] = torch.nn.Softmax(dim=1 )
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.bert(**__SCREAMING_SNAKE_CASE ).last_hidden_state
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return token_embeddings.sum(2 , keepdim=__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1 ):
"""simple docstring"""
return self.softmax(T * self.cos(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = W_supports['''sizes'''].tolist()
UpperCamelCase : Optional[int] = W_supports['''start_token_id'''].item()
UpperCamelCase : Any = W_supports['''end_token_id'''].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
UpperCamelCase : Union[str, Any] = self.BERT(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = self.BERT(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = None
UpperCamelCase : Any = None
UpperCamelCase : Optional[Any] = W_supports['''input_ids'''] == start_token_id
UpperCamelCase : Any = W_supports['''input_ids'''] == end_token_id
for i, size in enumerate(__SCREAMING_SNAKE_CASE ):
if i == 0:
UpperCamelCase : Optional[int] = 0
else:
UpperCamelCase : Tuple = support_sizes[i - 1]
UpperCamelCase : Tuple = S[s : s + size][start_token_masks[s : s + size]]
UpperCamelCase : List[str] = S[s : s + size][end_token_masks[s : s + size]]
UpperCamelCase : Dict = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
UpperCamelCase : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
UpperCamelCase : List[str] = torch.vstack((p_starts, p_start) )
UpperCamelCase : Union[str, Any] = torch.vstack((p_ends, p_end) )
else:
UpperCamelCase : str = p_start
UpperCamelCase : Optional[int] = p_end
return p_starts, p_ends
| 643
| 0
|
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase : int = logging.get_logger(__name__)
__UpperCAmelCase : Tuple = "▁"
__UpperCAmelCase : Tuple = {"vocab_file": "prophetnet.tokenizer"}
__UpperCAmelCase : Optional[int] = {
"vocab_file": {
"microsoft/xprophetnet-large-wiki100-cased": (
"https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"
),
}
}
__UpperCAmelCase : List[Any] = {
"microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False},
}
__UpperCAmelCase : List[str] = {
"microsoft/xprophetnet-large-wiki100-cased": 512,
}
def a ( SCREAMING_SNAKE_CASE_ : Any ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = collections.OrderedDict()
with open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' ) as reader:
UpperCamelCase : Optional[Any] = reader.readlines()
for index, token in enumerate(SCREAMING_SNAKE_CASE_ ):
UpperCamelCase : Dict = token.rstrip('''\n''' )
UpperCamelCase : str = index
return vocab
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Tuple = VOCAB_FILES_NAMES
__UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Any = ["input_ids", "attention_mask"]
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'''
''' pip install sentencepiece''' )
raise
UpperCamelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) )
UpperCamelCase : Any = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
UpperCamelCase : Dict = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4}
for i in range(10 ):
UpperCamelCase : Any = f"""[unused{i}]"""
UpperCamelCase : Dict = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
UpperCamelCase : Tuple = 12
UpperCamelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(__SCREAMING_SNAKE_CASE )
def __getstate__( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.__dict__.copy()
UpperCamelCase : List[Any] = None
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
'''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece'''
''' pip install sentencepiece''' )
raise
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCamelCase : Tuple = {}
UpperCamelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE )
if token_ids_a is None:
return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowercase ( self ):
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
UpperCamelCase : Tuple = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip()
return out_string
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : int = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
elif not os.path.isfile(self.vocab_file ):
with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi:
UpperCamelCase : int = self.sp_model.serialized_model_proto()
fi.write(__SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
UpperCamelCase : Tuple = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 712
|
import json
import os
import unittest
from transformers import DebertaTokenizer, DebertaTokenizerFast
from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCAmelCase_ ( _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : str = DebertaTokenizer
__UpperCamelCase : Optional[int] = True
__UpperCamelCase : Optional[int] = DebertaTokenizerFast
def _lowercase ( self ):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCamelCase : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''[UNK]''',
]
UpperCamelCase : Tuple = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
UpperCamelCase : Any = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
UpperCamelCase : List[Any] = {'''unk_token''': '''[UNK]'''}
UpperCamelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = '''lower newer'''
UpperCamelCase : Union[str, Any] = '''lower newer'''
return input_text, output_text
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.get_tokenizer()
UpperCamelCase : int = '''lower newer'''
UpperCamelCase : Union[str, Any] = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
UpperCamelCase : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = tokens + [tokenizer.unk_token]
UpperCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.get_tokenizer()
UpperCamelCase : Optional[Any] = tokenizer('''Hello''' , '''World''' )
UpperCamelCase : List[str] = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]
self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCamelCase : Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = tokenizer.encode(
'''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = [self.tokenizer_class]
if self.test_rust_tokenizer:
tokenizer_classes.append(self.rust_tokenizer_class )
for tokenizer_class in tokenizer_classes:
UpperCamelCase : Optional[int] = tokenizer_class.from_pretrained('''microsoft/deberta-base''' )
UpperCamelCase : str = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
UpperCamelCase : Union[str, Any] = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']]
# fmt: off
UpperCamelCase : int = {
'''input_ids''': [
[1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2]
],
'''token_type_ids''': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
],
'''attention_mask''': [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]
}
# fmt: on
UpperCamelCase : List[str] = [
'''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''',
'''ALBERT incorporates two parameter reduction techniques''',
'''The first one is a factorized embedding parameterization. By decomposing the large vocabulary'''
''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of'''
''' vocabulary embedding.''',
]
self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE )
for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 643
| 0
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__UpperCAmelCase : Optional[Any] = {
"configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : Union[str, Any] = ["MobileViTFeatureExtractor"]
__UpperCAmelCase : Optional[int] = ["MobileViTImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[Any] = [
"MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MobileViTForImageClassification",
"MobileViTForSemanticSegmentation",
"MobileViTModel",
"MobileViTPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[str] = [
"TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFMobileViTForImageClassification",
"TFMobileViTForSemanticSegmentation",
"TFMobileViTModel",
"TFMobileViTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 713
|
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class UpperCAmelCase_ ( _a):
'''simple docstring'''
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file:
UpperCamelCase : str = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' )
UpperCamelCase : Optional[int] = input_file.read()
UpperCamelCase : Union[str, Any] = regexp.search(__SCREAMING_SNAKE_CASE )
return match
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as input_file:
UpperCamelCase : Optional[int] = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL )
UpperCamelCase : Tuple = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase : Dict = regexp.finditer(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = Path('''./datasets''' )
UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(__SCREAMING_SNAKE_CASE ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = Path('''./datasets''' )
UpperCamelCase : Tuple = list(dataset_paths.absolute().glob('''**/*.py''' ) )
for dataset in dataset_files:
if self._no_print_statements(str(__SCREAMING_SNAKE_CASE ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 643
| 0
|
from __future__ import annotations
import unittest
from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel
@require_tf
class UpperCAmelCase_ :
'''simple docstring'''
__UpperCamelCase : str = BlenderbotConfig
__UpperCamelCase : str = {}
__UpperCamelCase : List[Any] = "gelu"
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=20 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , ):
"""simple docstring"""
UpperCamelCase : Tuple = parent
UpperCamelCase : str = batch_size
UpperCamelCase : Dict = seq_length
UpperCamelCase : List[str] = is_training
UpperCamelCase : int = use_labels
UpperCamelCase : Optional[int] = vocab_size
UpperCamelCase : Any = hidden_size
UpperCamelCase : Tuple = num_hidden_layers
UpperCamelCase : Dict = num_attention_heads
UpperCamelCase : List[str] = intermediate_size
UpperCamelCase : List[Any] = hidden_dropout_prob
UpperCamelCase : List[str] = attention_probs_dropout_prob
UpperCamelCase : int = max_position_embeddings
UpperCamelCase : List[str] = eos_token_id
UpperCamelCase : str = pad_token_id
UpperCamelCase : Tuple = bos_token_id
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
UpperCamelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
UpperCamelCase : Any = tf.concat([input_ids, eos_tensor] , axis=1 )
UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase : Dict = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
UpperCamelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return config, inputs_dict
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = TFBlenderbotModel(config=__SCREAMING_SNAKE_CASE ).get_decoder()
UpperCamelCase : List[str] = inputs_dict['''input_ids''']
UpperCamelCase : List[Any] = input_ids[:1, :]
UpperCamelCase : Tuple = inputs_dict['''attention_mask'''][:1, :]
UpperCamelCase : Optional[int] = inputs_dict['''head_mask''']
UpperCamelCase : Tuple = 1
# first forward pass
UpperCamelCase : Tuple = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
UpperCamelCase : Dict = tf.concat([input_ids, next_tokens] , axis=-1 )
UpperCamelCase : Union[str, Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
UpperCamelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0]
UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
UpperCamelCase : int = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
UpperCamelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx]
UpperCamelCase : str = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1e-3 )
def a ( SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , ):
"""simple docstring"""
if attention_mask is None:
UpperCamelCase : Dict = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE_ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
UpperCamelCase : Optional[int] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
UpperCamelCase : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
UpperCamelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
UpperCamelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class UpperCAmelCase_ ( _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Optional[int] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else ()
__UpperCamelCase : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else ()
__UpperCamelCase : Union[str, Any] = (
{
"conversational": TFBlenderbotForConditionalGeneration,
"feature-extraction": TFBlenderbotModel,
"summarization": TFBlenderbotForConditionalGeneration,
"text2text-generation": TFBlenderbotForConditionalGeneration,
"translation": TFBlenderbotForConditionalGeneration,
}
if is_tf_available()
else {}
)
__UpperCamelCase : Tuple = True
__UpperCamelCase : List[str] = False
__UpperCamelCase : List[str] = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = TFBlenderbotModelTester(self )
UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
@require_tokenizers
@require_tf
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Optional[Any] = ["My friends are cool but they eat too many carbs."]
__UpperCamelCase : Any = "facebook/blenderbot-400M-distill"
@cached_property
def _lowercase ( self ):
"""simple docstring"""
return BlenderbotTokenizer.from_pretrained(self.model_name )
@cached_property
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.tokenizer(self.src_text , return_tensors='''tf''' )
UpperCamelCase : Optional[Any] = self.model.generate(
model_inputs.input_ids , )
UpperCamelCase : int = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0]
assert (
generated_words
== " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?"
)
| 714
|
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
'''simple docstring'''
__UpperCamelCase : Any = XGLMConfig
__UpperCamelCase : Dict = {}
__UpperCamelCase : List[str] = "gelu"
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ):
"""simple docstring"""
UpperCamelCase : Any = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : str = seq_length
UpperCamelCase : List[str] = is_training
UpperCamelCase : Tuple = use_input_mask
UpperCamelCase : Union[str, Any] = use_labels
UpperCamelCase : int = vocab_size
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Any = num_hidden_layers
UpperCamelCase : List[str] = num_attention_heads
UpperCamelCase : Optional[Any] = ffn_dim
UpperCamelCase : Optional[int] = activation_function
UpperCamelCase : List[str] = activation_dropout
UpperCamelCase : Any = attention_dropout
UpperCamelCase : str = max_position_embeddings
UpperCamelCase : Union[str, Any] = initializer_range
UpperCamelCase : int = None
UpperCamelCase : Dict = 0
UpperCamelCase : int = 2
UpperCamelCase : Any = 1
def _lowercase ( self ):
"""simple docstring"""
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCamelCase : int = None
if self.use_input_mask:
UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Tuple = self.get_config()
UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self ):
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Dict = config_and_inputs
UpperCamelCase : List[str] = {
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCamelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : List[Any] = False
__UpperCamelCase : List[Any] = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = TFXGLMModelTester(self )
UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def _lowercase ( self ):
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
@slow
def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
UpperCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] )
UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = (
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : Tuple = '''left'''
# use different length sentences to test batching
UpperCamelCase : Any = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = inputs['''input_ids''']
UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 )
UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 )
UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
| 643
| 0
|
def a ( SCREAMING_SNAKE_CASE_ : int = 1_0_0_0 ):
"""simple docstring"""
UpperCamelCase : str = -1
UpperCamelCase : Dict = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
UpperCamelCase : Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a)
UpperCamelCase : Union[str, Any] = n - a - b
if c * c == (a * a + b * b):
UpperCamelCase : List[str] = a * b * c
if candidate >= product:
UpperCamelCase : Any = candidate
return product
if __name__ == "__main__":
print(f'''{solution() = }''')
| 715
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
__UpperCAmelCase : Optional[int] = None
__UpperCAmelCase : int = logging.get_logger(__name__)
__UpperCAmelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
__UpperCAmelCase : str = {
"vocab_file": {
"facebook/mbart-large-en-ro": (
"https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"
),
"facebook/mbart-large-cc25": (
"https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json",
"facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json",
},
}
__UpperCAmelCase : Union[str, Any] = {
"facebook/mbart-large-en-ro": 1024,
"facebook/mbart-large-cc25": 1024,
}
# fmt: off
__UpperCAmelCase : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"]
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : List[str] = VOCAB_FILES_NAMES
__UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Union[str, Any] = ["input_ids", "attention_mask"]
__UpperCamelCase : Any = MBartTokenizer
__UpperCamelCase : List[int] = []
__UpperCamelCase : List[int] = []
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token
super().__init__(
vocab_file=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Dict = vocab_file
UpperCamelCase : List[str] = False if not self.vocab_file else True
UpperCamelCase : List[Any] = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
UpperCamelCase : List[Any] = {
lang_code: self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
UpperCamelCase : Dict = src_lang if src_lang is not None else '''en_XX'''
UpperCamelCase : List[Any] = self.convert_tokens_to_ids(self._src_lang )
UpperCamelCase : str = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _lowercase ( self ):
"""simple docstring"""
return self._src_lang
@src_lang.setter
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : str = [self.sep_token_id]
UpperCamelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
UpperCamelCase : List[str] = src_lang
UpperCamelCase : Dict = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = tgt_lang_id
return inputs
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "en_XX" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "ro_RO" , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = src_lang
UpperCamelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def _lowercase ( self ):
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = []
UpperCamelCase : Dict = [self.eos_token_id, self.cur_lang_code]
UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
UpperCamelCase : int = self.convert_ids_to_tokens(self.suffix_tokens )
UpperCamelCase : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = []
UpperCamelCase : Optional[Any] = [self.eos_token_id, self.cur_lang_code]
UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
UpperCamelCase : List[str] = self.convert_ids_to_tokens(self.suffix_tokens )
UpperCamelCase : Optional[int] = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
UpperCamelCase : Optional[int] = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ):
copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE )
return (out_vocab_file,)
| 643
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase : List[str] = {"configuration_yolos": ["YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP", "YolosConfig", "YolosOnnxConfig"]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[Any] = ["YolosFeatureExtractor"]
__UpperCAmelCase : List[str] = ["YolosImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase : List[Any] = [
"YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST",
"YolosForObjectDetection",
"YolosModel",
"YolosPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_yolos import YolosFeatureExtractor
from .image_processing_yolos import YolosImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_yolos import (
YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST,
YolosForObjectDetection,
YolosModel,
YolosPreTrainedModel,
)
else:
import sys
__UpperCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 716
|
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
__UpperCAmelCase : Dict = False
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCamelCase : str = torch.manual_seed(0 )
UpperCamelCase : Union[str, Any] = pipe(
image=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCamelCase : List[Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
UpperCamelCase : Dict = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 643
| 0
|
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , ):
"""simple docstring"""
UpperCamelCase : Dict = parent
UpperCamelCase : Dict = 100
UpperCamelCase : Tuple = batch_size
UpperCamelCase : Union[str, Any] = image_size
UpperCamelCase : Tuple = patch_size
UpperCamelCase : Union[str, Any] = num_channels
UpperCamelCase : Dict = is_training
UpperCamelCase : List[Any] = use_labels
UpperCamelCase : Union[str, Any] = hidden_size
UpperCamelCase : List[Any] = num_hidden_layers
UpperCamelCase : Tuple = num_attention_heads
UpperCamelCase : List[Any] = intermediate_size
UpperCamelCase : Dict = hidden_act
UpperCamelCase : str = hidden_dropout_prob
UpperCamelCase : List[Any] = attention_probs_dropout_prob
UpperCamelCase : Optional[int] = type_sequence_label_size
UpperCamelCase : int = initializer_range
UpperCamelCase : str = scope
UpperCamelCase : List[Any] = out_indices
UpperCamelCase : Tuple = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCamelCase : List[Any] = (image_size // patch_size) ** 2
UpperCamelCase : List[Any] = num_patches + 1
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : Dict = None
UpperCamelCase : Optional[Any] = None
if self.use_labels:
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase : List[Any] = self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowercase ( self ):
"""simple docstring"""
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int = BeitModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Dict = BeitForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = self.type_sequence_label_size
UpperCamelCase : Optional[Any] = BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCamelCase : Any = 1
UpperCamelCase : Optional[int] = BeitForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : str = self.num_labels
UpperCamelCase : Dict = BeitForSemanticSegmentation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.prepare_config_and_inputs()
UpperCamelCase : str = config_and_inputs
UpperCamelCase : List[str] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
__UpperCamelCase : Any = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__UpperCamelCase : List[str] = False
__UpperCamelCase : Dict = False
__UpperCamelCase : Tuple = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = BeitModelTester(self )
UpperCamelCase : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='''BEiT does not use inputs_embeds''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def _lowercase ( self ):
"""simple docstring"""
pass
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCamelCase : List[str] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : List[Any] = [*signature.parameters.keys()]
UpperCamelCase : str = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
if not self.model_tester.is_training:
return
UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Tuple = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(__SCREAMING_SNAKE_CASE ), BeitForMaskedImageModeling]:
continue
UpperCamelCase : str = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
UpperCamelCase : Dict = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
UpperCamelCase : int = False
UpperCamelCase : Optional[Any] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(__SCREAMING_SNAKE_CASE ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
UpperCamelCase : str = model_class(__SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.to(__SCREAMING_SNAKE_CASE )
model.train()
UpperCamelCase : Optional[int] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
UpperCamelCase : str = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : Any = _config_zero_init(__SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
UpperCamelCase : Optional[Any] = model_class(config=__SCREAMING_SNAKE_CASE )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : Union[str, Any] = BeitModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def a ( ):
"""simple docstring"""
UpperCamelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
@cached_property
def _lowercase ( self ):
"""simple docstring"""
return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = self.default_image_processor
UpperCamelCase : Any = prepare_img()
UpperCamelCase : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(__SCREAMING_SNAKE_CASE )
# prepare bool_masked_pos
UpperCamelCase : Tuple = torch.ones((1, 196) , dtype=torch.bool ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase : List[Any] = model(pixel_values=__SCREAMING_SNAKE_CASE , bool_masked_pos=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = outputs.logits
# verify the logits
UpperCamelCase : int = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = torch.tensor(
[[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-2 ) )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = self.default_image_processor
UpperCamelCase : List[str] = prepare_img()
UpperCamelCase : List[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase : Dict = model(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = outputs.logits
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 1_000) )
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
UpperCamelCase : Union[str, Any] = 281
self.assertEqual(logits.argmax(-1 ).item() , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to(
__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = self.default_image_processor
UpperCamelCase : Dict = prepare_img()
UpperCamelCase : Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase : Any = model(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = outputs.logits
# verify the logits
UpperCamelCase : Union[str, Any] = torch.Size((1, 21_841) )
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
UpperCamelCase : List[Any] = 2_396
self.assertEqual(logits.argmax(-1 ).item() , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' )
UpperCamelCase : List[str] = model.to(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = BeitImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , size=640 , do_center_crop=__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCamelCase : Any = Image.open(ds[0]['''file'''] )
UpperCamelCase : List[str] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase : List[Any] = model(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = outputs.logits
# verify the logits
UpperCamelCase : List[str] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' )
if is_pillow_less_than_a:
UpperCamelCase : Optional[Any] = torch.tensor(
[
[[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]],
[[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]],
[[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]],
] , device=__SCREAMING_SNAKE_CASE , )
else:
UpperCamelCase : Any = torch.tensor(
[
[[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]],
[[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]],
[[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]],
] , device=__SCREAMING_SNAKE_CASE , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' )
UpperCamelCase : str = model.to(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Any = BeitImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , size=640 , do_center_crop=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
UpperCamelCase : Dict = Image.open(ds[0]['''file'''] )
UpperCamelCase : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase : Optional[Any] = model(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = outputs.logits.detach().cpu()
UpperCamelCase : Dict = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE , target_sizes=[(500, 300)] )
UpperCamelCase : Tuple = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE )
| 717
|
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
__UpperCAmelCase : Dict = logging.get_logger(__name__)
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Any = ["input_features"]
def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(
feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[str] = n_fft
UpperCamelCase : Dict = hop_length
UpperCamelCase : Dict = chunk_length
UpperCamelCase : List[str] = chunk_length * sampling_rate
UpperCamelCase : Dict = self.n_samples // hop_length
UpperCamelCase : str = sampling_rate
UpperCamelCase : Union[str, Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[str] = spectrogram(
__SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , )
UpperCamelCase : int = log_spec[:, :-1]
UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 )
UpperCamelCase : Any = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ):
"""simple docstring"""
if attention_mask is not None:
UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa )
UpperCamelCase : Optional[Any] = []
for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ):
UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
UpperCamelCase : Optional[int] = padding_value
normed_input_values.append(__SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
UpperCamelCase : Union[str, Any] = is_batched_numpy or (
isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ):
UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa )
elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T]
UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} )
# convert into correct format for padding
UpperCamelCase : Optional[Any] = self.pad(
__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm(
padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , )
UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 )
# make sure list is in array format
UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 )
UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]]
if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features]
else:
UpperCamelCase : Dict = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length]
if return_tensors is not None:
UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE )
return padded_inputs
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ )
UpperCamelCase : List[str] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 643
| 0
|
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 718
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roformer import RoFormerTokenizer
from .tokenization_utils import JiebaPreTokenizer
__UpperCAmelCase : Dict = logging.get_logger(__name__)
__UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__UpperCAmelCase : Dict = {
"vocab_file": {
"junnyu/roformer_chinese_small": "https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt",
"junnyu/roformer_chinese_base": "https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt",
"junnyu/roformer_chinese_char_small": (
"https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt"
),
"junnyu/roformer_chinese_char_base": (
"https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt"
),
"junnyu/roformer_small_discriminator": (
"https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt"
),
"junnyu/roformer_small_generator": (
"https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt"
),
}
}
__UpperCAmelCase : Tuple = {
"junnyu/roformer_chinese_small": 1536,
"junnyu/roformer_chinese_base": 1536,
"junnyu/roformer_chinese_char_small": 512,
"junnyu/roformer_chinese_char_base": 512,
"junnyu/roformer_small_discriminator": 128,
"junnyu/roformer_small_generator": 128,
}
__UpperCAmelCase : Any = {
"junnyu/roformer_chinese_small": {"do_lower_case": True},
"junnyu/roformer_chinese_base": {"do_lower_case": True},
"junnyu/roformer_chinese_char_small": {"do_lower_case": True},
"junnyu/roformer_chinese_char_base": {"do_lower_case": True},
"junnyu/roformer_small_discriminator": {"do_lower_case": True},
"junnyu/roformer_small_generator": {"do_lower_case": True},
}
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : str = VOCAB_FILES_NAMES
__UpperCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : int = PRETRAINED_INIT_CONFIGURATION
__UpperCamelCase : Any = RoFormerTokenizer
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="[UNK]" , __SCREAMING_SNAKE_CASE="[SEP]" , __SCREAMING_SNAKE_CASE="[PAD]" , __SCREAMING_SNAKE_CASE="[CLS]" , __SCREAMING_SNAKE_CASE="[MASK]" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(
__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
pre_tok_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE ) != do_lower_case
or pre_tok_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE ) != strip_accents
):
UpperCamelCase : List[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) )
UpperCamelCase : Optional[int] = do_lower_case
UpperCamelCase : Optional[Any] = strip_accents
UpperCamelCase : List[Any] = pre_tok_class(**__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = do_lower_case
def __getstate__( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = self.__dict__.copy()
UpperCamelCase : Any = BertPreTokenizer()
return state
def __setstate__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = d
UpperCamelCase : List[str] = self.__dict__['''_tokenizer'''].get_vocab()
UpperCamelCase : Any = PreTokenizer.custom(JiebaPreTokenizer(__SCREAMING_SNAKE_CASE ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
"""simple docstring"""
UpperCamelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : Dict = [self.sep_token_id]
UpperCamelCase : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
UpperCamelCase : List[Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE )
return tuple(__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
UpperCamelCase : Any = BertPreTokenizer()
return super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 643
| 0
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase : Dict = logging.get_logger(__name__)
__UpperCAmelCase : Dict = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
__UpperCAmelCase : Union[str, Any] = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
__UpperCAmelCase : Union[str, Any] = {"facebook/blenderbot_small-90M": 512}
def a ( SCREAMING_SNAKE_CASE_ : str ):
"""simple docstring"""
UpperCamelCase : int = set()
UpperCamelCase : str = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
UpperCamelCase : Tuple = char
UpperCamelCase : Dict = set(SCREAMING_SNAKE_CASE_ )
return pairs
class UpperCAmelCase_ ( _a):
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES
__UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase : int = ["input_ids", "attention_mask"]
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="__start__" , __SCREAMING_SNAKE_CASE="__end__" , __SCREAMING_SNAKE_CASE="__unk__" , __SCREAMING_SNAKE_CASE="__null__" , **__SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
super().__init__(unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as vocab_handle:
UpperCamelCase : str = json.load(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = {v: k for k, v in self.encoder.items()}
with open(__SCREAMING_SNAKE_CASE , encoding='''utf-8''' ) as merges_handle:
UpperCamelCase : Dict = merges_handle.read().split('''\n''' )[1:-1]
UpperCamelCase : List[str] = [tuple(merge.split() ) for merge in merges]
UpperCamelCase : Any = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
UpperCamelCase : Optional[int] = {}
@property
def _lowercase ( self ):
"""simple docstring"""
return len(self.encoder )
def _lowercase ( self ):
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if token in self.cache:
return self.cache[token]
UpperCamelCase : int = re.sub('''([.,!?()])''' , R''' \1''' , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = re.sub('''(\')''' , R''' \1 ''' , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = re.sub(R'''\s{2,}''' , ''' ''' , __SCREAMING_SNAKE_CASE )
if "\n" in token:
UpperCamelCase : Tuple = token.replace('''\n''' , ''' __newln__''' )
UpperCamelCase : int = token.split(''' ''' )
UpperCamelCase : int = []
for token in tokens:
if not len(__SCREAMING_SNAKE_CASE ):
continue
UpperCamelCase : Optional[int] = token.lower()
UpperCamelCase : Union[str, Any] = tuple(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
UpperCamelCase : List[str] = get_pairs(__SCREAMING_SNAKE_CASE )
if not pairs:
words.append(__SCREAMING_SNAKE_CASE )
continue
while True:
UpperCamelCase : List[Any] = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
UpperCamelCase : int = bigram
UpperCamelCase : Optional[Any] = []
UpperCamelCase : List[Any] = 0
while i < len(__SCREAMING_SNAKE_CASE ):
try:
UpperCamelCase : List[Any] = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
new_word.extend(word[i:j] )
UpperCamelCase : Dict = j
except ValueError:
new_word.extend(word[i:] )
break
if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
UpperCamelCase : List[Any] = tuple(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = new_word
if len(__SCREAMING_SNAKE_CASE ) == 1:
break
else:
UpperCamelCase : str = get_pairs(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = '''@@ '''.join(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = word[:-4]
UpperCamelCase : str = word
words.append(__SCREAMING_SNAKE_CASE )
return " ".join(__SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[Any] = []
UpperCamelCase : Any = re.findall(R'''\S+\n?''' , __SCREAMING_SNAKE_CASE )
for token in words:
split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(''' ''' ) ) )
return split_tokens
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = token.lower()
return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Any = ''' '''.join(__SCREAMING_SNAKE_CASE ).replace('''@@ ''' , '''''' ).strip()
return out_string
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
"""simple docstring"""
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : str = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCamelCase : str = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + '''\n''' )
UpperCamelCase : Tuple = 0
with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __SCREAMING_SNAKE_CASE : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
UpperCamelCase : Union[str, Any] = token_index
writer.write(''' '''.join(__SCREAMING_SNAKE_CASE ) + '''\n''' )
index += 1
return vocab_file, merge_file
| 719
|
from __future__ import annotations
def a ( SCREAMING_SNAKE_CASE_ : list[int] ):
"""simple docstring"""
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return array
UpperCamelCase , UpperCamelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ )
# Compute the variables
UpperCamelCase : Union[str, Any] = _max - _min + 1
UpperCamelCase , UpperCamelCase : Optional[Any] = [0] * holes_range, [0] * holes_range
# Make the sorting.
for i in array:
UpperCamelCase : Optional[int] = i - _min
UpperCamelCase : Any = i
holes_repeat[index] += 1
# Makes the array back by replacing the numbers.
UpperCamelCase : str = 0
for i in range(SCREAMING_SNAKE_CASE_ ):
while holes_repeat[i] > 0:
UpperCamelCase : List[Any] = holes[i]
index += 1
holes_repeat[i] -= 1
# Returns the sorted array.
return array
if __name__ == "__main__":
import doctest
doctest.testmod()
__UpperCAmelCase : Any = input("Enter numbers separated by comma:\n")
__UpperCAmelCase : int = [int(x) for x in user_input.split(",")]
print(pigeon_sort(unsorted))
| 643
| 0
|
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
__UpperCAmelCase : Optional[int] = "3"
print("Python version:", sys.version)
print("transformers version:", transformers.__version__)
try:
import torch
print("Torch version:", torch.__version__)
print("Cuda available:", torch.cuda.is_available())
print("Cuda version:", torch.version.cuda)
print("CuDNN version:", torch.backends.cudnn.version())
print("Number of GPUs available:", torch.cuda.device_count())
print("NCCL version:", torch.cuda.nccl.version())
except ImportError:
print("Torch version:", None)
try:
import deepspeed
print("DeepSpeed version:", deepspeed.__version__)
except ImportError:
print("DeepSpeed version:", None)
try:
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU")))
print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU")))
except ImportError:
print("TensorFlow version:", None)
| 720
|
import json
import os
import shutil
import warnings
from argparse import ArgumentParser, Namespace
from pathlib import Path
from typing import List
from ..utils import logging
from . import BaseTransformersCLICommand
try:
from cookiecutter.main import cookiecutter
__UpperCAmelCase : List[Any] = True
except ImportError:
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name
def a ( SCREAMING_SNAKE_CASE_ : Namespace ):
"""simple docstring"""
return AddNewModelCommand(args.testing , args.testing_file , path=args.path )
class UpperCAmelCase_ ( _a):
'''simple docstring'''
@staticmethod
def _lowercase ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' )
add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' )
add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' )
add_new_model_parser.add_argument(
'''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' )
add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE )
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Tuple = testing
UpperCamelCase : Any = testing_file
UpperCamelCase : Dict = path
def _lowercase ( self ):
"""simple docstring"""
warnings.warn(
'''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. '''
'''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality '''
'''checks, you should use `transformers-cli add-new-model-like` instead.''' )
if not _has_cookiecutter:
raise ImportError(
'''Model creation dependencies are required to use the `add_new_model` command. Install them by running '''
'''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' )
# Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory
UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]]
if len(__SCREAMING_SNAKE_CASE ) > 0:
raise ValueError(
'''Several directories starting with `cookiecutter-template-` in current working directory. '''
'''Please clean your directory by removing all folders starting with `cookiecutter-template-` or '''
'''change your working directory.''' )
UpperCamelCase : Dict = (
Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent
)
UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model'''
# Execute cookiecutter
if not self._testing:
cookiecutter(str(__SCREAMING_SNAKE_CASE ) )
else:
with open(self._testing_file , '''r''' ) as configuration_file:
UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE )
cookiecutter(
str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , )
UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0]
# Retrieve configuration
with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file:
UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = configuration['''lowercase_modelname''']
UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax''']
os.remove(f"""{directory}/configuration.json""" )
UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax
UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}"""
os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE )
os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE )
# Tests require submodules as they have parent imports
with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ):
pass
shutil.move(
f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , )
shutil.move(
f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , )
def remove_copy_lines(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f:
UpperCamelCase : Any = f.readlines()
with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f:
for line in lines:
if "# Copied from transformers." not in line:
f.write(__SCREAMING_SNAKE_CASE )
if output_pytorch:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" )
if output_tensorflow:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" )
if output_flax:
if not self._testing:
remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , )
else:
os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" )
os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" )
shutil.move(
f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , )
shutil.move(
f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , )
shutil.move(
f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , )
from os import fdopen, remove
from shutil import copymode, move
from tempfile import mkstemp
def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Create temp file
UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp()
UpperCamelCase : Tuple = False
with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file:
with open(__SCREAMING_SNAKE_CASE ) as old_file:
for line in old_file:
new_file.write(__SCREAMING_SNAKE_CASE )
if line_to_copy_below in line:
UpperCamelCase : Optional[int] = True
for line_to_copy in lines_to_copy:
new_file.write(__SCREAMING_SNAKE_CASE )
if not line_found:
raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" )
# Copy the file permissions from the old file to the new file
copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Remove original file
remove(__SCREAMING_SNAKE_CASE )
# Move new file
move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def skip_units(__SCREAMING_SNAKE_CASE ):
return (
("generating PyTorch" in line and not output_pytorch)
or ("generating TensorFlow" in line and not output_tensorflow)
or ("generating Flax" in line and not output_flax)
)
def replace_in_files(__SCREAMING_SNAKE_CASE ):
with open(__SCREAMING_SNAKE_CASE ) as datafile:
UpperCamelCase : int = []
UpperCamelCase : Dict = False
UpperCamelCase : List[Any] = False
for line in datafile:
if "# To replace in: " in line and "##" not in line:
UpperCamelCase : Dict = line.split('''"''' )[1]
UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE )
elif "# Below: " in line and "##" not in line:
UpperCamelCase : Dict = line.split('''"''' )[1]
UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE )
elif "# End." in line and "##" not in line:
if not skip_file and not skip_snippet:
replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase : Dict = []
elif "# Replace with" in line and "##" not in line:
UpperCamelCase : Tuple = []
elif "##" not in line:
lines_to_copy.append(__SCREAMING_SNAKE_CASE )
remove(__SCREAMING_SNAKE_CASE )
replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" )
os.rmdir(__SCREAMING_SNAKE_CASE )
| 643
| 0
|
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=[8, 16, 32, 64] , __SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=["stage2", "stage3", "stage4"] , __SCREAMING_SNAKE_CASE=[2, 3, 4] , __SCREAMING_SNAKE_CASE=1 , ):
"""simple docstring"""
UpperCamelCase : str = parent
UpperCamelCase : Dict = batch_size
UpperCamelCase : Tuple = image_size
UpperCamelCase : List[str] = num_channels
UpperCamelCase : Union[str, Any] = embeddings_size
UpperCamelCase : Dict = hidden_sizes
UpperCamelCase : Any = depths
UpperCamelCase : int = is_training
UpperCamelCase : Dict = use_labels
UpperCamelCase : Any = hidden_act
UpperCamelCase : Optional[Any] = num_labels
UpperCamelCase : Any = scope
UpperCamelCase : int = len(__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[Any] = out_features
UpperCamelCase : str = out_indices
UpperCamelCase : List[str] = num_groups
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase : Optional[int] = None
if self.use_labels:
UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase : Optional[int] = self.get_config()
return config, pixel_values, labels
def _lowercase ( self ):
"""simple docstring"""
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : List[str] = BitModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Dict = self.num_labels
UpperCamelCase : Any = BitForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = BitBackbone(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : int = model(__SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
UpperCamelCase : List[str] = None
UpperCamelCase : str = BitBackbone(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase : Any = model(__SCREAMING_SNAKE_CASE )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCamelCase : List[str] = config_and_inputs
UpperCamelCase : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Any = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
__UpperCamelCase : Optional[int] = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
__UpperCamelCase : int = False
__UpperCamelCase : Dict = False
__UpperCamelCase : List[Any] = False
__UpperCamelCase : List[str] = False
__UpperCamelCase : List[str] = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = BitModelTester(self )
UpperCamelCase : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _lowercase ( self ):
"""simple docstring"""
return
@unittest.skip(reason='''Bit does not output attentions''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def _lowercase ( self ):
"""simple docstring"""
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def _lowercase ( self ):
"""simple docstring"""
pass
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : Any = model_class(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase : Dict = [*signature.parameters.keys()]
UpperCamelCase : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__SCREAMING_SNAKE_CASE )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase : List[str] = model_class(config=__SCREAMING_SNAKE_CASE )
for name, module in model.named_modules():
if isinstance(__SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
def _lowercase ( self ):
"""simple docstring"""
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase : Any = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
UpperCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase : List[str] = self.model_tester.num_stages
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase : List[Any] = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
UpperCamelCase : List[Any] = layer_type
UpperCamelCase : Tuple = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase : int = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def _lowercase ( self ):
"""simple docstring"""
pass
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : str = BitModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def a ( ):
"""simple docstring"""
UpperCamelCase : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
@cached_property
def _lowercase ( self ):
"""simple docstring"""
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase : Union[str, Any] = self.default_image_processor
UpperCamelCase : str = prepare_img()
UpperCamelCase : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase : List[str] = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
UpperCamelCase : Dict = torch.Size((1, 1_000) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase : int = torch.tensor([[-0.6_526, -0.5_263, -1.4_398]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class UpperCAmelCase_ ( _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : List[str] = (BitBackbone,) if is_torch_available() else ()
__UpperCamelCase : Optional[Any] = BitConfig
__UpperCamelCase : Optional[Any] = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = BitModelTester(self )
| 721
|
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
"""simple docstring"""
UpperCamelCase : str = cva.getAffineTransform(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return cva.warpAffine(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (rows, cols) )
if __name__ == "__main__":
# read original image
__UpperCAmelCase : Tuple = cva.imread(
str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg")
)
# turn image in gray scale value
__UpperCAmelCase : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
__UpperCAmelCase , __UpperCAmelCase : Tuple = gray_img.shape
# set different points to rotate image
__UpperCAmelCase : Optional[int] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa)
__UpperCAmelCase : Optional[int] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa)
__UpperCAmelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa)
__UpperCAmelCase : int = np.array([[10, 100], [80, 50], [180, 250]], np.floataa)
# add all rotated images in a list
__UpperCAmelCase : Union[str, Any] = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
__UpperCAmelCase : List[str] = plt.figure(1)
__UpperCAmelCase : Dict = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"]
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, "gray")
plt.title(titles[i])
plt.axis("off")
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show()
| 643
| 0
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
import argparse
from collections import defaultdict
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
UpperCAmelCase_ : List[Any] = F"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as f:
UpperCAmelCase_ : List[str] = f.readlines()
UpperCAmelCase_ : List[str] = F"""class {class_name}("""
UpperCAmelCase_ : int = F"""{4 * " "}def {test_name}("""
UpperCAmelCase_ : Any = F"""{8 * " "}{correct_line.split()[0]}"""
UpperCAmelCase_ : str = F"""{16 * " "}{correct_line.split()[0]}"""
UpperCAmelCase_ : Tuple = False
UpperCAmelCase_ : Any = False
UpperCAmelCase_ : List[str] = False
UpperCAmelCase_ : Dict = False
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : str = 0
UpperCAmelCase_ : Dict = []
for line in lines:
if line.startswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = True
elif in_class and line.startswith(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = True
elif in_class and in_func and (line.startswith(SCREAMING_SNAKE_CASE__ ) or line.startswith(SCREAMING_SNAKE_CASE__ )):
UpperCAmelCase_ : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
UpperCAmelCase_ : Optional[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
UpperCAmelCase_ : str = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"""{spaces * " "}{correct_line}""" )
UpperCAmelCase_ : int = False
else:
new_lines.append(SCREAMING_SNAKE_CASE__ )
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as f:
for line in new_lines:
f.write(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Optional[Any]=None ) -> str:
if fail is not None:
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as f:
UpperCAmelCase_ : List[Any] = {l.strip() for l in f.readlines()}
else:
UpperCAmelCase_ : Dict = None
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as f:
UpperCAmelCase_ : Dict = f.readlines()
UpperCAmelCase_ : int = defaultdict(SCREAMING_SNAKE_CASE__ )
for line in correct_lines:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = line.split(''';''' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Optional[int] = argparse.ArgumentParser()
parser.add_argument("--correct_filename", help="filename of tests with expected result")
parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None)
snake_case_ : str = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
import os
import warnings
from typing import List, Optional
from ...tokenization_utils_base import BatchEncoding
from ...utils import logging
from .configuration_rag import RagConfig
snake_case_ : Any = logging.get_logger(__name__)
class __a :
def __init__( self : int , __magic_name__ : str , __magic_name__ : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = question_encoder
UpperCAmelCase_ : str = generator
UpperCAmelCase_ : Dict = self.question_encoder
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
if os.path.isfile(__magic_name__ ):
raise ValueError(F"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(__magic_name__ , exist_ok=__magic_name__ )
UpperCAmelCase_ : str = os.path.join(__magic_name__ , '''question_encoder_tokenizer''' )
UpperCAmelCase_ : Optional[int] = os.path.join(__magic_name__ , '''generator_tokenizer''' )
self.question_encoder.save_pretrained(__magic_name__ )
self.generator.save_pretrained(__magic_name__ )
@classmethod
def UpperCAmelCase__ ( cls : Tuple , __magic_name__ : str , **__magic_name__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
# dynamically import AutoTokenizer
from ..auto.tokenization_auto import AutoTokenizer
UpperCAmelCase_ : Dict = kwargs.pop('''config''' , __magic_name__ )
if config is None:
UpperCAmelCase_ : Optional[Any] = RagConfig.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained(
__magic_name__ , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' )
UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(
__magic_name__ , config=config.generator , subfolder='''generator_tokenizer''' )
return cls(question_encoder=__magic_name__ , generator=__magic_name__ )
def __call__( self : Union[str, Any] , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[str] ) -> Any:
"""simple docstring"""
return self.current_tokenizer(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] , *__magic_name__ : Optional[int] , **__magic_name__ : Dict ) -> Optional[int]:
"""simple docstring"""
return self.generator.batch_decode(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , *__magic_name__ : List[str] , **__magic_name__ : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
return self.generator.decode(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.question_encoder
def UpperCAmelCase__ ( self : Any ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.generator
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] , __magic_name__ : Optional[List[str]] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "longest" , __magic_name__ : str = None , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> BatchEncoding:
"""simple docstring"""
warnings.warn(
'''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the '''
'''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` '''
'''context manager to prepare your targets. See the documentation of your specific tokenizer for more '''
'''details''' , __magic_name__ , )
if max_length is None:
UpperCAmelCase_ : List[Any] = self.current_tokenizer.model_max_length
UpperCAmelCase_ : List[Any] = self(
__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , max_length=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , **__magic_name__ , )
if tgt_texts is None:
return model_inputs
# Process tgt_texts
if max_target_length is None:
UpperCAmelCase_ : str = self.current_tokenizer.model_max_length
UpperCAmelCase_ : Dict = self(
text_target=__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ , **__magic_name__ , )
UpperCAmelCase_ : Any = labels['''input_ids''']
return model_inputs
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict ) -> set:
UpperCAmelCase_ : Union[str, Any] = set()
# edges = list of graph's edges
UpperCAmelCase_ : Optional[int] = get_edges(SCREAMING_SNAKE_CASE__ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = edges.pop()
chosen_vertices.add(SCREAMING_SNAKE_CASE__ )
chosen_vertices.add(SCREAMING_SNAKE_CASE__ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(SCREAMING_SNAKE_CASE__ )
return chosen_vertices
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict ) -> set:
UpperCAmelCase_ : int = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
import unittest
import numpy as np
from diffusers import OnnxStableDiffusionInpaintPipelineLegacy
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
load_numpy,
nightly,
require_onnxruntime,
require_torch_gpu,
)
if is_onnx_available():
import onnxruntime as ort
@nightly
@require_onnxruntime
@require_torch_gpu
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = ort.SessionOptions()
UpperCAmelCase_ : Optional[Any] = False
return options
def UpperCAmelCase__ ( self : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
UpperCAmelCase_ : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
UpperCAmelCase_ : List[Any] = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' )
# using the PNDM scheduler by default
UpperCAmelCase_ : str = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained(
'''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A red cat sitting on a park bench'''
UpperCAmelCase_ : str = np.random.RandomState(0 )
UpperCAmelCase_ : int = pipe(
prompt=__magic_name__ , image=__magic_name__ , mask_image=__magic_name__ , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=15 , generator=__magic_name__ , output_type='''np''' , )
UpperCAmelCase_ : Union[str, Any] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 1E-2
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
logging.set_verbosity_info()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
if "xprophetnet" in prophetnet_checkpoint_path:
UpperCAmelCase_ : str = XLMProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = XLMProphetNetForConditionalGeneration.from_pretrained(
SCREAMING_SNAKE_CASE__, output_loading_info=SCREAMING_SNAKE_CASE__ )
else:
UpperCAmelCase_ : Tuple = ProphetNetForConditionalGenerationOld.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = ProphetNetForConditionalGeneration.from_pretrained(
SCREAMING_SNAKE_CASE__, output_loading_info=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = ['''key_proj''', '''value_proj''', '''query_proj''']
UpperCAmelCase_ : Dict = {
'''self_attn''': '''ngram_self_attn''',
'''cross_attn''': '''encoder_attn''',
'''cross_attn_layer_norm''': '''encoder_attn_layer_norm''',
'''feed_forward_layer_norm''': '''final_layer_norm''',
'''feed_forward''': '''''',
'''intermediate''': '''fc1''',
'''output''': '''fc2''',
'''key_proj''': '''k_proj''',
'''query_proj''': '''q_proj''',
'''value_proj''': '''v_proj''',
'''word_embeddings''': '''embed_tokens''',
'''embeddings_layer_norm''': '''emb_layer_norm''',
'''relative_pos_embeddings''': '''relative_linear''',
'''ngram_embeddings''': '''ngram_input_embed''',
'''position_embeddings''': '''embed_positions''',
}
for key in loading_info["missing_keys"]:
UpperCAmelCase_ : Union[str, Any] = key.split('''.''' )
if attributes[0] == "lm_head":
UpperCAmelCase_ : Tuple = prophet
UpperCAmelCase_ : Optional[int] = prophet_old
else:
UpperCAmelCase_ : Optional[int] = prophet.prophetnet
UpperCAmelCase_ : Optional[Any] = prophet_old.model
UpperCAmelCase_ : Any = False
for attribute in attributes:
if attribute in mapping:
UpperCAmelCase_ : Union[str, Any] = mapping[attribute]
if not hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) and len(SCREAMING_SNAKE_CASE__ ) > 0:
UpperCAmelCase_ : str = attribute
elif hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
UpperCAmelCase_ : Union[str, Any] = old_model.weight
logger.info(F"""{attribute} is initialized.""" )
UpperCAmelCase_ : Optional[int] = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
UpperCAmelCase_ : int = old_model.bias
logger.info(F"""{attribute} is initialized""" )
UpperCAmelCase_ : Optional[int] = True
break
elif attribute in special_keys and hasattr(SCREAMING_SNAKE_CASE__, '''in_proj_weight''' ):
UpperCAmelCase_ : Union[str, Any] = old_model.in_proj_weight.shape[0] // 3
UpperCAmelCase_ : int = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
UpperCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
UpperCAmelCase_ : Optional[int] = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
UpperCAmelCase_ : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
UpperCAmelCase_ : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
UpperCAmelCase_ : Any = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
UpperCAmelCase_ : str = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
UpperCAmelCase_ : Union[str, Any] = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
UpperCAmelCase_ : List[str] = nn.Parameter(old_model.embed_positions.weight[:512, :] )
UpperCAmelCase_ : Optional[int] = True
break
if attribute.isdigit():
UpperCAmelCase_ : Any = model[int(SCREAMING_SNAKE_CASE__ )]
UpperCAmelCase_ : Optional[Any] = old_model[int(SCREAMING_SNAKE_CASE__ )]
else:
UpperCAmelCase_ : Tuple = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if old_attribute == "":
UpperCAmelCase_ : Dict = old_model
else:
if not hasattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
raise ValueError(F"""{old_model} does not have {old_attribute}""" )
UpperCAmelCase_ : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if not is_key_init:
raise ValueError(F"""{key} was not correctly initialized!""" )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
prophet.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
snake_case_ : Union[str, Any] = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
snake_case_ : str = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = XGLMTokenizer
__a : Optional[int] = XGLMTokenizerFast
__a : List[Any] = True
__a : Union[str, Any] = True
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ : int = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = '''<pad>'''
UpperCAmelCase_ : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(__magic_name__ ) , 10_08 )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_08 )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = XGLMTokenizer(__magic_name__ , keep_accents=__magic_name__ )
UpperCAmelCase_ : Tuple = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__magic_name__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__magic_name__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
UpperCAmelCase_ : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
UpperCAmelCase_ : str = tokenizer.convert_ids_to_tokens(__magic_name__ )
self.assertListEqual(
__magic_name__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def UpperCAmelCase__ ( self : List[str] ) -> str:
"""simple docstring"""
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def UpperCAmelCase__ ( self : Dict ) -> Any:
"""simple docstring"""
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__magic_name__ , f.name )
UpperCAmelCase_ : Optional[Any] = XGLMTokenizer(f.name , keep_accents=__magic_name__ )
UpperCAmelCase_ : int = pickle.dumps(__magic_name__ )
pickle.loads(__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : str = self.get_tokenizer()
UpperCAmelCase_ : int = self.get_rust_tokenizer()
UpperCAmelCase_ : Tuple = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : List[str] = tokenizer.tokenize(__magic_name__ )
UpperCAmelCase_ : Any = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer()
UpperCAmelCase_ : str = tokenizer.encode(__magic_name__ )
UpperCAmelCase_ : Tuple = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = '''Hello World!'''
UpperCAmelCase_ : str = [2, 3_12_27, 44_47, 35]
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
UpperCAmelCase_ : Optional[int] = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35]
# fmt: on
self.assertListEqual(__magic_name__ , self.big_tokenizer.encode(__magic_name__ ) )
@slow
def UpperCAmelCase__ ( self : str ) -> int:
"""simple docstring"""
# fmt: off
UpperCAmelCase_ : Any = {
'''input_ids''': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name='''facebook/xglm-564M''' , padding=__magic_name__ , )
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class __a (lowerCamelCase ):
__a : "DiagonalGaussianDistribution"
class __a (lowerCamelCase , lowerCamelCase ):
__a : str = True
@register_to_config
def __init__( self : str , __magic_name__ : int = 3 , __magic_name__ : int = 3 , __magic_name__ : Tuple[str] = ("DownEncoderBlock2D",) , __magic_name__ : Tuple[str] = ("UpDecoderBlock2D",) , __magic_name__ : Tuple[int] = (64,) , __magic_name__ : int = 1 , __magic_name__ : str = "silu" , __magic_name__ : int = 4 , __magic_name__ : int = 32 , __magic_name__ : int = 32 , __magic_name__ : float = 0.1_8_2_1_5 , ) -> int:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
UpperCAmelCase_ : Union[str, Any] = Encoder(
in_channels=__magic_name__ , out_channels=__magic_name__ , down_block_types=__magic_name__ , block_out_channels=__magic_name__ , layers_per_block=__magic_name__ , act_fn=__magic_name__ , norm_num_groups=__magic_name__ , double_z=__magic_name__ , )
# pass init params to Decoder
UpperCAmelCase_ : Dict = Decoder(
in_channels=__magic_name__ , out_channels=__magic_name__ , up_block_types=__magic_name__ , block_out_channels=__magic_name__ , layers_per_block=__magic_name__ , norm_num_groups=__magic_name__ , act_fn=__magic_name__ , )
UpperCAmelCase_ : str = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
UpperCAmelCase_ : Optional[Any] = nn.Convad(__magic_name__ , __magic_name__ , 1 )
UpperCAmelCase_ : str = False
UpperCAmelCase_ : List[str] = False
# only relevant if vae tiling is enabled
UpperCAmelCase_ : Dict = self.config.sample_size
UpperCAmelCase_ : List[Any] = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
UpperCAmelCase_ : Dict = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
UpperCAmelCase_ : str = 0.2_5
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : Union[str, Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(__magic_name__ , (Encoder, Decoder) ):
UpperCAmelCase_ : List[str] = value
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : bool = True ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = use_tiling
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
self.enable_tiling(__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = True
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Dict[str, AttentionProcessor]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
def fn_recursive_add_processors(__magic_name__ : str , __magic_name__ : torch.nn.Module , __magic_name__ : Dict[str, AttentionProcessor] ):
if hasattr(__magic_name__ , '''set_processor''' ):
UpperCAmelCase_ : Any = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , __magic_name__ , __magic_name__ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(__magic_name__ , __magic_name__ , __magic_name__ )
return processors
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = len(self.attn_processors.keys() )
if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(__magic_name__ )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(__magic_name__ : str , __magic_name__ : torch.nn.Module , __magic_name__ : List[str] ):
if hasattr(__magic_name__ , '''set_processor''' ):
if not isinstance(__magic_name__ , __magic_name__ ):
module.set_processor(__magic_name__ )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , __magic_name__ , __magic_name__ )
for name, module in self.named_children():
fn_recursive_attn_processor(__magic_name__ , __magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> AutoencoderKLOutput:
"""simple docstring"""
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(__magic_name__ , return_dict=__magic_name__ )
if self.use_slicing and x.shape[0] > 1:
UpperCAmelCase_ : Optional[int] = [self.encoder(__magic_name__ ) for x_slice in x.split(1 )]
UpperCAmelCase_ : Union[str, Any] = torch.cat(__magic_name__ )
else:
UpperCAmelCase_ : List[str] = self.encoder(__magic_name__ )
UpperCAmelCase_ : Dict = self.quant_conv(__magic_name__ )
UpperCAmelCase_ : Any = DiagonalGaussianDistribution(__magic_name__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(__magic_name__ , return_dict=__magic_name__ )
UpperCAmelCase_ : Tuple = self.post_quant_conv(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = self.decoder(__magic_name__ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__magic_name__ )
@apply_forward_hook
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if self.use_slicing and z.shape[0] > 1:
UpperCAmelCase_ : Union[str, Any] = [self._decode(__magic_name__ ).sample for z_slice in z.split(1 )]
UpperCAmelCase_ : Any = torch.cat(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self._decode(__magic_name__ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = min(a.shape[2] , b.shape[2] , __magic_name__ )
for y in range(__magic_name__ ):
UpperCAmelCase_ : Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def UpperCAmelCase__ ( self : str , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , __magic_name__ )
for x in range(__magic_name__ ):
UpperCAmelCase_ : Optional[Any] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def UpperCAmelCase__ ( self : str , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> AutoencoderKLOutput:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
UpperCAmelCase_ : Union[str, Any] = int(self.tile_latent_min_size * self.tile_overlap_factor )
UpperCAmelCase_ : List[Any] = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
UpperCAmelCase_ : Any = []
for i in range(0 , x.shape[2] , __magic_name__ ):
UpperCAmelCase_ : int = []
for j in range(0 , x.shape[3] , __magic_name__ ):
UpperCAmelCase_ : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
UpperCAmelCase_ : str = self.encoder(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.quant_conv(__magic_name__ )
row.append(__magic_name__ )
rows.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = []
for i, row in enumerate(__magic_name__ ):
UpperCAmelCase_ : Tuple = []
for j, tile in enumerate(__magic_name__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCAmelCase_ : Optional[Any] = self.blend_v(rows[i - 1][j] , __magic_name__ , __magic_name__ )
if j > 0:
UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , __magic_name__ , __magic_name__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(__magic_name__ , dim=3 ) )
UpperCAmelCase_ : List[str] = torch.cat(__magic_name__ , dim=2 )
UpperCAmelCase_ : List[str] = DiagonalGaussianDistribution(__magic_name__ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=__magic_name__ )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
UpperCAmelCase_ : Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
UpperCAmelCase_ : Union[str, Any] = int(self.tile_sample_min_size * self.tile_overlap_factor )
UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
UpperCAmelCase_ : Union[str, Any] = []
for i in range(0 , z.shape[2] , __magic_name__ ):
UpperCAmelCase_ : int = []
for j in range(0 , z.shape[3] , __magic_name__ ):
UpperCAmelCase_ : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
UpperCAmelCase_ : Union[str, Any] = self.post_quant_conv(__magic_name__ )
UpperCAmelCase_ : Any = self.decoder(__magic_name__ )
row.append(__magic_name__ )
rows.append(__magic_name__ )
UpperCAmelCase_ : Optional[int] = []
for i, row in enumerate(__magic_name__ ):
UpperCAmelCase_ : int = []
for j, tile in enumerate(__magic_name__ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
UpperCAmelCase_ : Tuple = self.blend_v(rows[i - 1][j] , __magic_name__ , __magic_name__ )
if j > 0:
UpperCAmelCase_ : str = self.blend_h(row[j - 1] , __magic_name__ , __magic_name__ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(__magic_name__ , dim=3 ) )
UpperCAmelCase_ : List[Any] = torch.cat(__magic_name__ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__magic_name__ )
def UpperCAmelCase__ ( self : int , __magic_name__ : torch.FloatTensor , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = sample
UpperCAmelCase_ : Any = self.encode(__magic_name__ ).latent_dist
if sample_posterior:
UpperCAmelCase_ : str = posterior.sample(generator=__magic_name__ )
else:
UpperCAmelCase_ : Tuple = posterior.mode()
UpperCAmelCase_ : str = self.decode(__magic_name__ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__magic_name__ )
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_download, hf_hub_url
from PIL import Image
from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
snake_case_ : List[Any] = logging.get_logger(__name__)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Any:
UpperCAmelCase_ : Optional[int] = SwinConfig(
embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=['''stage2''', '''stage3''', '''stage4'''], )
UpperCAmelCase_ : Optional[int] = DetaConfig(
backbone_config=SCREAMING_SNAKE_CASE__, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=SCREAMING_SNAKE_CASE__, with_box_refine=SCREAMING_SNAKE_CASE__, two_stage=SCREAMING_SNAKE_CASE__, )
# set labels
UpperCAmelCase_ : Any = '''huggingface/label-files'''
if "o365" in model_name:
UpperCAmelCase_ : List[Any] = 366
UpperCAmelCase_ : Any = '''object365-id2label.json'''
else:
UpperCAmelCase_ : List[Any] = 91
UpperCAmelCase_ : List[str] = '''coco-detection-id2label.json'''
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : Optional[Any] = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, repo_type='''dataset''' ) ), '''r''' ) )
UpperCAmelCase_ : int = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()}
UpperCAmelCase_ : Any = idalabel
UpperCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()}
return config
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]:
UpperCAmelCase_ : List[Any] = []
# stem
# fmt: off
rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') )
rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') )
rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') )
rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") )
if i < 3:
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") )
rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") )
rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') )
rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') )
rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') )
rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') )
rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') )
rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') )
# transformer encoder
for i in range(config.encoder_layers ):
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias""") )
# transformer decoder
for i in range(config.decoder_layers ):
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias""") )
# fmt: on
return rename_keys
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : int ) -> Dict:
UpperCAmelCase_ : str = dct.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = val
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
UpperCAmelCase_ : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
UpperCAmelCase_ : str = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" )
UpperCAmelCase_ : str = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Optional[int] = in_proj_weight[:dim, :]
UpperCAmelCase_ : List[str] = in_proj_bias[: dim]
UpperCAmelCase_ : int = in_proj_weight[
dim : dim * 2, :
]
UpperCAmelCase_ : Optional[Any] = in_proj_bias[
dim : dim * 2
]
UpperCAmelCase_ : List[str] = in_proj_weight[
-dim :, :
]
UpperCAmelCase_ : Dict = in_proj_bias[-dim :]
# fmt: on
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any:
# transformer decoder self-attention layers
UpperCAmelCase_ : List[Any] = config.d_model
for i in range(config.decoder_layers ):
# read in weights + bias of input projection layer of self-attention
UpperCAmelCase_ : List[str] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCAmelCase_ : List[str] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : str = in_proj_weight[:hidden_size, :]
UpperCAmelCase_ : Tuple = in_proj_bias[:hidden_size]
UpperCAmelCase_ : Any = in_proj_weight[
hidden_size : hidden_size * 2, :
]
UpperCAmelCase_ : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2]
UpperCAmelCase_ : Optional[Any] = in_proj_weight[-hidden_size:, :]
UpperCAmelCase_ : List[Any] = in_proj_bias[-hidden_size:]
def lowerCamelCase_ ( ) -> Any:
UpperCAmelCase_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
UpperCAmelCase_ : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE__, stream=SCREAMING_SNAKE_CASE__ ).raw )
return im
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
UpperCAmelCase_ : List[str] = get_deta_config(SCREAMING_SNAKE_CASE__ )
# load original state dict
if model_name == "deta-swin-large":
UpperCAmelCase_ : int = hf_hub_download(repo_id='''nielsr/deta-checkpoints''', filename='''adet_swin_ft.pth''' )
elif model_name == "deta-swin-large-o365":
UpperCAmelCase_ : Dict = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''', filename='''deta_swin_pt_o365.pth''' )
else:
raise ValueError(F"""Model name {model_name} not supported""" )
UpperCAmelCase_ : Any = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' )['''model''']
# original state dict
for name, param in state_dict.items():
print(SCREAMING_SNAKE_CASE__, param.shape )
# rename keys
UpperCAmelCase_ : Dict = create_rename_keys(SCREAMING_SNAKE_CASE__ )
for src, dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__, config.backbone_config )
read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# fix some prefixes
for key in state_dict.copy().keys():
if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key:
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = val
if "input_proj" in key:
UpperCAmelCase_ : List[str] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = val
if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key:
UpperCAmelCase_ : Union[str, Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = val
# finally, create HuggingFace model and load state dict
UpperCAmelCase_ : int = DetaForObjectDetection(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
model.eval()
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
model.to(SCREAMING_SNAKE_CASE__ )
# load image processor
UpperCAmelCase_ : Union[str, Any] = DetaImageProcessor(format='''coco_detection''' )
# verify our conversion on image
UpperCAmelCase_ : str = prepare_img()
UpperCAmelCase_ : str = processor(images=SCREAMING_SNAKE_CASE__, return_tensors='''pt''' )
UpperCAmelCase_ : Union[str, Any] = encoding['''pixel_values''']
UpperCAmelCase_ : str = model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) )
# verify logits
print('''Logits:''', outputs.logits[0, :3, :3] )
print('''Boxes:''', outputs.pred_boxes[0, :3, :3] )
if model_name == "deta-swin-large":
UpperCAmelCase_ : List[str] = torch.tensor(
[[-7.63_08, -2.84_85, -5.37_37], [-7.20_37, -4.55_05, -4.80_27], [-7.29_43, -4.26_11, -4.66_17]] )
UpperCAmelCase_ : int = torch.tensor([[0.49_87, 0.49_69, 0.99_99], [0.25_49, 0.54_98, 0.48_05], [0.54_98, 0.27_57, 0.05_69]] )
elif model_name == "deta-swin-large-o365":
UpperCAmelCase_ : Optional[int] = torch.tensor(
[[-8.01_22, -3.57_20, -4.97_17], [-8.15_47, -3.68_86, -4.63_89], [-7.66_10, -3.61_94, -5.01_34]] )
UpperCAmelCase_ : Optional[int] = torch.tensor([[0.25_23, 0.55_49, 0.48_81], [0.77_15, 0.41_49, 0.46_01], [0.55_03, 0.27_53, 0.05_75]] )
assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(SCREAMING_SNAKE_CASE__ ), atol=1E-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(SCREAMING_SNAKE_CASE__ ), atol=1E-4 )
print('''Everything ok!''' )
if pytorch_dump_folder_path:
# Save model and processor
logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
processor.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Push to hub
if push_to_hub:
print('''Pushing model and processor to hub...''' )
model.push_to_hub(F"""jozhang97/{model_name}""" )
processor.push_to_hub(F"""jozhang97/{model_name}""" )
if __name__ == "__main__":
snake_case_ : Any = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="deta-swin-large",
choices=["deta-swin-large", "deta-swin-large-o365"],
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
help="Path to the folder to output PyTorch model.",
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
snake_case_ : List[str] = parser.parse_args()
convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
snake_case_ : str = logging.get_logger(__name__)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
UpperCAmelCase_ : Union[str, Any] = WavaVecaForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = downstream_dict['''projector.weight''']
UpperCAmelCase_ : int = downstream_dict['''projector.bias''']
UpperCAmelCase_ : List[Any] = downstream_dict['''model.post_net.linear.weight''']
UpperCAmelCase_ : Any = downstream_dict['''model.post_net.linear.bias''']
return model
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> List[Any]:
UpperCAmelCase_ : Dict = WavaVecaForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = downstream_dict['''model.linear.weight''']
UpperCAmelCase_ : Optional[int] = downstream_dict['''model.linear.bias''']
return model
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : int ) -> Any:
UpperCAmelCase_ : int = WavaVecaForXVector.from_pretrained(SCREAMING_SNAKE_CASE__, config=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = downstream_dict['''connector.weight''']
UpperCAmelCase_ : Any = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
UpperCAmelCase_ : List[Any] = downstream_dict[
F"""model.framelevel_feature_extractor.module.{i}.kernel.weight"""
]
UpperCAmelCase_ : Optional[Any] = downstream_dict[F"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""]
UpperCAmelCase_ : Union[str, Any] = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
UpperCAmelCase_ : int = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
UpperCAmelCase_ : Dict = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
UpperCAmelCase_ : Optional[Any] = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = torch.load(SCREAMING_SNAKE_CASE__, map_location='''cpu''' )
UpperCAmelCase_ : List[str] = checkpoint['''Downstream''']
UpperCAmelCase_ : List[str] = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = WavaVecaFeatureExtractor.from_pretrained(
SCREAMING_SNAKE_CASE__, return_attention_mask=SCREAMING_SNAKE_CASE__, do_normalize=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
UpperCAmelCase_ : List[Any] = convert_classification(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith('''ForAudioFrameClassification''' ):
UpperCAmelCase_ : int = convert_diarization(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
elif arch.endswith('''ForXVector''' ):
UpperCAmelCase_ : Tuple = convert_xvector(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
else:
raise NotImplementedError(F"""S3PRL weights conversion is not supported for {arch}""" )
if hf_config.use_weighted_layer_sum:
UpperCAmelCase_ : str = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
snake_case_ : Any = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
from .record_evaluation import evaluate as evaluate_record
snake_case_ : Union[str, Any] = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n"
snake_case_ : str = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n"
snake_case_ : List[str] = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
return float((preds == labels).mean() )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Union[str, Any]="binary" ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = simple_accuracy(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = float(fa_score(y_true=SCREAMING_SNAKE_CASE__, y_pred=SCREAMING_SNAKE_CASE__, average=SCREAMING_SNAKE_CASE__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
UpperCAmelCase_ : int = {}
for id_pred, label in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = F"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}"""
UpperCAmelCase_ : Tuple = id_pred['''prediction''']
if question_id in question_map:
question_map[question_id].append((pred, label) )
else:
UpperCAmelCase_ : Dict = [(pred, label)]
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = [], []
for question, preds_labels in question_map.items():
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = zip(*SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = fa_score(y_true=SCREAMING_SNAKE_CASE__, y_pred=SCREAMING_SNAKE_CASE__, average='''macro''' )
fas.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(SCREAMING_SNAKE_CASE__ ) )
ems.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = float(sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Dict = sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Dict = float(fa_score(y_true=SCREAMING_SNAKE_CASE__, y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) )
return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a (datasets.Metric ):
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
if self.config_name not in [
"boolq",
"cb",
"copa",
"multirc",
"record",
"rte",
"wic",
"wsc",
"wsc.fixed",
"axb",
"axg",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None , )
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
if self.config_name == "record":
return {
"predictions": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"prediction_text": datasets.Value('''string''' ),
},
"references": {
"idx": {
"passage": datasets.Value('''int64''' ),
"query": datasets.Value('''int64''' ),
},
"answers": datasets.Sequence(datasets.Value('''string''' ) ),
},
}
elif self.config_name == "multirc":
return {
"predictions": {
"idx": {
"answer": datasets.Value('''int64''' ),
"paragraph": datasets.Value('''int64''' ),
"question": datasets.Value('''int64''' ),
},
"prediction": datasets.Value('''int64''' ),
},
"references": datasets.Value('''int64''' ),
}
else:
return {
"predictions": datasets.Value('''int64''' ),
"references": datasets.Value('''int64''' ),
}
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : Any ) -> Tuple:
"""simple docstring"""
if self.config_name == "axb":
return {"matthews_correlation": matthews_corrcoef(__magic_name__ , __magic_name__ )}
elif self.config_name == "cb":
return acc_and_fa(__magic_name__ , __magic_name__ , fa_avg='''macro''' )
elif self.config_name == "record":
UpperCAmelCase_ : List[Any] = [
{
'''qas''': [
{'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]}
for ref in references
]
}
]
UpperCAmelCase_ : Dict = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions}
return evaluate_record(__magic_name__ , __magic_name__ )[0]
elif self.config_name == "multirc":
return evaluate_multirc(__magic_name__ , __magic_name__ )
elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]:
return {"accuracy": simple_accuracy(__magic_name__ , __magic_name__ )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
from .glue import GlueDataset, GlueDataTrainingArguments
from .language_modeling import (
LineByLineTextDataset,
LineByLineWithRefDataset,
LineByLineWithSOPTextDataset,
TextDataset,
TextDatasetForNextSentencePrediction,
)
from .squad import SquadDataset, SquadDataTrainingArguments
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dataset, SCREAMING_SNAKE_CASE__ : Dict[str, str] ) -> Optional[Any]:
UpperCAmelCase_ : Dict = args.log_outputs
UpperCAmelCase_ : Optional[int] = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
UpperCAmelCase_ : List[str] = load_metric('''wer''' )
UpperCAmelCase_ : Union[str, Any] = load_metric('''cer''' )
# compute metrics
UpperCAmelCase_ : Any = wer.compute(references=result['''target'''], predictions=result['''prediction'''] )
UpperCAmelCase_ : Dict = cer.compute(references=result['''target'''], predictions=result['''prediction'''] )
# print & log results
UpperCAmelCase_ : str = F"""WER: {wer_result}\nCER: {cer_result}"""
print(SCREAMING_SNAKE_CASE__ )
with open(F"""{dataset_id}_eval_results.txt""", '''w''' ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCAmelCase_ : List[Any] = F"""log_{dataset_id}_predictions.txt"""
UpperCAmelCase_ : Optional[int] = F"""log_{dataset_id}_targets.txt"""
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as p, open(SCREAMING_SNAKE_CASE__, '''w''' ) as t:
# mapping function to write output
def write_to_file(SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Tuple ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(SCREAMING_SNAKE_CASE__, with_indices=SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> str:
UpperCAmelCase_ : str = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCAmelCase_ : Union[str, Any] = re.sub(SCREAMING_SNAKE_CASE__, '''''', text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCAmelCase_ : Union[str, Any] = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
UpperCAmelCase_ : Optional[Any] = ''' '''.join(text.split(SCREAMING_SNAKE_CASE__ ) )
return text
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]:
# load dataset
UpperCAmelCase_ : int = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=SCREAMING_SNAKE_CASE__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCAmelCase_ : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCAmelCase_ : Any = feature_extractor.sampling_rate
# resample audio
UpperCAmelCase_ : List[str] = dataset.cast_column('''audio''', Audio(sampling_rate=SCREAMING_SNAKE_CASE__ ) )
# load eval pipeline
if args.device is None:
UpperCAmelCase_ : int = 0 if torch.cuda.is_available() else -1
UpperCAmelCase_ : List[Any] = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device )
# map function to decode audio
def map_to_pred(SCREAMING_SNAKE_CASE__ : List[Any] ):
UpperCAmelCase_ : List[str] = asr(
batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s )
UpperCAmelCase_ : Optional[Any] = prediction['''text''']
UpperCAmelCase_ : Tuple = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
UpperCAmelCase_ : List[str] = dataset.map(SCREAMING_SNAKE_CASE__, remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
snake_case_ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
snake_case_ : Any = parser.parse_args()
main(args)
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('''socket.socket''' )
@patch('''builtins.open''' )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[int]:
# ===== initialization =====
UpperCAmelCase_ : Tuple = Mock()
UpperCAmelCase_ : Union[str, Any] = conn, Mock()
UpperCAmelCase_ : Tuple = iter([1, None] )
UpperCAmelCase_ : Any = lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ )
# ===== invoke =====
send_file(filename='''mytext.txt''', testing=SCREAMING_SNAKE_CASE__ )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
import math
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Union[str, Any] = 0
while num > 0:
UpperCAmelCase_ : Any = num % 8
UpperCAmelCase_ : Tuple = octal + (remainder * math.floor(math.pow(10, SCREAMING_SNAKE_CASE__ ) ))
counter += 1
UpperCAmelCase_ : Any = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return F"""0o{int(SCREAMING_SNAKE_CASE__ )}"""
def lowerCamelCase_ ( ) -> None:
print('''\n2 in octal is:''' )
print(decimal_to_octal(2 ) ) # = 2
print('''\n8 in octal is:''' )
print(decimal_to_octal(8 ) ) # = 10
print('''\n65 in octal is:''' )
print(decimal_to_octal(65 ) ) # = 101
print('''\n216 in octal is:''' )
print(decimal_to_octal(216 ) ) # = 330
print('''\n512 in octal is:''' )
print(decimal_to_octal(512 ) ) # = 1000
print('''\n''' )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class __a :
__a : Optional[int] = XGLMConfig
__a : Dict = {}
__a : Dict = "gelu"
def __init__( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Dict=14 , __magic_name__ : str=7 , __magic_name__ : Tuple=True , __magic_name__ : int=True , __magic_name__ : int=True , __magic_name__ : Optional[int]=99 , __magic_name__ : Dict=32 , __magic_name__ : List[Any]=2 , __magic_name__ : Dict=4 , __magic_name__ : Optional[int]=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : Union[str, Any]=5_12 , __magic_name__ : Dict=0.0_2 , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Dict = batch_size
UpperCAmelCase_ : Any = seq_length
UpperCAmelCase_ : List[str] = is_training
UpperCAmelCase_ : Optional[int] = use_input_mask
UpperCAmelCase_ : Optional[int] = use_labels
UpperCAmelCase_ : List[Any] = vocab_size
UpperCAmelCase_ : Dict = d_model
UpperCAmelCase_ : Union[str, Any] = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : Tuple = ffn_dim
UpperCAmelCase_ : Optional[int] = activation_function
UpperCAmelCase_ : str = activation_dropout
UpperCAmelCase_ : Union[str, Any] = attention_dropout
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : str = initializer_range
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : int = 2
UpperCAmelCase_ : List[Any] = 1
def UpperCAmelCase__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : int = self.get_config()
UpperCAmelCase_ : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__magic_name__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__magic_name__ , )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Dict = config_and_inputs
UpperCAmelCase_ : str = {
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Dict = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__a : Optional[int] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__a : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__a : Any = False
__a : Dict = False
__a : Union[str, Any] = False
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = TFXGLMModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , n_embd=37 )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = TFXGLMModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[Any]=True ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCAmelCase_ : Any = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81]
# fmt: on
UpperCAmelCase_ : Union[str, Any] = model.generate(__magic_name__ , do_sample=__magic_name__ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCAmelCase_ : Optional[int] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
UpperCAmelCase_ : Optional[int] = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
UpperCAmelCase_ : str = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
UpperCAmelCase_ : List[str] = model.generate(__magic_name__ , do_sample=__magic_name__ , seed=[7, 0] )
UpperCAmelCase_ : List[str] = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = (
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCAmelCase_ : Union[str, Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCAmelCase_ : Any = '''left'''
# use different length sentences to test batching
UpperCAmelCase_ : int = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
UpperCAmelCase_ : Tuple = tokenizer(__magic_name__ , return_tensors='''tf''' , padding=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = inputs['''input_ids''']
UpperCAmelCase_ : List[str] = model.generate(input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
UpperCAmelCase_ : Any = model.generate(input_ids=__magic_name__ , max_new_tokens=12 )
UpperCAmelCase_ : Optional[int] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
UpperCAmelCase_ : Dict = model.generate(input_ids=__magic_name__ , max_new_tokens=12 )
UpperCAmelCase_ : Any = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Tuple = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
snake_case_ : Tuple = logging.getLogger(__name__)
torch.set_grad_enabled(False)
snake_case_ : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : List[str]=100, SCREAMING_SNAKE_CASE__ : Union[str, Any]=" " ) -> List[str]:
UpperCAmelCase_ : Optional[Any] = text.split(SCREAMING_SNAKE_CASE__ )
return [character.join(text[i : i + n] ).strip() for i in range(0, len(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ )]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict ) -> dict:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = [], []
for title, text in zip(documents['''title'''], documents['''text'''] ):
if text is not None:
for passage in split_text(SCREAMING_SNAKE_CASE__ ):
titles.append(title if title is not None else '''''' )
texts.append(SCREAMING_SNAKE_CASE__ )
return {"title": titles, "text": texts}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : dict, SCREAMING_SNAKE_CASE__ : DPRContextEncoder, SCREAMING_SNAKE_CASE__ : DPRContextEncoderTokenizerFast ) -> dict:
UpperCAmelCase_ : int = ctx_tokenizer(
documents['''title'''], documents['''text'''], truncation=SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )['''input_ids''']
UpperCAmelCase_ : int = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE__ ), return_dict=SCREAMING_SNAKE_CASE__ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : "RagExampleArguments", SCREAMING_SNAKE_CASE__ : "ProcessingArguments", SCREAMING_SNAKE_CASE__ : "IndexHnswArguments", ) -> Optional[int]:
######################################
logger.info('''Step 1 - Create the dataset''' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
UpperCAmelCase_ : int = load_dataset(
'''csv''', data_files=[rag_example_args.csv_path], split='''train''', delimiter='''\t''', column_names=['''title''', '''text'''] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
UpperCAmelCase_ : List[str] = dataset.map(SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, num_proc=processing_args.num_proc )
# And compute the embeddings
UpperCAmelCase_ : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
UpperCAmelCase_ : List[str] = Features(
{'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space
UpperCAmelCase_ : Optional[int] = dataset.map(
partial(SCREAMING_SNAKE_CASE__, ctx_encoder=SCREAMING_SNAKE_CASE__, ctx_tokenizer=SCREAMING_SNAKE_CASE__ ), batched=SCREAMING_SNAKE_CASE__, batch_size=processing_args.batch_size, features=SCREAMING_SNAKE_CASE__, )
# And finally save your dataset
UpperCAmelCase_ : Tuple = os.path.join(rag_example_args.output_dir, '''my_knowledge_dataset''' )
dataset.save_to_disk(SCREAMING_SNAKE_CASE__ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('''Step 2 - Index the dataset''' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
UpperCAmelCase_ : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d, index_hnsw_args.m, faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('''embeddings''', custom_index=SCREAMING_SNAKE_CASE__ )
# And save the index
UpperCAmelCase_ : str = os.path.join(rag_example_args.output_dir, '''my_knowledge_dataset_hnsw_index.faiss''' )
dataset.get_index('''embeddings''' ).save(SCREAMING_SNAKE_CASE__ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class __a :
__a : str = field(
default=str(Path(lowerCamelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
__a : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
__a : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
__a : Optional[str] = field(
default=str(Path(lowerCamelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class __a :
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
__a : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class __a :
__a : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
__a : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
snake_case_ : int = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
snake_case_ ,snake_case_ ,snake_case_ : Optional[int] = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
snake_case_ : Optional[Any] = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
UpperCAmelCase_ : int = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Any ) -> str:
UpperCAmelCase_ : Tuple = 0
while b > 0:
if b & 1:
UpperCAmelCase_ : Any = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
'''simple docstring'''
import time
from dataclasses import dataclass
from multiprocessing import Pool
from unittest import TestCase
from unittest.mock import patch
import multiprocess
import numpy as np
import pytest
from datasets.utils.py_utils import (
NestedDataStructure,
asdict,
iflatmap_unordered,
map_nested,
temp_seed,
temporary_assignment,
zip_dict,
)
from .utils import require_tf, require_torch
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> List[Any]: # picklable for multiprocessing
return x.sum()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> List[Any]: # picklable for multiprocessing
return i + 1
@dataclass
class __a :
__a : int
__a : str
class __a (lowerCamelCase ):
def UpperCAmelCase__ ( self : Tuple ) -> int:
"""simple docstring"""
UpperCAmelCase_ : List[str] = {}
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : str = 1
UpperCAmelCase_ : int = [1, 2]
UpperCAmelCase_ : str = {'''a''': 1, '''b''': 2}
UpperCAmelCase_ : str = {'''a''': [1, 2], '''b''': [3, 4]}
UpperCAmelCase_ : str = {'''a''': {'''1''': 1}, '''b''': 2}
UpperCAmelCase_ : List[str] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
UpperCAmelCase_ : Dict = {}
UpperCAmelCase_ : Optional[int] = []
UpperCAmelCase_ : Optional[int] = 2
UpperCAmelCase_ : Optional[Any] = [2, 3]
UpperCAmelCase_ : List[str] = {'''a''': 2, '''b''': 3}
UpperCAmelCase_ : int = {'''a''': [2, 3], '''b''': [4, 5]}
UpperCAmelCase_ : List[str] = {'''a''': {'''1''': 2}, '''b''': 3}
UpperCAmelCase_ : Optional[int] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ )
UpperCAmelCase_ : Dict = 2
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
UpperCAmelCase_ : Optional[int] = {'''a''': np.eye(2 ), '''b''': np.zeros(3 ), '''c''': np.ones(2 )}
UpperCAmelCase_ : str = {'''a''': 2, '''b''': 0, '''c''': 2}
UpperCAmelCase_ : int = {
'''a''': np.eye(2 ).astype(__magic_name__ ),
'''b''': np.zeros(3 ).astype(__magic_name__ ),
'''c''': np.ones(2 ).astype(__magic_name__ ),
}
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ) , __magic_name__ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ) , __magic_name__ )
self.assertEqual(
{k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , )
with self.assertRaises(__magic_name__ ): # can't pickle a local lambda
map_nested(lambda __magic_name__ : x + 1 , __magic_name__ , num_proc=__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {'''a''': 1, '''b''': 2}
UpperCAmelCase_ : Optional[int] = {'''a''': 3, '''b''': 4}
UpperCAmelCase_ : Optional[int] = {'''a''': 5, '''b''': 6}
UpperCAmelCase_ : Optional[int] = sorted([('''a''', (1, 3, 5)), ('''b''', (2, 4, 6))] )
self.assertEqual(sorted(zip_dict(__magic_name__ , __magic_name__ , __magic_name__ ) ) , __magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
class __a :
__a : List[str] = "bar"
UpperCAmelCase_ : Union[str, Any] = Foo()
self.assertEqual(foo.my_attr , '''bar''' )
with temporary_assignment(__magic_name__ , '''my_attr''' , '''BAR''' ):
self.assertEqual(foo.my_attr , '''BAR''' )
self.assertEqual(foo.my_attr , '''bar''' )
@pytest.mark.parametrize(
'''iterable_length, num_proc, expected_num_proc''', [
(1, None, 1),
(1, 1, 1),
(2, None, 1),
(2, 1, 1),
(2, 2, 1),
(2, 3, 1),
(3, 2, 1),
(16, 16, 16),
(16, 17, 16),
(17, 16, 16),
], )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
with patch('''datasets.utils.py_utils._single_map_nested''' ) as mock_single_map_nested, patch(
'''datasets.parallel.parallel.Pool''' ) as mock_multiprocessing_pool:
UpperCAmelCase_ : List[str] = {F"""{i}""": i for i in range(SCREAMING_SNAKE_CASE__ )}
UpperCAmelCase_ : int = map_nested(lambda SCREAMING_SNAKE_CASE__ : x + 10, SCREAMING_SNAKE_CASE__, num_proc=SCREAMING_SNAKE_CASE__, parallel_min_length=16 )
if expected_num_proc == 1:
assert mock_single_map_nested.called
assert not mock_multiprocessing_pool.called
else:
assert not mock_single_map_nested.called
assert mock_multiprocessing_pool.called
assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc
class __a (lowerCamelCase ):
@require_tf
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
import tensorflow as tf
from tensorflow.keras import layers
UpperCAmelCase_ : int = layers.Dense(2 )
def gen_random_output():
UpperCAmelCase_ : int = tf.random.uniform((1, 3) )
return model(__magic_name__ ).numpy()
with temp_seed(42 , set_tensorflow=__magic_name__ ):
UpperCAmelCase_ : int = gen_random_output()
with temp_seed(42 , set_tensorflow=__magic_name__ ):
UpperCAmelCase_ : List[Any] = gen_random_output()
UpperCAmelCase_ : Optional[int] = gen_random_output()
np.testing.assert_equal(__magic_name__ , __magic_name__ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@require_torch
def UpperCAmelCase__ ( self : Optional[int] ) -> str:
"""simple docstring"""
import torch
def gen_random_output():
UpperCAmelCase_ : Optional[Any] = torch.nn.Linear(3 , 2 )
UpperCAmelCase_ : Tuple = torch.rand(1 , 3 )
return model(__magic_name__ ).detach().numpy()
with temp_seed(42 , set_pytorch=__magic_name__ ):
UpperCAmelCase_ : Union[str, Any] = gen_random_output()
with temp_seed(42 , set_pytorch=__magic_name__ ):
UpperCAmelCase_ : List[Any] = gen_random_output()
UpperCAmelCase_ : List[Any] = gen_random_output()
np.testing.assert_equal(__magic_name__ , __magic_name__ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
def gen_random_output():
return np.random.rand(1 , 3 )
with temp_seed(42 ):
UpperCAmelCase_ : List[str] = gen_random_output()
with temp_seed(42 ):
UpperCAmelCase_ : List[str] = gen_random_output()
UpperCAmelCase_ : str = gen_random_output()
np.testing.assert_equal(__magic_name__ , __magic_name__ )
self.assertGreater(np.abs(outa - outa ).sum() , 0 )
@pytest.mark.parametrize('''input_data''', [{}] )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> str:
UpperCAmelCase_ : List[str] = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).data
assert output_data == input_data
@pytest.mark.parametrize(
'''data, expected_output''', [
({}, []),
([], []),
('''foo''', ['''foo''']),
(['''foo''', '''bar'''], ['''foo''', '''bar''']),
([['''foo''', '''bar''']], ['''foo''', '''bar''']),
([[['''foo'''], ['''bar''']]], ['''foo''', '''bar''']),
([[['''foo'''], '''bar''']], ['''foo''', '''bar''']),
({'''a''': 1, '''b''': 2}, [1, 2]),
({'''a''': [1, 2], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[1, 2]], '''b''': [[3, 4]]}, [1, 2, 3, 4]),
({'''a''': [[1, 2]], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [[[3], [4]]]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [[3, 4]]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [3, 4]}, [1, 2, 3, 4]),
({'''a''': [[[1], [2]]], '''b''': [3, [4]]}, [1, 2, 3, 4]),
({'''a''': {'''1''': 1}, '''b''': 2}, [1, 2]),
({'''a''': {'''1''': [1]}, '''b''': 2}, [1, 2]),
({'''a''': {'''1''': [1]}, '''b''': [2]}, [1, 2]),
], )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]:
UpperCAmelCase_ : List[str] = NestedDataStructure(SCREAMING_SNAKE_CASE__ ).flatten()
assert output == expected_output
def lowerCamelCase_ ( ) -> Dict:
UpperCAmelCase_ : Union[str, Any] = A(x=1, y='''foobar''' )
UpperCAmelCase_ : int = {'''x''': 1, '''y''': '''foobar'''}
assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output
UpperCAmelCase_ : Tuple = {'''a''': {'''b''': A(x=10, y='''foo''' )}, '''c''': [A(x=20, y='''bar''' )]}
UpperCAmelCase_ : List[Any] = {'''a''': {'''b''': {'''x''': 10, '''y''': '''foo'''}}, '''c''': [{'''x''': 20, '''y''': '''bar'''}]}
assert asdict(SCREAMING_SNAKE_CASE__ ) == expected_output
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
asdict([1, A(x=10, y='''foo''' )] )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
return text.split()
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
yield (time.time(), content)
time.sleep(2 )
yield (time.time(), content)
def lowerCamelCase_ ( ) -> Optional[int]:
with Pool(2 ) as pool:
UpperCAmelCase_ : List[Any] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__, _split_text, kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) )
assert out.count('''hello''' ) == 10
assert out.count('''there''' ) == 10
assert len(SCREAMING_SNAKE_CASE__ ) == 20
# check multiprocess from pathos (uses dill for pickling)
with multiprocess.Pool(2 ) as pool:
UpperCAmelCase_ : Optional[int] = list(iflatmap_unordered(SCREAMING_SNAKE_CASE__, _split_text, kwargs_iterable=[{'''text''': '''hello there'''}] * 10 ) )
assert out.count('''hello''' ) == 10
assert out.count('''there''' ) == 10
assert len(SCREAMING_SNAKE_CASE__ ) == 20
# check that we get items as fast as possible
with Pool(2 ) as pool:
UpperCAmelCase_ : str = []
for yield_time, content in iflatmap_unordered(
SCREAMING_SNAKE_CASE__, _aseconds_generator_of_aitems_with_timing, kwargs_iterable=[{'''content''': '''a'''}, {'''content''': '''b'''}] ):
assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded"
out.append(SCREAMING_SNAKE_CASE__ )
assert out.count('''a''' ) == 2
assert out.count('''b''' ) == 2
assert len(SCREAMING_SNAKE_CASE__ ) == 4
| 644
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 1
|
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
snake_case_ : Tuple = logging.get_logger(__name__)
snake_case_ : Tuple = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __a (lowerCamelCase , lowerCamelCase ):
__a : List[str] = "convnextv2"
def __init__( self : List[str] , __magic_name__ : List[Any]=3 , __magic_name__ : Tuple=4 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Tuple=None , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Optional[int]=1E-12 , __magic_name__ : int=0.0 , __magic_name__ : int=2_24 , __magic_name__ : str=None , __magic_name__ : Any=None , **__magic_name__ : Optional[Any] , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
UpperCAmelCase_ : List[Any] = num_channels
UpperCAmelCase_ : Any = patch_size
UpperCAmelCase_ : List[Any] = num_stages
UpperCAmelCase_ : Dict = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes
UpperCAmelCase_ : str = [3, 3, 9, 3] if depths is None else depths
UpperCAmelCase_ : Optional[int] = hidden_act
UpperCAmelCase_ : Tuple = initializer_range
UpperCAmelCase_ : Optional[int] = layer_norm_eps
UpperCAmelCase_ : Any = drop_path_rate
UpperCAmelCase_ : Optional[int] = image_size
UpperCAmelCase_ : Optional[int] = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )]
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_aligned_output_features_output_indices(
out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import numpy
# List of input, output pairs
snake_case_ : Dict = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
snake_case_ : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
snake_case_ : Union[str, Any] = [2, 4, 1, 5]
snake_case_ : Optional[Any] = len(train_data)
snake_case_ : Tuple = 0.009
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : str="train" ) -> Optional[int]:
return calculate_hypothesis_value(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) - output(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
UpperCAmelCase_ : Any = 0
for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict=m ) -> Optional[int]:
UpperCAmelCase_ : Dict = 0
for i in range(SCREAMING_SNAKE_CASE__ ):
if index == -1:
summation_value += _error(SCREAMING_SNAKE_CASE__ )
else:
summation_value += _error(SCREAMING_SNAKE_CASE__ ) * train_data[i][0][index]
return summation_value
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> Any:
UpperCAmelCase_ : List[Any] = summation_of_cost_derivative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) / m
return cost_derivative_value
def lowerCamelCase_ ( ) -> List[str]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
UpperCAmelCase_ : Optional[Any] = 0.00_00_02
UpperCAmelCase_ : Optional[int] = 0
UpperCAmelCase_ : Tuple = 0
while True:
j += 1
UpperCAmelCase_ : List[Any] = [0, 0, 0, 0]
for i in range(0, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : int = get_cost_derivative(i - 1 )
UpperCAmelCase_ : List[Any] = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, atol=SCREAMING_SNAKE_CASE__, rtol=SCREAMING_SNAKE_CASE__, ):
break
UpperCAmelCase_ : Any = temp_parameter_vector
print(('''Number of iterations:''', j) )
def lowerCamelCase_ ( ) -> Optional[Any]:
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
print(('''Actual output value:''', output(SCREAMING_SNAKE_CASE__, '''test''' )) )
print(('''Hypothesis output:''', calculate_hypothesis_value(SCREAMING_SNAKE_CASE__, '''test''' )) )
if __name__ == "__main__":
run_gradient_descent()
print("\nTesting gradient descent for a linear hypothesis function.\n")
test_gradient_descent()
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class __a (nn.Module ):
def __init__( self : Any , __magic_name__ : int = 16 , __magic_name__ : int = 88 , __magic_name__ : Optional[int] = None , __magic_name__ : int = 1 , __magic_name__ : float = 0.0 , __magic_name__ : int = 32 , __magic_name__ : Optional[int] = None , __magic_name__ : bool = False , __magic_name__ : Optional[int] = None , __magic_name__ : Optional[int] = None , __magic_name__ : str = "geglu" , __magic_name__ : Optional[int] = None , ) -> List[Any]:
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : List[Any] = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__magic_name__ , attention_head_dim=__magic_name__ , in_channels=__magic_name__ , num_layers=__magic_name__ , dropout=__magic_name__ , norm_num_groups=__magic_name__ , cross_attention_dim=__magic_name__ , attention_bias=__magic_name__ , sample_size=__magic_name__ , num_vector_embeds=__magic_name__ , activation_fn=__magic_name__ , num_embeds_ada_norm=__magic_name__ , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
UpperCAmelCase_ : List[str] = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
UpperCAmelCase_ : Optional[int] = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
UpperCAmelCase_ : Tuple = [1, 0]
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : Optional[int]=None , __magic_name__ : Optional[int]=None , __magic_name__ : List[str]=None , __magic_name__ : bool = True , ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = hidden_states
UpperCAmelCase_ : Dict = []
UpperCAmelCase_ : Any = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
UpperCAmelCase_ : Optional[Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
UpperCAmelCase_ : Any = self.transformer_index_for_condition[i]
UpperCAmelCase_ : str = self.transformers[transformer_index](
__magic_name__ , encoder_hidden_states=__magic_name__ , timestep=__magic_name__ , cross_attention_kwargs=__magic_name__ , return_dict=__magic_name__ , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
UpperCAmelCase_ : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
UpperCAmelCase_ : Any = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__magic_name__ )
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
snake_case_ : List[Any] = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : str = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[Any] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
snake_case_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class __a :
@staticmethod
def UpperCAmelCase__ ( *__magic_name__ : Optional[Any] , **__magic_name__ : Tuple ) -> int:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_torch
class __a (unittest.TestCase ):
__a : Union[str, Any] = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = pipeline(
'''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' )
UpperCAmelCase_ : int = [
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
}
]
return object_detector, examples
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = object_detector(examples[0] , threshold=0.0 )
UpperCAmelCase_ : int = len(__magic_name__ )
self.assertGreater(__magic_name__ , 0 )
self.assertEqual(
__magic_name__ , [
{
'''score''': ANY(__magic_name__ ),
'''label''': ANY(__magic_name__ ),
'''box''': {'''xmin''': ANY(__magic_name__ ), '''ymin''': ANY(__magic_name__ ), '''xmax''': ANY(__magic_name__ ), '''ymax''': ANY(__magic_name__ )},
}
for i in range(__magic_name__ )
] , )
@require_tf
@unittest.skip('''Zero Shot Object Detection not implemented in TF''' )
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
pass
@require_torch
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Tuple = pipeline(
'''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' )
UpperCAmelCase_ : List[Any] = object_detector(
'''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
{'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 2_74, '''xmax''': 93, '''ymax''': 2_97}},
{'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
] , )
UpperCAmelCase_ : int = object_detector(
[
{
'''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
}
] , threshold=0.6_4 , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{'''score''': 0.7_2_3_5, '''label''': '''cat''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_2_1_8, '''label''': '''remote''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.7_1_8_4, '''label''': '''couch''', '''box''': {'''xmin''': 2_04, '''ymin''': 1_67, '''xmax''': 2_32, '''ymax''': 1_90}},
{'''score''': 0.6_7_4_8, '''label''': '''remote''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_5_6, '''label''': '''cat''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_6_1_4, '''label''': '''couch''', '''box''': {'''xmin''': 5_71, '''ymin''': 83, '''xmax''': 5_98, '''ymax''': 1_03}},
{'''score''': 0.6_4_5_6, '''label''': '''remote''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
{'''score''': 0.6_4_2, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 2_74, '''xmax''': 93, '''ymax''': 2_97}},
{'''score''': 0.6_4_1_9, '''label''': '''cat''', '''box''': {'''xmin''': 4_94, '''ymin''': 1_05, '''xmax''': 5_21, '''ymax''': 1_27}},
]
] , )
@require_torch
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = pipeline('''zero-shot-object-detection''' )
UpperCAmelCase_ : Any = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_35, '''ymin''': 74, '''xmax''': 3_71, '''ymax''': 1_87}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_42, '''ymax''': 4_76}},
] , )
UpperCAmelCase_ : Any = object_detector(
[
{
'''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
},
{
'''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''',
'''candidate_labels''': ['''cat''', '''remote''', '''couch'''],
},
] , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
[
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_35, '''ymin''': 74, '''xmax''': 3_71, '''ymax''': 1_87}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_42, '''ymax''': 4_76}},
],
[
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
{'''score''': 0.1_4_7_4, '''label''': '''remote''', '''box''': {'''xmin''': 3_35, '''ymin''': 74, '''xmax''': 3_71, '''ymax''': 1_87}},
{'''score''': 0.1_2_0_8, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 6_42, '''ymax''': 4_76}},
],
] , )
@require_tf
@unittest.skip('''Zero Shot Object Detection not implemented in TF''' )
def UpperCAmelCase__ ( self : Any ) -> Dict:
"""simple docstring"""
pass
@require_torch
@slow
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = 0.2
UpperCAmelCase_ : Union[str, Any] = pipeline('''zero-shot-object-detection''' )
UpperCAmelCase_ : Optional[int] = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__magic_name__ , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
{'''score''': 0.2_5_3_7, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 3_15, '''ymax''': 4_72}},
] , )
@require_torch
@slow
def UpperCAmelCase__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = 2
UpperCAmelCase_ : Any = pipeline('''zero-shot-object-detection''' )
UpperCAmelCase_ : List[Any] = object_detector(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__magic_name__ , )
self.assertEqual(
nested_simplify(__magic_name__ , decimals=4 ) , [
{'''score''': 0.2_8_6_8, '''label''': '''cat''', '''box''': {'''xmin''': 3_24, '''ymin''': 20, '''xmax''': 6_40, '''ymax''': 3_73}},
{'''score''': 0.2_7_7, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 1_77, '''ymax''': 1_15}},
] , )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
snake_case_ : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
snake_case_ : str = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n"
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
UpperCAmelCase_ : Union[str, Any] = self.transformer_dir
shutil.copy(
os.path.join(__magic_name__ , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def UpperCAmelCase__ ( self : List[str] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Tuple = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any]=None ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code
if overwrite_result is not None:
UpperCAmelCase_ : Tuple = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result
UpperCAmelCase_ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
UpperCAmelCase_ : Tuple = black.format_str(__magic_name__ , mode=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(__magic_name__ , '''w''' , newline='''\n''' ) as f:
f.write(__magic_name__ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(__magic_name__ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=__magic_name__ )
with open(__magic_name__ , '''r''' ) as f:
self.assertTrue(f.read() , __magic_name__ )
def UpperCAmelCase__ ( self : Any ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(__magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
# Base copy consistency
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , __magic_name__ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , __magic_name__ ) , )
# Copy consistency with a really long name
UpperCAmelCase_ : Tuple = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , __magic_name__ , __magic_name__ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , __magic_name__ , overwrite_result=re.sub('''Bert''' , '''TestModel''' , __magic_name__ ) , )
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
UpperCAmelCase_ : Dict = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
UpperCAmelCase_ : List[Any] = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
UpperCAmelCase_ : Any = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = check_copies.convert_to_localized_md(
__magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] )
self.assertFalse(__magic_name__ )
self.assertEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = check_copies.convert_to_localized_md(
__magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
UpperCAmelCase_ : Union[str, Any] = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
UpperCAmelCase_ : Optional[int] = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
UpperCAmelCase_ , UpperCAmelCase_ : Any = check_copies.convert_to_localized_md(
__magic_name__ , __magic_name__ , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> int:
UpperCAmelCase_ : str = hex_num.strip()
if not hex_num:
raise ValueError('''No value was passed to the function''' )
UpperCAmelCase_ : Any = hex_num[0] == '''-'''
if is_negative:
UpperCAmelCase_ : Any = hex_num[1:]
try:
UpperCAmelCase_ : List[str] = int(SCREAMING_SNAKE_CASE__, 16 )
except ValueError:
raise ValueError('''Invalid value was passed to the function''' )
UpperCAmelCase_ : str = ''''''
while int_num > 0:
UpperCAmelCase_ : Dict = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('''-''' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
snake_case_ : Any = False
try:
snake_case_ : Optional[int] = _is_package_available("google.colab")
except ModuleNotFoundError:
pass
@input.register
class __a :
def __init__( self : str , __magic_name__ : str = None , __magic_name__ : list = [] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[str] = choices
UpperCAmelCase_ : Any = prompt
if sys.platform == "win32":
UpperCAmelCase_ : List[Any] = '''*'''
else:
UpperCAmelCase_ : List[Any] = '''➔ '''
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : str = "" ) -> Tuple:
"""simple docstring"""
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , __magic_name__ )
else:
forceWrite(self.choices[index] , __magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> str:
"""simple docstring"""
if index == self.position:
forceWrite(F""" {self.arrow_char} """ )
self.write_choice(__magic_name__ )
else:
forceWrite(F""" {self.choices[index]}""" )
reset_cursor()
def UpperCAmelCase__ ( self : str , __magic_name__ : Direction , __magic_name__ : int = 1 ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(__magic_name__ )
move_cursor(__magic_name__ , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP['''up'''] )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.move_direction(Direction.UP )
@input.mark(KEYMAP['''down'''] )
def UpperCAmelCase__ ( self : str ) -> Tuple:
"""simple docstring"""
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP['''newline'''] )
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , '''DOWN''' )
return self.position
@input.mark(KEYMAP['''interrupt'''] )
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
move_cursor(len(self.choices ) - self.position , '''DOWN''' )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(__magic_name__ )] for number in range(10 )] )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = int(chr(self.current_selection ) )
UpperCAmelCase_ : List[str] = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , __magic_name__ )
else:
return
else:
return
def UpperCAmelCase__ ( self : Any , __magic_name__ : int = 0 ) -> Union[str, Any]:
"""simple docstring"""
if self.prompt:
linebreak()
forceWrite(self.prompt , '''\n''' )
if in_colab:
forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' )
else:
forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' )
UpperCAmelCase_ : Tuple = default_choice
for i in range(len(self.choices ) ):
self.print_choice(__magic_name__ )
forceWrite('''\n''' )
move_cursor(len(self.choices ) - self.position , '''UP''' )
with cursor.hide():
while True:
if in_colab:
try:
UpperCAmelCase_ : int = int(builtins.input() )
except ValueError:
UpperCAmelCase_ : Tuple = default_choice
else:
UpperCAmelCase_ : Dict = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , '''UP''' )
clear_line()
self.write_choice(__magic_name__ , '''\n''' )
return choice
| 644
|
'''simple docstring'''
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = get_activation('''swish''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = get_activation('''silu''' )
self.assertIsInstance(__magic_name__ , nn.SiLU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = get_activation('''mish''' )
self.assertIsInstance(__magic_name__ , nn.Mish )
self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = get_activation('''gelu''' )
self.assertIsInstance(__magic_name__ , nn.GELU )
self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 )
self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 )
self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
| 644
| 1
|
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
snake_case_ : int = logging.get_logger(__name__)
snake_case_ : str = {
"SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __a (lowerCamelCase ):
__a : Optional[Any] = "deformable_detr"
__a : Optional[Any] = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : List[Any] , __magic_name__ : str=True , __magic_name__ : Tuple=None , __magic_name__ : Optional[Any]=3 , __magic_name__ : int=3_00 , __magic_name__ : str=10_24 , __magic_name__ : List[Any]=6 , __magic_name__ : Dict=10_24 , __magic_name__ : Optional[int]=8 , __magic_name__ : List[Any]=6 , __magic_name__ : Dict=10_24 , __magic_name__ : int=8 , __magic_name__ : Tuple=0.0 , __magic_name__ : Tuple=True , __magic_name__ : Tuple="relu" , __magic_name__ : Union[str, Any]=2_56 , __magic_name__ : Dict=0.1 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : int=0.0_2 , __magic_name__ : Dict=1.0 , __magic_name__ : Dict=True , __magic_name__ : str=False , __magic_name__ : str="sine" , __magic_name__ : List[Any]="resnet50" , __magic_name__ : List[str]=True , __magic_name__ : Optional[int]=False , __magic_name__ : List[str]=4 , __magic_name__ : List[Any]=4 , __magic_name__ : Optional[Any]=4 , __magic_name__ : List[str]=False , __magic_name__ : Tuple=3_00 , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Optional[int]=1 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : Dict=0.2_5 , __magic_name__ : Tuple=False , **__magic_name__ : List[Any] , ) -> Tuple:
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
UpperCAmelCase_ : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Tuple = backbone_config.get('''model_type''' )
UpperCAmelCase_ : Optional[int] = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase_ : Any = config_class.from_dict(__magic_name__ )
UpperCAmelCase_ : Dict = use_timm_backbone
UpperCAmelCase_ : List[str] = backbone_config
UpperCAmelCase_ : Union[str, Any] = num_channels
UpperCAmelCase_ : int = num_queries
UpperCAmelCase_ : Optional[Any] = max_position_embeddings
UpperCAmelCase_ : Dict = d_model
UpperCAmelCase_ : Tuple = encoder_ffn_dim
UpperCAmelCase_ : List[Any] = encoder_layers
UpperCAmelCase_ : Any = encoder_attention_heads
UpperCAmelCase_ : List[Any] = decoder_ffn_dim
UpperCAmelCase_ : Optional[Any] = decoder_layers
UpperCAmelCase_ : Any = decoder_attention_heads
UpperCAmelCase_ : Optional[int] = dropout
UpperCAmelCase_ : Union[str, Any] = attention_dropout
UpperCAmelCase_ : Tuple = activation_dropout
UpperCAmelCase_ : Optional[int] = activation_function
UpperCAmelCase_ : Dict = init_std
UpperCAmelCase_ : int = init_xavier_std
UpperCAmelCase_ : List[str] = encoder_layerdrop
UpperCAmelCase_ : List[Any] = auxiliary_loss
UpperCAmelCase_ : Optional[int] = position_embedding_type
UpperCAmelCase_ : Union[str, Any] = backbone
UpperCAmelCase_ : Optional[Any] = use_pretrained_backbone
UpperCAmelCase_ : Dict = dilation
# deformable attributes
UpperCAmelCase_ : Optional[int] = num_feature_levels
UpperCAmelCase_ : str = encoder_n_points
UpperCAmelCase_ : Tuple = decoder_n_points
UpperCAmelCase_ : Dict = two_stage
UpperCAmelCase_ : Optional[int] = two_stage_num_proposals
UpperCAmelCase_ : Dict = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
UpperCAmelCase_ : Union[str, Any] = class_cost
UpperCAmelCase_ : List[str] = bbox_cost
UpperCAmelCase_ : Dict = giou_cost
# Loss coefficients
UpperCAmelCase_ : Tuple = mask_loss_coefficient
UpperCAmelCase_ : int = dice_loss_coefficient
UpperCAmelCase_ : Optional[Any] = bbox_loss_coefficient
UpperCAmelCase_ : Any = giou_loss_coefficient
UpperCAmelCase_ : List[Any] = eos_coefficient
UpperCAmelCase_ : Dict = focal_alpha
UpperCAmelCase_ : int = disable_custom_kernels
super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ )
@property
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return self.encoder_attention_heads
@property
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return self.d_model
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
UpperCAmelCase_ : str = self.backbone_config.to_dict()
UpperCAmelCase_ : List[Any] = self.__class__.model_type
return output
| 644
|
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
snake_case_ : Union[str, Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
__a : Tuple = ["pixel_values"]
def __init__( self : List[Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Union[str, Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[str] , ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = do_resize
UpperCAmelCase_ : Tuple = do_rescale
UpperCAmelCase_ : List[Any] = size_divisor
UpperCAmelCase_ : Any = resample
super().__init__(**__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : str , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Tuple ) -> np.ndarray:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_image_size(__magic_name__ )
# Rounds the height and width down to the closest multiple of size_divisor
UpperCAmelCase_ : Dict = height // size_divisor * size_divisor
UpperCAmelCase_ : Dict = width // size_divisor * size_divisor
UpperCAmelCase_ : Any = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
return image
def UpperCAmelCase__ ( self : int , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[Any] ) -> np.ndarray:
"""simple docstring"""
return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : Any=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Tuple , ) -> BatchFeature:
"""simple docstring"""
UpperCAmelCase_ : Dict = do_resize if do_resize is not None else self.do_resize
UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale
UpperCAmelCase_ : Any = size_divisor if size_divisor is not None else self.size_divisor
UpperCAmelCase_ : Dict = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError('''size_divisor is required for resizing''' )
UpperCAmelCase_ : Optional[int] = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError('''Invalid image(s)''' )
# All transformations expect numpy arrays.
UpperCAmelCase_ : List[str] = [to_numpy_array(__magic_name__ ) for img in images]
if do_resize:
UpperCAmelCase_ : str = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_rescale:
UpperCAmelCase_ : Tuple = [self.rescale(__magic_name__ , scale=1 / 2_55 ) for image in images]
UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
UpperCAmelCase_ : int = {'''pixel_values''': images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : str , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float = 0 ) -> None:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = row, column
UpperCAmelCase_ : Any = [[default_value for c in range(__magic_name__ )] for r in range(__magic_name__ )]
def __str__( self : Any ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = F"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
UpperCAmelCase_ : Tuple = 0
for row_vector in self.array:
for obj in row_vector:
UpperCAmelCase_ : Optional[Any] = max(__magic_name__ , len(str(__magic_name__ ) ) )
UpperCAmelCase_ : Union[str, Any] = F"""%{max_element_length}s"""
# Make string and return
def single_line(__magic_name__ : list[float] ) -> str:
nonlocal string_format_identifier
UpperCAmelCase_ : Dict = '''['''
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(__magic_name__ ) for row_vector in self.array )
return s
def __repr__( self : Tuple ) -> str:
"""simple docstring"""
return str(self )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : tuple[int, int] ) -> bool:
"""simple docstring"""
if not (isinstance(__magic_name__ , (list, tuple) ) and len(__magic_name__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Optional[Any] , __magic_name__ : tuple[int, int] ) -> Any:
"""simple docstring"""
assert self.validate_indicies(__magic_name__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : str , __magic_name__ : tuple[int, int] , __magic_name__ : float ) -> None:
"""simple docstring"""
assert self.validate_indicies(__magic_name__ )
UpperCAmelCase_ : Optional[int] = value
def __add__( self : Any , __magic_name__ : Matrix ) -> Matrix:
"""simple docstring"""
assert isinstance(__magic_name__ , __magic_name__ )
assert self.row == another.row and self.column == another.column
# Add
UpperCAmelCase_ : Optional[Any] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : str = self[r, c] + another[r, c]
return result
def __neg__( self : Optional[Any] ) -> Matrix:
"""simple docstring"""
UpperCAmelCase_ : Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : str = -self[r, c]
return result
def __sub__( self : Dict , __magic_name__ : Matrix ) -> Matrix:
"""simple docstring"""
return self + (-another)
def __mul__( self : Tuple , __magic_name__ : int | float | Matrix ) -> Matrix:
"""simple docstring"""
if isinstance(__magic_name__ , (int, float) ): # Scalar multiplication
UpperCAmelCase_ : Tuple = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : List[str] = self[r, c] * another
return result
elif isinstance(__magic_name__ , __magic_name__ ): # Matrix multiplication
assert self.column == another.row
UpperCAmelCase_ : Dict = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
UpperCAmelCase_ : List[str] = F"""Unsupported type given for another ({type(__magic_name__ )})"""
raise TypeError(__magic_name__ )
def UpperCAmelCase__ ( self : List[str] ) -> Matrix:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
UpperCAmelCase_ : List[Any] = self[r, c]
return result
def UpperCAmelCase__ ( self : Any , __magic_name__ : Matrix , __magic_name__ : Matrix ) -> Any:
"""simple docstring"""
assert isinstance(__magic_name__ , __magic_name__ ) and isinstance(__magic_name__ , __magic_name__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
UpperCAmelCase_ : str = v.transpose()
UpperCAmelCase_ : Dict = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def lowerCamelCase_ ( ) -> None:
# a^(-1)
UpperCAmelCase_ : Any = Matrix(3, 3, 0 )
for i in range(3 ):
UpperCAmelCase_ : List[str] = 1
print(F"""a^(-1) is {ainv}""" )
# u, v
UpperCAmelCase_ : List[Any] = Matrix(3, 1, 0 )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 1, 2, -3
UpperCAmelCase_ : Optional[Any] = Matrix(3, 1, 0 )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = 4, -2, 5
print(F"""u is {u}""" )
print(F"""v is {v}""" )
print(F"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
def lowerCamelCase_ ( ) -> None:
import doctest
doctest.testmod()
testa()
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int:
UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(10, 22) = }''')
| 644
| 1
|
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
snake_case_ : List[Any] = None
snake_case_ : Union[str, Any] = {
"7B": 1_10_08,
"13B": 1_38_24,
"30B": 1_79_20,
"65B": 2_20_16,
"70B": 2_86_72,
}
snake_case_ : Dict = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Tuple=1, SCREAMING_SNAKE_CASE__ : List[str]=256 ) -> Dict:
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]:
with open(SCREAMING_SNAKE_CASE__, '''r''' ) as f:
return json.load(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : List[Any]=True ) -> Dict:
os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = os.path.join(SCREAMING_SNAKE_CASE__, '''tmp''' )
os.makedirs(SCREAMING_SNAKE_CASE__, exist_ok=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = read_json(os.path.join(SCREAMING_SNAKE_CASE__, '''params.json''' ) )
UpperCAmelCase_ : Dict = NUM_SHARDS[model_size]
UpperCAmelCase_ : Any = params['''n_layers''']
UpperCAmelCase_ : Union[str, Any] = params['''n_heads''']
UpperCAmelCase_ : Optional[int] = n_heads // num_shards
UpperCAmelCase_ : List[str] = params['''dim''']
UpperCAmelCase_ : Tuple = dim // n_heads
UpperCAmelCase_ : Optional[Any] = 1_00_00.0
UpperCAmelCase_ : Optional[int] = 1.0 / (base ** (torch.arange(0, SCREAMING_SNAKE_CASE__, 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
UpperCAmelCase_ : Tuple = params['''n_kv_heads'''] # for GQA / MQA
UpperCAmelCase_ : str = n_heads_per_shard // num_key_value_heads
UpperCAmelCase_ : str = dim // num_key_value_heads
else: # compatibility with other checkpoints
UpperCAmelCase_ : List[Any] = n_heads
UpperCAmelCase_ : List[Any] = n_heads_per_shard
UpperCAmelCase_ : Tuple = dim
# permute for sliced rotary
def permute(SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int=n_heads, SCREAMING_SNAKE_CASE__ : List[Any]=dim, SCREAMING_SNAKE_CASE__ : Dict=dim ):
return w.view(SCREAMING_SNAKE_CASE__, dima // n_heads // 2, 2, SCREAMING_SNAKE_CASE__ ).transpose(1, 2 ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
UpperCAmelCase_ : int = torch.load(os.path.join(SCREAMING_SNAKE_CASE__, '''consolidated.00.pth''' ), map_location='''cpu''' )
else:
# Sharded
UpperCAmelCase_ : List[str] = [
torch.load(os.path.join(SCREAMING_SNAKE_CASE__, F"""consolidated.{i:02d}.pth""" ), map_location='''cpu''' )
for i in range(SCREAMING_SNAKE_CASE__ )
]
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : str = {'''weight_map''': {}}
for layer_i in range(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Any = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase_ : Optional[int] = {
F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute(
loaded[F"""layers.{layer_i}.attention.wq.weight"""] ),
F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute(
loaded[F"""layers.{layer_i}.attention.wk.weight"""] ),
F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""],
F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""],
F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""],
F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""],
F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""],
F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""],
F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
UpperCAmelCase_ : Optional[int] = {
F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][
F"""layers.{layer_i}.attention_norm.weight"""
].clone(),
F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][
F"""layers.{layer_i}.ffn_norm.weight"""
].clone(),
}
UpperCAmelCase_ : Optional[int] = permute(
torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ )
], dim=0, ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : Any = permute(
torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ )
], dim=0, ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : Any = torch.cat(
[
loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
for i in range(SCREAMING_SNAKE_CASE__ )
], dim=0, ).reshape(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = torch.cat(
[loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=1 )
UpperCAmelCase_ : str = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=0 )
UpperCAmelCase_ : Tuple = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=1 )
UpperCAmelCase_ : Tuple = torch.cat(
[loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(SCREAMING_SNAKE_CASE__ )], dim=0 )
UpperCAmelCase_ : Optional[int] = inv_freq
for k, v in state_dict.items():
UpperCAmelCase_ : Dict = filename
param_count += v.numel()
torch.save(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
UpperCAmelCase_ : str = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"""
if model_size == "7B":
# Unsharded
UpperCAmelCase_ : Optional[Any] = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
UpperCAmelCase_ : str = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )], dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(SCREAMING_SNAKE_CASE__ )], dim=0 ),
}
for k, v in state_dict.items():
UpperCAmelCase_ : List[str] = filename
param_count += v.numel()
torch.save(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) )
# Write configs
UpperCAmelCase_ : Any = {'''total_size''': param_count * 2}
write_json(SCREAMING_SNAKE_CASE__, os.path.join(SCREAMING_SNAKE_CASE__, '''pytorch_model.bin.index.json''' ) )
UpperCAmelCase_ : str = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
UpperCAmelCase_ : List[Any] = params['''multiple_of'''] if '''multiple_of''' in params else 256
UpperCAmelCase_ : str = LlamaConfig(
hidden_size=SCREAMING_SNAKE_CASE__, intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), num_attention_heads=params['''n_heads'''], num_hidden_layers=params['''n_layers'''], rms_norm_eps=params['''norm_eps'''], num_key_value_heads=SCREAMING_SNAKE_CASE__, )
config.save_pretrained(SCREAMING_SNAKE_CASE__ )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
UpperCAmelCase_ : int = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__, torch_dtype=torch.floataa, low_cpu_mem_usage=SCREAMING_SNAKE_CASE__ )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(SCREAMING_SNAKE_CASE__, safe_serialization=SCREAMING_SNAKE_CASE__ )
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
# Initialize the tokenizer based on the `spm` model
UpperCAmelCase_ : Optional[int] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" )
UpperCAmelCase_ : List[str] = tokenizer_class(SCREAMING_SNAKE_CASE__ )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> str:
UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''', help='''Location of LLaMA weights, which contains tokenizer.model and model folders''', )
parser.add_argument(
'''--model_size''', choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''], )
parser.add_argument(
'''--output_dir''', help='''Location to write HF model and tokenizer''', )
parser.add_argument('''--safe_serialization''', type=SCREAMING_SNAKE_CASE__, help='''Whether or not to save using `safetensors`.''' )
UpperCAmelCase_ : Union[str, Any] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir, input_base_path=os.path.join(args.input_dir, args.model_size ), model_size=args.model_size, safe_serialization=args.safe_serialization, )
UpperCAmelCase_ : Any = os.path.join(args.input_dir, '''tokenizer.model''' )
write_tokenizer(args.output_dir, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class __a (lowerCamelCase ):
__a : int = "dandelin/vilt-b32-finetuned-vqa"
__a : Any = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
__a : Any = "image_qa"
__a : str = AutoProcessor
__a : Any = AutoModelForVisualQuestionAnswering
__a : List[Any] = ["image", "text"]
__a : int = ["text"]
def __init__( self : Tuple , *__magic_name__ : Any , **__magic_name__ : Any ) -> Tuple:
"""simple docstring"""
requires_backends(self , ['''vision'''] )
super().__init__(*__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : "Image" , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
return self.pre_processor(__magic_name__ , __magic_name__ , return_tensors='''pt''' )
def UpperCAmelCase__ ( self : Any , __magic_name__ : List[str] ) -> Optional[Any]:
"""simple docstring"""
with torch.no_grad():
return self.model(**__magic_name__ ).logits
def UpperCAmelCase__ ( self : int , __magic_name__ : int ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Dict = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
from typing import Any
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = num_of_nodes
UpperCAmelCase_ : list[list[int]] = []
UpperCAmelCase_ : dict[int, int] = {}
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : int , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
self.m_edges.append([u_node, v_node, weight] )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> int:
"""simple docstring"""
if self.m_component[u_node] == u_node:
return u_node
return self.find_component(self.m_component[u_node] )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : int ) -> None:
"""simple docstring"""
if self.m_component[u_node] != u_node:
for k in self.m_component:
UpperCAmelCase_ : int = self.find_component(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
if component_size[u_node] <= component_size[v_node]:
UpperCAmelCase_ : Dict = v_node
component_size[v_node] += component_size[u_node]
self.set_component(__magic_name__ )
elif component_size[u_node] >= component_size[v_node]:
UpperCAmelCase_ : str = self.find_component(__magic_name__ )
component_size[u_node] += component_size[v_node]
self.set_component(__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = []
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : list[Any] = [-1] * self.m_num_of_nodes
# A list of components (initialized to all of the nodes)
for node in range(self.m_num_of_nodes ):
self.m_component.update({node: node} )
component_size.append(1 )
UpperCAmelCase_ : Optional[int] = self.m_num_of_nodes
while num_of_components > 1:
for edge in self.m_edges:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = edge
UpperCAmelCase_ : List[Any] = self.m_component[u]
UpperCAmelCase_ : List[Any] = self.m_component[v]
if u_component != v_component:
for component in (u_component, v_component):
if (
minimum_weight_edge[component] == -1
or minimum_weight_edge[component][2] > w
):
UpperCAmelCase_ : Dict = [u, v, w]
for edge in minimum_weight_edge:
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = edge
UpperCAmelCase_ : int = self.m_component[u]
UpperCAmelCase_ : int = self.m_component[v]
if u_component != v_component:
mst_weight += w
self.union(__magic_name__ , __magic_name__ , __magic_name__ )
print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" )
num_of_components -= 1
UpperCAmelCase_ : Optional[Any] = [-1] * self.m_num_of_nodes
print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" )
def lowerCamelCase_ ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class __a :
def __init__( self : Optional[Any] , __magic_name__ : int | None = None ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[str] = value
UpperCAmelCase_ : Node | None = None # Added in order to delete a node easier
UpperCAmelCase_ : Node | None = None
UpperCAmelCase_ : Node | None = None
def __repr__( self : List[str] ) -> str:
"""simple docstring"""
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({F"""{self.value}""": (self.left, self.right)} , indent=1 )
class __a :
def __init__( self : int , __magic_name__ : Node | None = None ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = root
def __str__( self : Any ) -> str:
"""simple docstring"""
return str(self.root )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Node , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if new_children is not None: # reset its kids
UpperCAmelCase_ : Dict = node.parent
if node.parent is not None: # reset its parent
if self.is_right(__magic_name__ ): # If it is the right children
UpperCAmelCase_ : Optional[Any] = new_children
else:
UpperCAmelCase_ : Optional[int] = new_children
else:
UpperCAmelCase_ : List[str] = new_children
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Node ) -> bool:
"""simple docstring"""
if node.parent and node.parent.right:
return node == node.parent.right
return False
def UpperCAmelCase__ ( self : Union[str, Any] ) -> bool:
"""simple docstring"""
return self.root is None
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Tuple = Node(__magic_name__ ) # create a new Node
if self.empty(): # if Tree is empty
UpperCAmelCase_ : List[Any] = new_node # set its root
else: # Tree is not empty
UpperCAmelCase_ : str = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
UpperCAmelCase_ : Union[str, Any] = new_node # We insert the new node in a leaf
break
else:
UpperCAmelCase_ : List[Any] = parent_node.left
else:
if parent_node.right is None:
UpperCAmelCase_ : List[Any] = new_node
break
else:
UpperCAmelCase_ : Union[str, Any] = parent_node.right
UpperCAmelCase_ : Union[str, Any] = parent_node
def UpperCAmelCase__ ( self : Optional[Any] , *__magic_name__ : List[str] ) -> None:
"""simple docstring"""
for value in values:
self.__insert(__magic_name__ )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : int ) -> Node | None:
"""simple docstring"""
if self.empty():
raise IndexError('''Warning: Tree is empty! please use another.''' )
else:
UpperCAmelCase_ : str = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
UpperCAmelCase_ : List[str] = node.left if value < node.value else node.right
return node
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
if self.root is None:
return None
UpperCAmelCase_ : Dict = self.root
if not self.empty():
while node.right is not None:
UpperCAmelCase_ : Any = node.right
return node
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Node | None = None ) -> Node | None:
"""simple docstring"""
if node is None:
UpperCAmelCase_ : Optional[int] = self.root
if self.root is None:
return None
if not self.empty():
UpperCAmelCase_ : Union[str, Any] = self.root
while node.left is not None:
UpperCAmelCase_ : Dict = node.left
return node
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : List[str] = self.search(__magic_name__ ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(__magic_name__ , __magic_name__ )
elif node.left is None: # Has only right children
self.__reassign_nodes(__magic_name__ , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(__magic_name__ , node.left )
else:
UpperCAmelCase_ : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
UpperCAmelCase_ : Optional[int] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Node | None ) -> Iterable:
"""simple docstring"""
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : List[Any]=None ) -> Any:
"""simple docstring"""
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : list , __magic_name__ : Node | None ) -> None:
"""simple docstring"""
if node:
self.inorder(__magic_name__ , node.left )
arr.append(node.value )
self.inorder(__magic_name__ , node.right )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : int , __magic_name__ : Node ) -> int:
"""simple docstring"""
UpperCAmelCase_ : list[int] = []
self.inorder(__magic_name__ , __magic_name__ ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Node | None ) -> list[Node]:
UpperCAmelCase_ : Any = []
if curr_node is not None:
UpperCAmelCase_ : Any = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCamelCase_ ( ) -> None:
UpperCAmelCase_ : str = (8, 3, 6, 1, 10, 14, 13, 4, 7)
UpperCAmelCase_ : Tuple = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('''The value 6 exists''' )
else:
print('''The value 6 doesn\'t exist''' )
if t.search(-1 ) is not None:
print('''The value -1 exists''' )
else:
print('''The value -1 doesn\'t exist''' )
if not t.empty():
print('''Max Value: ''', t.get_max().value ) # type: ignore
print('''Min Value: ''', t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 644
| 1
|
'''simple docstring'''
import json
import multiprocessing
import os
import re
from collections import defaultdict
import torch
from accelerate import Accelerator
from accelerate.utils import set_seed
from arguments import HumanEvalArguments
from datasets import load_dataset, load_metric
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList
snake_case_ : Optional[Any] = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"]
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : Any , __magic_name__ : Optional[Any] , __magic_name__ : int=None , __magic_name__ : List[str]=1 ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = tokenizer
UpperCAmelCase_ : str = dataset
UpperCAmelCase_ : str = len(__magic_name__ ) if n_tasks is None else n_tasks
UpperCAmelCase_ : List[Any] = n_copies
def __iter__( self : str ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = []
for task in range(self.n_tasks ):
# without strip, the model generate commented codes ...
prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() )
UpperCAmelCase_ : Any = self.tokenizer(__magic_name__ , padding=__magic_name__ , return_tensors='''pt''' )
for task in range(self.n_tasks ):
for _ in range(self.n_copies ):
yield {
"ids": outputs.input_ids[task],
"task_id": task,
"input_len": outputs.attention_mask[task].sum(),
}
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Tuple ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = start_length
UpperCAmelCase_ : Dict = eof_strings
UpperCAmelCase_ : List[str] = tokenizer
def __call__( self : str , __magic_name__ : Tuple , __magic_name__ : Any , **__magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.tokenizer.batch_decode(input_ids[:, self.start_length :] )
UpperCAmelCase_ : List[str] = []
for decoded_generation in decoded_generations:
done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) )
return all(__magic_name__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
UpperCAmelCase_ : str = re.split('''(%s)''' % '''|'''.join(SCREAMING_SNAKE_CASE__ ), SCREAMING_SNAKE_CASE__ )
# last string should be ""
return "".join(string_list[:-2] )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Tuple=20, **SCREAMING_SNAKE_CASE__ : Any ) -> List[str]:
UpperCAmelCase_ : Dict = defaultdict(SCREAMING_SNAKE_CASE__ ) # dict of list of generated tokens
for step, batch in tqdm(enumerate(SCREAMING_SNAKE_CASE__ ) ):
with torch.no_grad():
UpperCAmelCase_ : Optional[Any] = batch['''ids'''].shape[-1]
UpperCAmelCase_ : Optional[int] = accelerator.unwrap_model(SCREAMING_SNAKE_CASE__ ).generate(
input_ids=batch['''ids'''][:, : batch['''input_len''']], num_return_sequences=SCREAMING_SNAKE_CASE__, **SCREAMING_SNAKE_CASE__ )
# each task is generated batch_size times
UpperCAmelCase_ : Any = batch['''task_id'''].repeat(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accelerator.pad_across_processes(
SCREAMING_SNAKE_CASE__, dim=1, pad_index=tokenizer.pad_token_id )
UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.gather((generated_tokens, generated_tasks) )
UpperCAmelCase_ : Any = generated_tokens.cpu().numpy()
UpperCAmelCase_ : Union[str, Any] = generated_tasks.cpu().numpy()
for task, generated_tokens in zip(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
gen_token_dict[task].append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )]
for task, generated_tokens in gen_token_dict.items():
for s in generated_tokens:
UpperCAmelCase_ : int = tokenizer.decode(SCREAMING_SNAKE_CASE__, skip_special_tokens=SCREAMING_SNAKE_CASE__, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
code_gens[task].append(remove_last_block(SCREAMING_SNAKE_CASE__ ) )
return code_gens
def lowerCamelCase_ ( ) -> Tuple:
# Setup configuration
UpperCAmelCase_ : Optional[Any] = HfArgumentParser(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[str] = parser.parse_args()
transformers.logging.set_verbosity_error()
# enables code execution in code_eval metric
UpperCAmelCase_ : Union[str, Any] = args.HF_ALLOW_CODE_EVAL
# make sure tokenizer plays nice with multiprocessing
UpperCAmelCase_ : Any = '''false'''
if args.num_workers is None:
UpperCAmelCase_ : Optional[Any] = multiprocessing.cpu_count()
# Use dataset load to feed to accelerate
UpperCAmelCase_ : Optional[Any] = Accelerator()
set_seed(args.seed, device_specific=SCREAMING_SNAKE_CASE__ )
# Load model and tokenizer
UpperCAmelCase_ : List[str] = AutoTokenizer.from_pretrained(args.model_ckpt )
UpperCAmelCase_ : int = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt )
# Generation settings
UpperCAmelCase_ : Any = {
'''do_sample''': args.do_sample,
'''temperature''': args.temperature,
'''max_new_tokens''': args.max_new_tokens,
'''top_p''': args.top_p,
'''top_k''': args.top_k,
'''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )] ),
}
# Load evaluation dataset and metric
UpperCAmelCase_ : Optional[Any] = load_dataset('''openai_humaneval''' )
UpperCAmelCase_ : List[Any] = load_metric('''code_eval''' )
UpperCAmelCase_ : Tuple = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] )
UpperCAmelCase_ : Union[str, Any] = args.n_samples // args.batch_size
UpperCAmelCase_ : Any = TokenizedDataset(SCREAMING_SNAKE_CASE__, human_eval['''test'''], n_copies=SCREAMING_SNAKE_CASE__, n_tasks=SCREAMING_SNAKE_CASE__ )
# do not confuse args.batch_size, which is actually the num_return_sequences
UpperCAmelCase_ : List[str] = DataLoader(SCREAMING_SNAKE_CASE__, batch_size=1 )
# Run a quick test to see if code evaluation is enabled
try:
UpperCAmelCase_ : Tuple = code_eval_metric.compute(references=[''''''], predictions=[['''''']] )
except ValueError as exception:
print(
'''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`'''
''' flag to enable code evaluation.''' )
raise exception
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[int] = complete_code(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, n_tasks=SCREAMING_SNAKE_CASE__, batch_size=args.batch_size, **SCREAMING_SNAKE_CASE__, )
if accelerator.is_main_process:
UpperCAmelCase_ : Optional[Any] = []
for task in tqdm(range(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : Any = human_eval['''test'''][task]['''test''']
UpperCAmelCase_ : List[Any] = F"""check({human_eval["test"][task]["entry_point"]})"""
references.append('''\n''' + test_func + '''\n''' + entry_point )
# Evaluate completions with "code_eval" metric
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = code_eval_metric.compute(
references=SCREAMING_SNAKE_CASE__, predictions=SCREAMING_SNAKE_CASE__, num_workers=args.num_workers )
print(F"""Results: {pass_at_k}""" )
# Save results to json file
with open(args.output_file, '''w''' ) as fp:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing
# https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
import sys
import turtle
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float] ) -> tuple[float, float]:
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : tuple[float, float], SCREAMING_SNAKE_CASE__ : int, ) -> None:
my_pen.up()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
my_pen.goto(vertexa[0], vertexa[1] )
if depth == 0:
return
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
triangle(SCREAMING_SNAKE_CASE__, get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), get_mid(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ), depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
snake_case_ : Any = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
snake_case_ : Tuple = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
| 644
| 1
|
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
snake_case_ : Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
snake_case_ : List[str] = get_tests_dir("fixtures/test_sentencepiece_bpe.model")
snake_case_ : List[str] = "pt" if is_torch_available() else "tf"
@require_sentencepiece
@require_tokenizers
class __a (lowerCamelCase , unittest.TestCase ):
__a : str = CamembertTokenizer
__a : Optional[int] = CamembertTokenizerFast
__a : List[Any] = True
__a : Union[str, Any] = True
def UpperCAmelCase__ ( self : int ) -> Tuple:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase_ : Optional[Any] = CamembertTokenizer(__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase__ ( self : Any ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : int = '''<pad>'''
UpperCAmelCase_ : Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__magic_name__ ) , __magic_name__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(__magic_name__ ) , 10_04 )
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_05 )
def UpperCAmelCase__ ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = CamembertTokenizer(__magic_name__ )
tokenizer.save_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[Any] = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
UpperCAmelCase_ : Optional[int] = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : Any = tokenizer.encode(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : List[str] = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
UpperCAmelCase_ : List[Any] = tokenizer.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Any = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ : List[str] = self.get_tokenizer()
UpperCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer()
UpperCAmelCase_ : List[Any] = '''I was born in 92000, and this is falsé.'''
UpperCAmelCase_ : int = tokenizer.tokenize(__magic_name__ )
UpperCAmelCase_ : List[Any] = rust_tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : int = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
UpperCAmelCase_ : Any = rust_tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_rust_tokenizer()
UpperCAmelCase_ : int = tokenizer.encode(__magic_name__ )
UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
@slow
def UpperCAmelCase__ ( self : Any ) -> str:
"""simple docstring"""
# fmt: off
UpperCAmelCase_ : str = {'''input_ids''': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
UpperCAmelCase_ : List[Any] = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=__magic_name__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=__magic_name__ , )
| 644
|
'''simple docstring'''
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
snake_case_ : List[str] = False
class __a (unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> str:
"""simple docstring"""
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : Union[str, Any] = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__magic_name__ )
UpperCAmelCase_ : Optional[int] = VersatileDiffusionPipeline.from_pretrained(__magic_name__ , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Any = generator.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe.dual_guided(
prompt='''first prompt''' , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images
assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass"
def UpperCAmelCase__ ( self : str ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = '''cyberpunk 2077'''
UpperCAmelCase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe.dual_guided(
prompt=__magic_name__ , image=__magic_name__ , text_to_image_strength=0.7_5 , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
UpperCAmelCase_ : List[str] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = '''A painting of a squirrel eating a burger '''
UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe.text_to_image(
prompt=__magic_name__ , generator=__magic_name__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
UpperCAmelCase_ : Tuple = pipe.image_variation(__magic_name__ , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Optional[Any] = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : List[str] = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 1000 ) -> int:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = 1, 1
UpperCAmelCase_ : List[str] = []
for i in range(1, n + 1 ):
UpperCAmelCase_ : int = prev_numerator + 2 * prev_denominator
UpperCAmelCase_ : Any = prev_numerator + prev_denominator
if len(str(SCREAMING_SNAKE_CASE__ ) ) > len(str(SCREAMING_SNAKE_CASE__ ) ):
result.append(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = numerator
UpperCAmelCase_ : Optional[Any] = denominator
return len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 644
|
'''simple docstring'''
snake_case_ : int = {
"Pillow": "Pillow",
"accelerate": "accelerate>=0.11.0",
"compel": "compel==0.1.8",
"black": "black~=23.1",
"datasets": "datasets",
"filelock": "filelock",
"flax": "flax>=0.4.1",
"hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.13.2",
"requests-mock": "requests-mock==1.10.0",
"importlib_metadata": "importlib_metadata",
"invisible-watermark": "invisible-watermark",
"isort": "isort>=5.5.4",
"jax": "jax>=0.2.8,!=0.3.2",
"jaxlib": "jaxlib>=0.1.65",
"Jinja2": "Jinja2",
"k-diffusion": "k-diffusion>=0.0.12",
"torchsde": "torchsde",
"note_seq": "note_seq",
"librosa": "librosa",
"numpy": "numpy",
"omegaconf": "omegaconf",
"parameterized": "parameterized",
"protobuf": "protobuf>=3.20.3,<4",
"pytest": "pytest",
"pytest-timeout": "pytest-timeout",
"pytest-xdist": "pytest-xdist",
"ruff": "ruff>=0.0.241",
"safetensors": "safetensors",
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
"scipy": "scipy",
"onnx": "onnx",
"regex": "regex!=2019.12.17",
"requests": "requests",
"tensorboard": "tensorboard",
"torch": "torch>=1.4",
"torchvision": "torchvision",
"transformers": "transformers>=4.25.1",
"urllib3": "urllib3<=2.0.0",
}
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Tuple = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Optional[int] = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Dict ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.dummy_uncond_unet
UpperCAmelCase_ : Dict = KarrasVeScheduler()
UpperCAmelCase_ : Union[str, Any] = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[int] = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Tuple = torch.manual_seed(0 )
UpperCAmelCase_ : str = pipe(num_inference_steps=2 , generator=__magic_name__ , output_type='''numpy''' , return_dict=__magic_name__ )[0]
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
UpperCAmelCase_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase_ : Dict = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : List[str] = '''google/ncsnpp-celebahq-256'''
UpperCAmelCase_ : List[str] = UNetaDModel.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = KarrasVeScheduler()
UpperCAmelCase_ : Any = KarrasVePipeline(unet=__magic_name__ , scheduler=__magic_name__ )
pipe.to(__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Dict = torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = pipe(num_inference_steps=20 , generator=__magic_name__ , output_type='''numpy''' ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
UpperCAmelCase_ : Optional[Any] = np.array([0.5_7_8, 0.5_8_1_1, 0.5_9_2_4, 0.5_8_0_9, 0.5_8_7, 0.5_8_8_6, 0.5_8_6_1, 0.5_8_0_2, 0.5_8_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 644
| 1
|
'''simple docstring'''
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
snake_case_ : Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowerCamelCase )
class __a (lowerCamelCase ):
def __init__( self : Optional[Any] , **__magic_name__ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**__magic_name__ )
if self.framework != "pt":
raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" )
# No specific FOR_XXX available yet
def __call__( self : Union[str, Any] , __magic_name__ : Union[np.ndarray, bytes, str] , **__magic_name__ : Any ) -> Any:
"""simple docstring"""
return super().__call__(__magic_name__ , **__magic_name__ )
def UpperCAmelCase__ ( self : str , **__magic_name__ : List[str] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = {}
if "candidate_labels" in kwargs:
UpperCAmelCase_ : Optional[int] = kwargs['''candidate_labels''']
if "hypothesis_template" in kwargs:
UpperCAmelCase_ : Union[str, Any] = kwargs['''hypothesis_template''']
return preprocess_params, {}, {}
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : int=None , __magic_name__ : Optional[Any]="This is a sound of {}." ) -> str:
"""simple docstring"""
if isinstance(__magic_name__ , __magic_name__ ):
if audio.startswith('''http://''' ) or audio.startswith('''https://''' ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
UpperCAmelCase_ : Optional[int] = requests.get(__magic_name__ ).content
else:
with open(__magic_name__ , '''rb''' ) as f:
UpperCAmelCase_ : Optional[int] = f.read()
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : str = ffmpeg_read(__magic_name__ , self.feature_extractor.sampling_rate )
if not isinstance(__magic_name__ , np.ndarray ):
raise ValueError('''We expect a numpy ndarray as input''' )
if len(audio.shape ) != 1:
raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' )
UpperCAmelCase_ : Union[str, Any] = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' )
UpperCAmelCase_ : List[Any] = candidate_labels
UpperCAmelCase_ : Dict = [hypothesis_template.format(__magic_name__ ) for x in candidate_labels]
UpperCAmelCase_ : Optional[int] = self.tokenizer(__magic_name__ , return_tensors=self.framework , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [text_inputs]
return inputs
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = model_inputs.pop('''candidate_labels''' )
UpperCAmelCase_ : Dict = model_inputs.pop('''text_inputs''' )
if isinstance(text_inputs[0] , __magic_name__ ):
UpperCAmelCase_ : str = text_inputs[0]
else:
# Batching case.
UpperCAmelCase_ : List[Any] = text_inputs[0][0]
UpperCAmelCase_ : Optional[int] = self.model(**__magic_name__ , **__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = {
'''candidate_labels''': candidate_labels,
'''logits''': outputs.logits_per_audio,
}
return model_outputs
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = model_outputs.pop('''candidate_labels''' )
UpperCAmelCase_ : Optional[int] = model_outputs['''logits'''][0]
if self.framework == "pt":
UpperCAmelCase_ : int = logits.softmax(dim=0 )
UpperCAmelCase_ : Tuple = probs.tolist()
else:
raise ValueError('''`tf` framework not supported.''' )
UpperCAmelCase_ : Dict = [
{'''score''': score, '''label''': candidate_label}
for score, candidate_label in sorted(zip(__magic_name__ , __magic_name__ ) , key=lambda __magic_name__ : -x[0] )
]
return result
| 644
|
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class __a (lowerCamelCase ):
__a : List[Any] = "openai/whisper-base"
__a : Optional[Any] = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
__a : Any = "transcriber"
__a : str = WhisperProcessor
__a : List[Any] = WhisperForConditionalGeneration
__a : int = ["audio"]
__a : Optional[Any] = ["text"]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : List[str] ) -> Optional[int]:
"""simple docstring"""
return self.pre_processor(__magic_name__ , return_tensors='''pt''' ).input_features
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
return self.model.generate(inputs=__magic_name__ )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict ) -> str:
"""simple docstring"""
return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0]
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
snake_case_ : Optional[Any] = {
"configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"],
"tokenization_m2m_100": ["M2M100Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST",
"M2M100ForConditionalGeneration",
"M2M100Model",
"M2M100PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
snake_case_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
return abs(SCREAMING_SNAKE_CASE__ ) if a == 0 else greatest_common_divisor(b % a, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : int ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = y, x % y
return abs(SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> Optional[int]:
try:
UpperCAmelCase_ : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' )
UpperCAmelCase_ : Optional[int] = int(nums[0] )
UpperCAmelCase_ : List[Any] = int(nums[1] )
print(
F"""greatest_common_divisor({num_a}, {num_a}) = """
F"""{greatest_common_divisor(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
print(F"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )}""" )
except (IndexError, UnboundLocalError, ValueError):
print('''Wrong input''' )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : bool = False ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Any = F"""Expected string as input, found {type(SCREAMING_SNAKE_CASE__ )}"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : List[Any] = F"""Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE__ )}"""
raise ValueError(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Union[str, Any] = input_str.split('''_''' )
UpperCAmelCase_ : int = 0 if use_pascal else 1
UpperCAmelCase_ : Dict = words[start_index:]
UpperCAmelCase_ : Tuple = [word[0].upper() + word[1:] for word in words_to_capitalize]
UpperCAmelCase_ : List[Any] = '''''' if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 644
|
'''simple docstring'''
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : int , __magic_name__ : Optional[Any] , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : str=True , __magic_name__ : Optional[int]=True , __magic_name__ : List[Any]=99 , __magic_name__ : int=24 , __magic_name__ : Optional[int]=2 , __magic_name__ : Tuple=6 , __magic_name__ : Union[str, Any]=37 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : str=0.1 , __magic_name__ : Tuple=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : Tuple=2 , __magic_name__ : Tuple=0.0_2 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Optional[int]=None , __magic_name__ : Any=10_00 , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : List[str] = seq_length
UpperCAmelCase_ : Dict = is_training
UpperCAmelCase_ : List[str] = use_input_mask
UpperCAmelCase_ : Any = use_token_type_ids
UpperCAmelCase_ : Any = use_labels
UpperCAmelCase_ : Any = vocab_size
UpperCAmelCase_ : Dict = hidden_size
UpperCAmelCase_ : Tuple = num_hidden_layers
UpperCAmelCase_ : Tuple = num_attention_heads
UpperCAmelCase_ : int = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : Optional[int] = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Union[str, Any] = max_position_embeddings
UpperCAmelCase_ : int = type_vocab_size
UpperCAmelCase_ : List[Any] = type_sequence_label_size
UpperCAmelCase_ : int = initializer_range
UpperCAmelCase_ : Dict = num_labels
UpperCAmelCase_ : List[str] = scope
UpperCAmelCase_ : List[str] = range_bbox
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase_ : List[str] = bbox[i, j, 3]
UpperCAmelCase_ : Dict = bbox[i, j, 1]
UpperCAmelCase_ : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase_ : List[str] = bbox[i, j, 2]
UpperCAmelCase_ : Tuple = bbox[i, j, 0]
UpperCAmelCase_ : Union[str, Any] = t
UpperCAmelCase_ : int = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
UpperCAmelCase_ : Optional[int] = None
if self.use_token_type_ids:
UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Dict = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : int , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = LiltModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : List[Any] = model(__magic_name__ , bbox=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , bbox=__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.num_labels
UpperCAmelCase_ : List[Any] = LiltForTokenClassification(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Optional[int] , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : Any , ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : str = LiltForQuestionAnswering(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Optional[Any] = model(
__magic_name__ , bbox=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[int] = config_and_inputs
UpperCAmelCase_ : Tuple = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Tuple = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__a : Any = (
{
"feature-extraction": LiltModel,
"question-answering": LiltForQuestionAnswering,
"text-classification": LiltForSequenceClassification,
"token-classification": LiltForTokenClassification,
"zero-shot": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : Union[str, Any] = False
__a : int = False
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : int ) -> str:
"""simple docstring"""
return True
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = LiltModelTester(self )
UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : Tuple = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = LiltModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_torch
@slow
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : str = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__magic_name__ )
UpperCAmelCase_ : Any = torch.tensor([[1, 2]] , device=__magic_name__ )
UpperCAmelCase_ : int = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__magic_name__ )
# forward pass
with torch.no_grad():
UpperCAmelCase_ : Optional[int] = model(input_ids=__magic_name__ , bbox=__magic_name__ )
UpperCAmelCase_ : int = torch.Size([1, 2, 7_68] )
UpperCAmelCase_ : List[str] = torch.tensor(
[[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=__magic_name__ , )
self.assertTrue(outputs.last_hidden_state.shape , __magic_name__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __magic_name__ , atol=1E-3 ) )
| 644
| 1
|
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class __a :
def __init__( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Any=13 , __magic_name__ : Any=7 , __magic_name__ : Any=True , __magic_name__ : Any=True , __magic_name__ : List[str]=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[int]=99 , __magic_name__ : Any=32 , __magic_name__ : Tuple=2 , __magic_name__ : List[str]=4 , __magic_name__ : Dict=37 , __magic_name__ : Tuple="gelu" , __magic_name__ : int=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Any=16 , __magic_name__ : Dict=2 , __magic_name__ : str=0.0_2 , __magic_name__ : Any=3 , __magic_name__ : List[Any]=4 , __magic_name__ : Optional[Any]=None , __magic_name__ : Dict=0 , ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = batch_size
UpperCAmelCase_ : Optional[Any] = seq_length
UpperCAmelCase_ : List[str] = is_training
UpperCAmelCase_ : Optional[int] = use_input_mask
UpperCAmelCase_ : Optional[Any] = use_token_type_ids
UpperCAmelCase_ : Dict = use_labels
UpperCAmelCase_ : Tuple = vocab_size
UpperCAmelCase_ : int = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : int = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Dict = hidden_act
UpperCAmelCase_ : Dict = hidden_dropout_prob
UpperCAmelCase_ : Tuple = attention_probs_dropout_prob
UpperCAmelCase_ : List[Any] = max_position_embeddings
UpperCAmelCase_ : Union[str, Any] = type_vocab_size
UpperCAmelCase_ : Any = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : Optional[int] = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Union[str, Any] = scope
UpperCAmelCase_ : Optional[Any] = projection_dim
def UpperCAmelCase__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : int = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : Any = None
if self.use_token_type_ids:
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Any = None
UpperCAmelCase_ : Optional[int] = None
UpperCAmelCase_ : Tuple = None
if self.use_labels:
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
UpperCAmelCase_ : Union[str, Any] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : Union[str, Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = TFDPRContextEncoder(config=__magic_name__ )
UpperCAmelCase_ : Tuple = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : str , __magic_name__ : int , __magic_name__ : Tuple , __magic_name__ : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = TFDPRQuestionEncoder(config=__magic_name__ )
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : Optional[int] = model(__magic_name__ , token_type_ids=__magic_name__ )
UpperCAmelCase_ : int = model(__magic_name__ )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : Tuple ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = TFDPRReader(config=__magic_name__ )
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : Optional[Any] = config_and_inputs
UpperCAmelCase_ : int = {'''input_ids''': input_ids}
return config, inputs_dict
@require_tf
class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : Union[str, Any] = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
__a : Dict = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {}
__a : str = False
__a : Optional[int] = False
__a : List[str] = False
__a : Optional[Any] = False
__a : List[str] = False
def UpperCAmelCase__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = TFDPRModelTester(self )
UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Optional[int] ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[str] = TFDPRContextEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Optional[int] = TFDPRContextEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Dict = TFDPRQuestionEncoder.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : Union[str, Any] = TFDPRReader.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
@require_tf
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' )
UpperCAmelCase_ : Tuple = tf.constant(
[[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP]
UpperCAmelCase_ : Tuple = model(__magic_name__ )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
UpperCAmelCase_ : Optional[Any] = tf.constant(
[
[
0.0_3_2_3_6_2_5_3,
0.1_2_7_5_3_3_3_5,
0.1_6_8_1_8_5_0_9,
0.0_0_2_7_9_7_8_6,
0.3_8_9_6_9_3_3,
0.2_4_2_6_4_9_4_5,
0.2_1_7_8_9_7_1,
-0.0_2_3_3_5_2_2_7,
-0.0_8_4_8_1_9_5_9,
-0.1_4_3_2_4_1_1_7,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 644
|
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
snake_case_ : str = logging.get_logger(__name__)
snake_case_ : int = "▁"
snake_case_ : str = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"}
snake_case_ : int = {
"sentencepiece_model_file": "sentencepiece.bpe.model",
"vocab_file": "vocab.txt",
}
snake_case_ : Optional[Any] = {
"vocab_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt",
},
"sentencepiece_model_file": {
"ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
"ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model",
},
}
snake_case_ : Dict = {
"ernie-m-base": 5_14,
"ernie-m-large": 5_14,
}
snake_case_ : Any = {
"ernie-m-base": {"do_lower_case": False},
"ernie-m-large": {"do_lower_case": False},
}
class __a (lowerCamelCase ):
__a : List[str] = ["input_ids"]
__a : Union[str, Any] = VOCAB_FILES_NAMES
__a : Tuple = PRETRAINED_INIT_CONFIGURATION
__a : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
__a : Union[str, Any] = RESOURCE_FILES_NAMES
def __init__( self : Union[str, Any] , __magic_name__ : Dict , __magic_name__ : int=None , __magic_name__ : str=False , __magic_name__ : int="utf8" , __magic_name__ : Optional[int]="[UNK]" , __magic_name__ : Dict="[SEP]" , __magic_name__ : List[Any]="[PAD]" , __magic_name__ : str="[CLS]" , __magic_name__ : Optional[int]="[MASK]" , __magic_name__ : Optional[Dict[str, Any]] = None , **__magic_name__ : Union[str, Any] , ) -> None:
"""simple docstring"""
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
UpperCAmelCase_ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , vocab_file=__magic_name__ , encoding=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , )
UpperCAmelCase_ : Optional[Any] = do_lower_case
UpperCAmelCase_ : List[str] = sentencepiece_model_ckpt
UpperCAmelCase_ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__magic_name__ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
UpperCAmelCase_ : List[Any] = self.load_vocab(filepath=__magic_name__ )
else:
UpperCAmelCase_ : str = {self.sp_model.id_to_piece(__magic_name__ ): id for id in range(self.sp_model.get_piece_size() )}
UpperCAmelCase_ : int = {v: k for k, v in self.vocab.items()}
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Any ) -> Any:
"""simple docstring"""
if text is None:
return None
UpperCAmelCase_ : str = self.tokenize(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', []
for i, ch in enumerate(__magic_name__ ):
if ch in self.SP_CHAR_MAPPING:
UpperCAmelCase_ : Optional[int] = self.SP_CHAR_MAPPING.get(__magic_name__ )
else:
UpperCAmelCase_ : Union[str, Any] = unicodedata.normalize('''NFKC''' , __magic_name__ )
if self.is_whitespace(__magic_name__ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__magic_name__ ) )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = normalized_text, [], 0
if self.do_lower_case:
UpperCAmelCase_ : Optional[int] = text.lower()
for token in split_tokens:
if token[:1] == "▁":
UpperCAmelCase_ : Tuple = token[1:]
UpperCAmelCase_ : int = text[offset:].index(__magic_name__ ) + offset
UpperCAmelCase_ : Optional[int] = start + len(__magic_name__ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
UpperCAmelCase_ : int = end
return token_mapping
@property
def UpperCAmelCase__ ( self : Any ) -> Any:
"""simple docstring"""
return len(self.vocab )
def UpperCAmelCase__ ( self : List[Any] ) -> int:
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.__dict__.copy()
UpperCAmelCase_ : Optional[Any] = None
return state
def __setstate__( self : str , __magic_name__ : Any ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Dict = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
UpperCAmelCase_ : int = {}
UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Any ) -> List[str]:
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__magic_name__ , __magic_name__ ) for c in text) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Tuple , __magic_name__ : Any=False , __magic_name__ : List[str]=64 , __magic_name__ : List[str]=0.1 ) -> List[str]:
"""simple docstring"""
if self.sp_model_kwargs.get('''enable_sampling''' ) is True:
UpperCAmelCase_ : Dict = True
if self.sp_model_kwargs.get('''alpha''' ) is not None:
UpperCAmelCase_ : Union[str, Any] = self.sp_model_kwargs.get('''alpha''' )
if self.sp_model_kwargs.get('''nbest_size''' ) is not None:
UpperCAmelCase_ : Any = self.sp_model_kwargs.get('''nbest_size''' )
if not enable_sampling:
UpperCAmelCase_ : Dict = self.sp_model.EncodeAsPieces(__magic_name__ )
else:
UpperCAmelCase_ : Dict = self.sp_model.SampleEncodeAsPieces(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : List[Any] = []
for pi, piece in enumerate(__magic_name__ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__magic_name__ ) and pi != 0:
new_pieces.append(__magic_name__ )
continue
else:
continue
UpperCAmelCase_ : List[str] = 0
for i, chunk in enumerate(__magic_name__ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__magic_name__ ) or self.is_punct(__magic_name__ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__magic_name__ )
UpperCAmelCase_ : List[Any] = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : List[str] = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
UpperCAmelCase_ : str = i
if len(__magic_name__ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Optional[int] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, Any] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = self.convert_ids_to_tokens(__magic_name__ )
UpperCAmelCase_ : Optional[Any] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip()
return out_string
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[Any] ) -> List[Any]:
"""simple docstring"""
return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.reverse_vocab.get(__magic_name__ , self.unk_token )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any , __magic_name__ : Union[str, Any]=None ) -> Any:
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id]
UpperCAmelCase_ : List[Any] = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCAmelCase__ ( self : Any , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None ) -> int:
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[str]=None , __magic_name__ : Optional[Any]=False ) -> Optional[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__magic_name__ )) + [1, 1] + ([0] * len(__magic_name__ )) + [1]
return [1] + ([0] * len(__magic_name__ )) + [1]
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
# called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__magic_name__ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__magic_name__ ) + 1) + [1] * (len(__magic_name__ ) + 3)
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str ) -> Tuple:
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] ) -> str:
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[Any] ) -> Dict:
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__magic_name__ ) == 1:
UpperCAmelCase_ : Optional[Any] = unicodedata.category(__magic_name__ )
if cat == "Zs":
return True
return False
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Tuple ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = {}
with io.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f:
for index, line in enumerate(__magic_name__ ):
UpperCAmelCase_ : List[Any] = line.rstrip('''\n''' )
UpperCAmelCase_ : Dict = int(__magic_name__ )
return token_to_idx
def UpperCAmelCase__ ( self : Dict , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
if os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Any = os.path.join(
__magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
else:
UpperCAmelCase_ : List[str] = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory
with open(__magic_name__ , '''w''' , encoding='''utf-8''' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda __magic_name__ : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
''' Please check that the vocabulary is not corrupted!''' )
UpperCAmelCase_ : Dict = token_index
writer.write(token + '''\n''' )
index += 1
UpperCAmelCase_ : Union[str, Any] = os.path.join(__magic_name__ , '''sentencepiece.bpe.model''' )
with open(__magic_name__ , '''wb''' ) as fi:
UpperCAmelCase_ : Optional[int] = self.sp_model.serialized_model_proto()
fi.write(__magic_name__ )
return (vocab_file,)
| 644
| 1
|
'''simple docstring'''
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
class __a (lowerCamelCase ):
def __init__( self : Optional[int] , __magic_name__ : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> str:
"""simple docstring"""
super().__init__()
UpperCAmelCase_ : Dict = nn.ModuleList(__magic_name__ )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : Union[torch.Tensor, float, int] , __magic_name__ : torch.Tensor , __magic_name__ : List[torch.tensor] , __magic_name__ : List[float] , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[torch.Tensor] = None , __magic_name__ : Optional[Dict[str, Any]] = None , __magic_name__ : bool = False , __magic_name__ : bool = True , ) -> Union[ControlNetOutput, Tuple]:
"""simple docstring"""
for i, (image, scale, controlnet) in enumerate(zip(__magic_name__ , __magic_name__ , self.nets ) ):
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = controlnet(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , )
# merge samples
if i == 0:
UpperCAmelCase_ , UpperCAmelCase_ : Any = down_samples, mid_sample
else:
UpperCAmelCase_ : Optional[int] = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__magic_name__ , __magic_name__ )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, os.PathLike] , __magic_name__ : bool = True , __magic_name__ : Callable = None , __magic_name__ : bool = False , __magic_name__ : Optional[str] = None , ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : List[str] = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__magic_name__ , is_main_process=__magic_name__ , save_function=__magic_name__ , safe_serialization=__magic_name__ , variant=__magic_name__ , )
idx += 1
UpperCAmelCase_ : List[Any] = model_path_to_save + F"""_{idx}"""
@classmethod
def UpperCAmelCase__ ( cls : Dict , __magic_name__ : Optional[Union[str, os.PathLike]] , **__magic_name__ : Dict ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
UpperCAmelCase_ : int = pretrained_model_path
while os.path.isdir(__magic_name__ ):
UpperCAmelCase_ : Optional[int] = ControlNetModel.from_pretrained(__magic_name__ , **__magic_name__ )
controlnets.append(__magic_name__ )
idx += 1
UpperCAmelCase_ : Union[str, Any] = pretrained_model_path + F"""_{idx}"""
logger.info(F"""{len(__magic_name__ )} controlnets loaded from {pretrained_model_path}.""" )
if len(__magic_name__ ) == 0:
raise ValueError(
F"""No ControlNets found under {os.path.dirname(__magic_name__ )}. Expected at least {pretrained_model_path + "_0"}.""" )
return cls(__magic_name__ )
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int ) -> str:
if number > 0:
raise ValueError('''input must be a negative integer''' )
UpperCAmelCase_ : Union[str, Any] = len(bin(SCREAMING_SNAKE_CASE__ )[3:] )
UpperCAmelCase_ : Union[str, Any] = bin(abs(SCREAMING_SNAKE_CASE__ ) - (1 << binary_number_length) )[3:]
UpperCAmelCase_ : Optional[Any] = (
(
'''1'''
+ '''0''' * (binary_number_length - len(SCREAMING_SNAKE_CASE__ ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
snake_case_ : Union[str, Any] = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
snake_case_ : Dict = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
snake_case_ : List[Any] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __a (datasets.Metric ):
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] , )
def UpperCAmelCase__ ( self : str , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Optional[Any]=None , __magic_name__ : Dict=True , __magic_name__ : Dict=False ) -> int:
"""simple docstring"""
if rouge_types is None:
UpperCAmelCase_ : Union[str, Any] = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
UpperCAmelCase_ : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=__magic_name__ , use_stemmer=__magic_name__ )
if use_aggregator:
UpperCAmelCase_ : List[str] = scoring.BootstrapAggregator()
else:
UpperCAmelCase_ : str = []
for ref, pred in zip(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Any = scorer.score(__magic_name__ , __magic_name__ )
if use_aggregator:
aggregator.add_scores(__magic_name__ )
else:
scores.append(__magic_name__ )
if use_aggregator:
UpperCAmelCase_ : List[Any] = aggregator.aggregate()
else:
UpperCAmelCase_ : Tuple = {}
for key in scores[0]:
UpperCAmelCase_ : Tuple = [score[key] for score in scores]
return result
| 644
|
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
UpperCAmelCase_ : List[str] = [[1, 2, 4], [1, 2, 3, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
self.assertTrue(isinstance(dc.token_ids , __magic_name__ ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCAmelCase__ ( self : List[str] ) -> Dict:
"""simple docstring"""
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
UpperCAmelCase_ : Tuple = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__magic_name__ ):
DisjunctiveConstraint(__magic_name__ ) # fails here
def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = [[1, 2, 3], [1, 2, 4]]
UpperCAmelCase_ : List[str] = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
UpperCAmelCase_ : Dict = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = dc.update(2 )
UpperCAmelCase_ : Optional[Any] = stepped is True and completed is False and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(3 )
UpperCAmelCase_ : Dict = stepped is True and completed is True and reset is False
self.assertTrue(__magic_name__ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Any = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
UpperCAmelCase_ : Tuple = DisjunctiveConstraint(__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 644
| 1
|
'''simple docstring'''
import unittest
from accelerate import debug_launcher
from accelerate.test_utils import require_cpu, test_ops, test_script
@require_cpu
class __a (unittest.TestCase ):
def UpperCAmelCase__ ( self : str ) -> List[Any]:
"""simple docstring"""
debug_launcher(test_script.main )
def UpperCAmelCase__ ( self : Dict ) -> Any:
"""simple docstring"""
debug_launcher(test_ops.main )
| 644
|
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
snake_case_ : List[Any] = pd.read_csv("sample_data.csv", header=None)
snake_case_ : Optional[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
snake_case_ : Any = df.iloc[:, 1:2]
snake_case_ : str = actual_data.values.reshape(len_data, 1)
snake_case_ : Optional[Any] = MinMaxScaler().fit_transform(actual_data)
snake_case_ : List[str] = 10
snake_case_ : Any = 5
snake_case_ : Any = 20
snake_case_ : Tuple = len_data - periods * look_back
snake_case_ : str = actual_data[:division]
snake_case_ : Optional[int] = actual_data[division - look_back :]
snake_case_ ,snake_case_ : Any = [], []
snake_case_ ,snake_case_ : Union[str, Any] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
snake_case_ : Any = np.array(train_x)
snake_case_ : Optional[Any] = np.array(test_x)
snake_case_ : Optional[Any] = np.array([list(i.ravel()) for i in train_y])
snake_case_ : List[str] = np.array([list(i.ravel()) for i in test_y])
snake_case_ : List[Any] = Sequential()
model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(1_28, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
snake_case_ : Dict = model.fit(
x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4
)
snake_case_ : Optional[Any] = model.predict(x_test)
| 644
| 1
|
'''simple docstring'''
import argparse
import logging
import pickle
import random
import time
import numpy as np
from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
snake_case_ : str = logging.getLogger(__name__)
def lowerCamelCase_ ( ) -> Tuple:
UpperCAmelCase_ : int = argparse.ArgumentParser(
description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' )
parser.add_argument('''--file_path''', type=SCREAMING_SNAKE_CASE__, default='''data/dump.txt''', help='''The path to the data.''' )
parser.add_argument('''--tokenizer_type''', type=SCREAMING_SNAKE_CASE__, default='''bert''', choices=['''bert''', '''roberta''', '''gpt2'''] )
parser.add_argument('''--tokenizer_name''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-uncased''', help='''The tokenizer to use.''' )
parser.add_argument('''--dump_file''', type=SCREAMING_SNAKE_CASE__, default='''data/dump''', help='''The dump file prefix.''' )
UpperCAmelCase_ : int = parser.parse_args()
logger.info(F"""Loading Tokenizer ({args.tokenizer_name})""" )
if args.tokenizer_type == "bert":
UpperCAmelCase_ : Any = BertTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase_ : Tuple = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]`
UpperCAmelCase_ : Optional[int] = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]`
elif args.tokenizer_type == "roberta":
UpperCAmelCase_ : Optional[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase_ : str = tokenizer.special_tokens_map['''cls_token'''] # `<s>`
UpperCAmelCase_ : Any = tokenizer.special_tokens_map['''sep_token'''] # `</s>`
elif args.tokenizer_type == "gpt2":
UpperCAmelCase_ : int = GPTaTokenizer.from_pretrained(args.tokenizer_name )
UpperCAmelCase_ : Optional[Any] = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>`
UpperCAmelCase_ : List[Any] = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>`
logger.info(F"""Loading text from {args.file_path}""" )
with open(args.file_path, '''r''', encoding='''utf8''' ) as fp:
UpperCAmelCase_ : List[str] = fp.readlines()
logger.info('''Start encoding''' )
logger.info(F"""{len(SCREAMING_SNAKE_CASE__ )} examples to process.""" )
UpperCAmelCase_ : str = []
UpperCAmelCase_ : Tuple = 0
UpperCAmelCase_ : List[str] = 10000
UpperCAmelCase_ : Any = time.time()
for text in data:
UpperCAmelCase_ : Optional[int] = F"""{bos} {text.strip()} {sep}"""
UpperCAmelCase_ : str = tokenizer.encode(SCREAMING_SNAKE_CASE__, add_special_tokens=SCREAMING_SNAKE_CASE__ )
rslt.append(SCREAMING_SNAKE_CASE__ )
iter += 1
if iter % interval == 0:
UpperCAmelCase_ : int = time.time()
logger.info(F"""{iter} examples processed. - {(end-start):.2f}s/{interval}expl""" )
UpperCAmelCase_ : Tuple = time.time()
logger.info('''Finished binarization''' )
logger.info(F"""{len(SCREAMING_SNAKE_CASE__ )} examples processed.""" )
UpperCAmelCase_ : int = F"""{args.dump_file}.{args.tokenizer_name}.pickle"""
UpperCAmelCase_ : Optional[Any] = tokenizer.vocab_size
if vocab_size < (1 << 16):
UpperCAmelCase_ : Tuple = [np.uintaa(SCREAMING_SNAKE_CASE__ ) for d in rslt]
else:
UpperCAmelCase_ : List[str] = [np.intaa(SCREAMING_SNAKE_CASE__ ) for d in rslt]
random.shuffle(rslt_ )
logger.info(F"""Dump to {dp_file}""" )
with open(SCREAMING_SNAKE_CASE__, '''wb''' ) as handle:
pickle.dump(rslt_, SCREAMING_SNAKE_CASE__, protocol=pickle.HIGHEST_PROTOCOL )
if __name__ == "__main__":
main()
| 644
|
'''simple docstring'''
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
snake_case_ : Union[str, Any] = "CompVis/stable-diffusion-v1-1"
snake_case_ : Dict = "CompVis/stable-diffusion-v1-2"
snake_case_ : Any = "CompVis/stable-diffusion-v1-3"
snake_case_ : str = "CompVis/stable-diffusion-v1-4"
class __a (lowerCamelCase ):
def __init__( self : Any , __magic_name__ : AutoencoderKL , __magic_name__ : CLIPTextModel , __magic_name__ : CLIPTokenizer , __magic_name__ : UNetaDConditionModel , __magic_name__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __magic_name__ : StableDiffusionSafetyChecker , __magic_name__ : CLIPImageProcessor , __magic_name__ : bool = True , ) -> str:
"""simple docstring"""
super()._init_()
UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Dict = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__magic_name__ )
UpperCAmelCase_ : Tuple = StableDiffusionPipeline(
vae=__magic_name__ , text_encoder=__magic_name__ , tokenizer=__magic_name__ , unet=__magic_name__ , scheduler=__magic_name__ , safety_checker=__magic_name__ , feature_extractor=__magic_name__ , requires_safety_checker=__magic_name__ , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def UpperCAmelCase__ ( self : Tuple ) -> Dict[str, Any]:
"""simple docstring"""
return {k: getattr(self , __magic_name__ ) for k in self.config.keys() if not k.startswith('''_''' )}
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Optional[Union[str, int]] = "auto" ) -> int:
"""simple docstring"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
UpperCAmelCase_ : List[str] = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.enable_attention_slicing(__magic_name__ )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Tuple , ) -> Optional[int]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Any , ) -> Any:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Dict , ) -> List[str]:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : int , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> str:
"""simple docstring"""
return self.pipea(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
@torch.no_grad()
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, List[str]] , __magic_name__ : int = 5_12 , __magic_name__ : int = 5_12 , __magic_name__ : int = 50 , __magic_name__ : float = 7.5 , __magic_name__ : Optional[Union[str, List[str]]] = None , __magic_name__ : Optional[int] = 1 , __magic_name__ : float = 0.0 , __magic_name__ : Optional[torch.Generator] = None , __magic_name__ : Optional[torch.FloatTensor] = None , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , __magic_name__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __magic_name__ : int = 1 , **__magic_name__ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu'''
self.to(__magic_name__ )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" )
# Get first result from Stable Diffusion Checkpoint v1.1
UpperCAmelCase_ : Optional[int] = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.2
UpperCAmelCase_ : int = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.3
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get first result from Stable Diffusion Checkpoint v1.4
UpperCAmelCase_ : str = self.textaimg_sda_a(
prompt=__magic_name__ , height=__magic_name__ , width=__magic_name__ , num_inference_steps=__magic_name__ , guidance_scale=__magic_name__ , negative_prompt=__magic_name__ , num_images_per_prompt=__magic_name__ , eta=__magic_name__ , generator=__magic_name__ , latents=__magic_name__ , output_type=__magic_name__ , return_dict=__magic_name__ , callback=__magic_name__ , callback_steps=__magic_name__ , **__magic_name__ , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
| 644
| 1
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case_ : Dict = {
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case_ : Dict = [
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
snake_case_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 644
|
'''simple docstring'''
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
snake_case_ : Optional[int] = 16
snake_case_ : Tuple = 32
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Accelerator, SCREAMING_SNAKE_CASE__ : int = 16, SCREAMING_SNAKE_CASE__ : str = "bert-base-cased" ) -> Dict:
UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# max_length=None => use the model max length (it's actually the default)
UpperCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
UpperCAmelCase_ : Tuple = datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], load_from_cache_file=SCREAMING_SNAKE_CASE__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
UpperCAmelCase_ : Optional[Any] = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(SCREAMING_SNAKE_CASE__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''max_length''', max_length=128, return_tensors='''pt''' )
return tokenizer.pad(SCREAMING_SNAKE_CASE__, padding='''longest''', return_tensors='''pt''' )
# Instantiate dataloaders.
UpperCAmelCase_ : str = DataLoader(
tokenized_datasets['''train'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = DataLoader(
tokenized_datasets['''validation'''], shuffle=SCREAMING_SNAKE_CASE__, collate_fn=SCREAMING_SNAKE_CASE__, batch_size=SCREAMING_SNAKE_CASE__ )
return train_dataloader, eval_dataloader
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Any ) -> Any:
model.eval()
UpperCAmelCase_ : List[str] = 0
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
UpperCAmelCase_ : Dict = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : str = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
UpperCAmelCase_ , UpperCAmelCase_ : List[str] = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(SCREAMING_SNAKE_CASE__ ) - 1:
UpperCAmelCase_ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen]
UpperCAmelCase_ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=SCREAMING_SNAKE_CASE__, references=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : List[str] = metric.compute()
return eval_metric["accuracy"]
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
# Initialize accelerator
UpperCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
UpperCAmelCase_ : int = config['''lr''']
UpperCAmelCase_ : Optional[int] = int(config['''num_epochs'''] )
UpperCAmelCase_ : Optional[int] = int(config['''seed'''] )
UpperCAmelCase_ : List[str] = int(config['''batch_size'''] )
UpperCAmelCase_ : Optional[int] = args.model_name_or_path
set_seed(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = get_dataloaders(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
UpperCAmelCase_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__, return_dict=SCREAMING_SNAKE_CASE__ )
# Instantiate optimizer
UpperCAmelCase_ : str = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
UpperCAmelCase_ : List[str] = optimizer_cls(params=model.parameters(), lr=SCREAMING_SNAKE_CASE__ )
if accelerator.state.deepspeed_plugin is not None:
UpperCAmelCase_ : List[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
UpperCAmelCase_ : Tuple = 1
UpperCAmelCase_ : int = (len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
UpperCAmelCase_ : Tuple = get_linear_schedule_with_warmup(
optimizer=SCREAMING_SNAKE_CASE__, num_warmup_steps=0, num_training_steps=SCREAMING_SNAKE_CASE__, )
else:
UpperCAmelCase_ : Any = DummyScheduler(SCREAMING_SNAKE_CASE__, total_num_steps=SCREAMING_SNAKE_CASE__, warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = accelerator.prepare(
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
# We need to keep track of how many total steps we have iterated over
UpperCAmelCase_ : Union[str, Any] = 0
# We also need to keep track of the stating epoch so files are named properly
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : int = evaluate.load('''glue''', '''mrpc''' )
UpperCAmelCase_ : Optional[Any] = num_epochs
if args.partial_train_epoch is not None:
UpperCAmelCase_ : List[Any] = args.partial_train_epoch
if args.resume_from_checkpoint:
accelerator.load_state(args.resume_from_checkpoint )
UpperCAmelCase_ : Tuple = args.resume_from_checkpoint.split('''epoch_''' )[1]
UpperCAmelCase_ : int = ''''''
for char in epoch_string:
if char.isdigit():
state_epoch_num += char
else:
break
UpperCAmelCase_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE__ ) + 1
UpperCAmelCase_ : Dict = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint performance:''', SCREAMING_SNAKE_CASE__ )
accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''', lr_scheduler.get_lr()[0] )
accelerator.print('''resumed optimizers\'s lr:''', optimizer.param_groups[0]['''lr'''] )
with open(os.path.join(args.output_dir, F"""state_{starting_epoch-1}.json""" ), '''r''' ) as f:
UpperCAmelCase_ : Optional[int] = json.load(SCREAMING_SNAKE_CASE__ )
assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed"
assert (
resumed_state["lr"] == lr_scheduler.get_lr()[0]
), "Scheduler learning rate mismatch, loading from checkpoint failed"
assert (
resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"]
), "Optimizer learning rate mismatch, loading from checkpoint failed"
assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed"
return
# Now we train the model
UpperCAmelCase_ : int = {}
for epoch in range(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ):
model.train()
for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Optional[int] = model(**SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = outputs.loss
UpperCAmelCase_ : Tuple = loss / gradient_accumulation_steps
accelerator.backward(SCREAMING_SNAKE_CASE__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
UpperCAmelCase_ : Tuple = F"""epoch_{epoch}"""
UpperCAmelCase_ : Optional[int] = os.path.join(args.output_dir, SCREAMING_SNAKE_CASE__ )
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = evaluation_loop(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Optional[Any] = accuracy
UpperCAmelCase_ : Any = lr_scheduler.get_lr()[0]
UpperCAmelCase_ : List[str] = optimizer.param_groups[0]['''lr''']
UpperCAmelCase_ : Tuple = epoch
UpperCAmelCase_ : Dict = overall_step
accelerator.print(F"""epoch {epoch}:""", SCREAMING_SNAKE_CASE__ )
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir, F"""state_{epoch}.json""" ), '''w''' ) as f:
json.dump(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( ) -> List[str]:
UpperCAmelCase_ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''', type=SCREAMING_SNAKE_CASE__, default='''bert-base-cased''', help='''Path to pretrained model or model identifier from huggingface.co/models.''', required=SCREAMING_SNAKE_CASE__, )
parser.add_argument(
'''--output_dir''', type=SCREAMING_SNAKE_CASE__, default='''.''', help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''', )
parser.add_argument(
'''--resume_from_checkpoint''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If the training should continue from a checkpoint folder.''', )
parser.add_argument(
'''--partial_train_epoch''', type=SCREAMING_SNAKE_CASE__, default=SCREAMING_SNAKE_CASE__, help='''If passed, the training will stop after this number of epochs.''', )
parser.add_argument(
'''--num_epochs''', type=SCREAMING_SNAKE_CASE__, default=2, help='''Number of train epochs.''', )
UpperCAmelCase_ : Optional[int] = parser.parse_args()
UpperCAmelCase_ : List[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
main()
| 644
| 1
|
'''simple docstring'''
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
snake_case_ : List[str] = {
# 1536-bit
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 2048-bit
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 3072-bit
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 4096-bit
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 6144-bit
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
# 8192-bit
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
},
}
class __a :
def __init__( self : Any , __magic_name__ : int = 14 ) -> None:
"""simple docstring"""
if group not in primes:
raise ValueError('''Unsupported Group''' )
UpperCAmelCase_ : Optional[Any] = primes[group]['''prime''']
UpperCAmelCase_ : str = primes[group]['''generator''']
UpperCAmelCase_ : Union[str, Any] = int(hexlify(urandom(32 ) ) , base=16 )
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
return hex(self.__private_key )[2:]
def UpperCAmelCase__ ( self : Any ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = pow(self.generator , self.__private_key , self.prime )
return hex(__magic_name__ )[2:]
def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : int ) -> bool:
"""simple docstring"""
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(__magic_name__ , (self.prime - 1) // 2 , self.prime ) == 1
)
def UpperCAmelCase__ ( self : Any , __magic_name__ : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = int(__magic_name__ , base=16 )
if not self.is_valid_public_key(__magic_name__ ):
raise ValueError('''Invalid public key''' )
UpperCAmelCase_ : Tuple = pow(__magic_name__ , self.__private_key , self.prime )
return shaaaa(str(__magic_name__ ).encode() ).hexdigest()
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int , __magic_name__ : int ) -> bool:
"""simple docstring"""
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(__magic_name__ , (prime - 1) // 2 , __magic_name__ ) == 1
)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : int = 14 ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = int(__magic_name__ , base=16 )
UpperCAmelCase_ : Union[str, Any] = int(__magic_name__ , base=16 )
UpperCAmelCase_ : Any = primes[group]['''prime''']
if not DiffieHellman.is_valid_public_key_static(__magic_name__ , __magic_name__ ):
raise ValueError('''Invalid public key''' )
UpperCAmelCase_ : List[Any] = pow(__magic_name__ , __magic_name__ , __magic_name__ )
return shaaaa(str(__magic_name__ ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
|
'''simple docstring'''
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]:
UpperCAmelCase_ : int = []
if len(SCREAMING_SNAKE_CASE__ ) == 1:
return [nums.copy()]
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ : List[Any] = nums.pop(0 )
UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ )
for perm in permutations:
perm.append(SCREAMING_SNAKE_CASE__ )
result.extend(SCREAMING_SNAKE_CASE__ )
nums.append(SCREAMING_SNAKE_CASE__ )
return result
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any:
def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ):
if start == len(SCREAMING_SNAKE_CASE__ ) - 1:
output.append(nums[:] )
else:
for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ):
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start]
backtrack(start + 1 )
UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack
UpperCAmelCase_ : Optional[int] = []
backtrack(0 )
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
snake_case_ : Tuple = permutea([1, 2, 3])
print(res)
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
|
'''simple docstring'''
class __a :
def __init__( self : List[Any] , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = size
UpperCAmelCase_ : Tuple = [0] * size
UpperCAmelCase_ : Optional[Any] = [0] * size
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return index | (index + 1)
@staticmethod
def UpperCAmelCase__ ( __magic_name__ : int ) -> int:
"""simple docstring"""
return (index & (index + 1)) - 1
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : int , __magic_name__ : int ) -> None:
"""simple docstring"""
UpperCAmelCase_ : int = value
while index < self.size:
UpperCAmelCase_ : str = self.get_prev(__magic_name__ ) + 1
if current_left_border == index:
UpperCAmelCase_ : List[str] = value
else:
UpperCAmelCase_ : Optional[int] = max(__magic_name__ , __magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = self.get_next(__magic_name__ )
def UpperCAmelCase__ ( self : Any , __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
right -= 1 # Because of right is exclusive
UpperCAmelCase_ : List[str] = 0
while left <= right:
UpperCAmelCase_ : Optional[Any] = self.get_prev(__magic_name__ )
if left <= current_left:
UpperCAmelCase_ : Dict = max(__magic_name__ , self.tree[right] )
UpperCAmelCase_ : Optional[Any] = current_left
else:
UpperCAmelCase_ : str = max(__magic_name__ , self.arr[right] )
right -= 1
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 644
| 1
|
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __a (lowerCamelCase ):
def __init__( self : int , __magic_name__ : TransformeraDModel , __magic_name__ : AutoencoderKL , __magic_name__ : KarrasDiffusionSchedulers , __magic_name__ : Optional[Dict[int, str]] = None , ) -> int:
"""simple docstring"""
super().__init__()
self.register_modules(transformer=__magic_name__ , vae=__magic_name__ , scheduler=__magic_name__ )
# create a imagenet -> id dictionary for easier use
UpperCAmelCase_ : Optional[Any] = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split(''',''' ):
UpperCAmelCase_ : Optional[int] = int(__magic_name__ )
UpperCAmelCase_ : str = dict(sorted(self.labels.items() ) )
def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Union[str, List[str]] ) -> List[int]:
"""simple docstring"""
if not isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : Optional[Any] = list(__magic_name__ )
for l in label:
if l not in self.labels:
raise ValueError(
F"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self : Dict , __magic_name__ : List[int] , __magic_name__ : float = 4.0 , __magic_name__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ : int = 50 , __magic_name__ : Optional[str] = "pil" , __magic_name__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
"""simple docstring"""
UpperCAmelCase_ : int = len(__magic_name__ )
UpperCAmelCase_ : str = self.transformer.config.sample_size
UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels
UpperCAmelCase_ : Dict = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__magic_name__ , device=self.device , dtype=self.transformer.dtype , )
UpperCAmelCase_ : Dict = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
UpperCAmelCase_ : Any = torch.tensor(__magic_name__ , device=self.device ).reshape(-1 )
UpperCAmelCase_ : Optional[int] = torch.tensor([10_00] * batch_size , device=self.device )
UpperCAmelCase_ : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(__magic_name__ )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
UpperCAmelCase_ : str = latent_model_input[: len(__magic_name__ ) // 2]
UpperCAmelCase_ : List[Any] = torch.cat([half, half] , dim=0 )
UpperCAmelCase_ : Union[str, Any] = self.scheduler.scale_model_input(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Union[str, Any] = t
if not torch.is_tensor(__magic_name__ ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
UpperCAmelCase_ : str = latent_model_input.device.type == '''mps'''
if isinstance(__magic_name__ , __magic_name__ ):
UpperCAmelCase_ : str = torch.floataa if is_mps else torch.floataa
else:
UpperCAmelCase_ : Optional[int] = torch.intaa if is_mps else torch.intaa
UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=__magic_name__ , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
UpperCAmelCase_ : Optional[Any] = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
UpperCAmelCase_ : Dict = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
UpperCAmelCase_ : Optional[int] = self.transformer(
__magic_name__ , timestep=__magic_name__ , class_labels=__magic_name__ ).sample
# perform guidance
if guidance_scale > 1:
UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.split(__magic_name__ , len(__magic_name__ ) // 2 , dim=0 )
UpperCAmelCase_ : Dict = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
UpperCAmelCase_ : Dict = torch.cat([half_eps, half_eps] , dim=0 )
UpperCAmelCase_ : str = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = torch.split(__magic_name__ , __magic_name__ , dim=1 )
else:
UpperCAmelCase_ : Tuple = noise_pred
# compute previous image: x_t -> x_t-1
UpperCAmelCase_ : Any = self.scheduler.step(__magic_name__ , __magic_name__ , __magic_name__ ).prev_sample
if guidance_scale > 1:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = latent_model_input.chunk(2 , dim=0 )
else:
UpperCAmelCase_ : Union[str, Any] = latent_model_input
UpperCAmelCase_ : List[str] = 1 / self.vae.config.scaling_factor * latents
UpperCAmelCase_ : Any = self.vae.decode(__magic_name__ ).sample
UpperCAmelCase_ : Optional[Any] = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
UpperCAmelCase_ : Union[str, Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
UpperCAmelCase_ : List[Any] = self.numpy_to_pil(__magic_name__ )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=__magic_name__ )
| 644
|
'''simple docstring'''
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class __a :
def __init__( self : List[str] , __magic_name__ : List[str] , __magic_name__ : str=13 , __magic_name__ : Union[str, Any]=7 , __magic_name__ : Union[str, Any]=True , __magic_name__ : Any=True , __magic_name__ : List[str]=False , __magic_name__ : Optional[int]=True , __magic_name__ : Dict=99 , __magic_name__ : Tuple=32 , __magic_name__ : int=5 , __magic_name__ : Dict=4 , __magic_name__ : Tuple=37 , __magic_name__ : Optional[int]="gelu" , __magic_name__ : List[str]=0.1 , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : str=5_12 , __magic_name__ : Union[str, Any]=16 , __magic_name__ : int=2 , __magic_name__ : List[Any]=0.0_2 , __magic_name__ : Tuple=3 , __magic_name__ : Union[str, Any]=4 , __magic_name__ : Optional[int]=None , ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Any = parent
UpperCAmelCase_ : Union[str, Any] = batch_size
UpperCAmelCase_ : List[Any] = seq_length
UpperCAmelCase_ : str = is_training
UpperCAmelCase_ : Any = use_input_mask
UpperCAmelCase_ : List[str] = use_token_type_ids
UpperCAmelCase_ : Union[str, Any] = use_labels
UpperCAmelCase_ : Dict = vocab_size
UpperCAmelCase_ : Optional[Any] = hidden_size
UpperCAmelCase_ : Dict = num_hidden_layers
UpperCAmelCase_ : List[Any] = num_attention_heads
UpperCAmelCase_ : Optional[int] = intermediate_size
UpperCAmelCase_ : Union[str, Any] = hidden_act
UpperCAmelCase_ : str = hidden_dropout_prob
UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob
UpperCAmelCase_ : Any = max_position_embeddings
UpperCAmelCase_ : str = type_vocab_size
UpperCAmelCase_ : Optional[Any] = type_sequence_label_size
UpperCAmelCase_ : List[Any] = initializer_range
UpperCAmelCase_ : int = num_labels
UpperCAmelCase_ : Optional[int] = num_choices
UpperCAmelCase_ : Tuple = scope
def UpperCAmelCase__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase_ : Union[str, Any] = None
if self.use_input_mask:
UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase_ : str = None
if self.use_token_type_ids:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase_ : Tuple = None
UpperCAmelCase_ : List[str] = None
UpperCAmelCase_ : Union[str, Any] = None
if self.use_labels:
UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase_ : int = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__magic_name__ , initializer_range=self.initializer_range , )
def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Dict , __magic_name__ : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : Optional[int] , ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptForCausalLM(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : List[Any] = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : str , *__magic_name__ : Any ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ )
model.to(__magic_name__ )
model.eval()
# create attention mask
UpperCAmelCase_ : Optional[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
UpperCAmelCase_ : Any = self.seq_length // 2
UpperCAmelCase_ : Tuple = 0
# first forward pass
UpperCAmelCase_ , UpperCAmelCase_ : Dict = model(__magic_name__ , attention_mask=__magic_name__ ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCAmelCase_ : List[str] = ids_tensor((1,) , __magic_name__ ).item() + 1
UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCAmelCase_ : str = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCAmelCase_ : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : int = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__magic_name__ )] , dim=1 , )
# get two different outputs
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : int = model(__magic_name__ , past_key_values=__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
# select random slice
UpperCAmelCase_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCAmelCase_ : Dict = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : Dict , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Dict , __magic_name__ : Optional[Any] , __magic_name__ : List[Any] , *__magic_name__ : str ) -> int:
"""simple docstring"""
UpperCAmelCase_ : Dict = BioGptModel(config=__magic_name__ ).to(__magic_name__ ).eval()
UpperCAmelCase_ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__magic_name__ )
# first forward pass
UpperCAmelCase_ : Union[str, Any] = model(__magic_name__ , attention_mask=__magic_name__ , use_cache=__magic_name__ )
UpperCAmelCase_ , UpperCAmelCase_ : int = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCAmelCase_ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCAmelCase_ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCAmelCase_ : List[str] = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ )['''last_hidden_state''']
UpperCAmelCase_ : Optional[Any] = model(__magic_name__ , attention_mask=__magic_name__ , past_key_values=__magic_name__ )[
'''last_hidden_state'''
]
# select random slice
UpperCAmelCase_ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCAmelCase_ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCAmelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__magic_name__ , __magic_name__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , *__magic_name__ : Any , __magic_name__ : List[Any]=False ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptForCausalLM(__magic_name__ )
model.to(__magic_name__ )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCAmelCase_ : List[str] = model(__magic_name__ , labels=__magic_name__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def UpperCAmelCase__ ( self : List[str] , __magic_name__ : Optional[int] , *__magic_name__ : List[str] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : int = BioGptModel(__magic_name__ )
UpperCAmelCase_ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 )
def UpperCAmelCase__ ( self : int , __magic_name__ : Tuple , __magic_name__ : Dict , __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , *__magic_name__ : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : str = self.num_labels
UpperCAmelCase_ : Any = BioGptForTokenClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : Any = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) : int = config_and_inputs
UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __a (lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ):
__a : str = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
__a : List[Any] = (BioGptForCausalLM,) if is_torch_available() else ()
__a : Union[str, Any] = (
{
"feature-extraction": BioGptModel,
"text-classification": BioGptForSequenceClassification,
"text-generation": BioGptForCausalLM,
"token-classification": BioGptForTokenClassification,
"zero-shot": BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
__a : List[str] = False
def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : List[str] = BioGptModelTester(self )
UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 )
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCAmelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCAmelCase_ : str = type
self.model_tester.create_and_check_model(*__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__magic_name__ , gradient_checkpointing=__magic_name__ )
def UpperCAmelCase__ ( self : str ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__magic_name__ )
def UpperCAmelCase__ ( self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__magic_name__ )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__magic_name__ )
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
UpperCAmelCase_ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : Tuple = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCAmelCase_ : List[Any] = tokenizer.eos_token
UpperCAmelCase_ : List[Any] = model.config.eos_token_id
# use different length sentences to test batching
UpperCAmelCase_ : Tuple = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCAmelCase_ : Optional[Any] = tokenizer(__magic_name__ , return_tensors='''pt''' , padding=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = inputs['''input_ids'''].to(__magic_name__ )
UpperCAmelCase_ : Any = model.generate(
input_ids=__magic_name__ , attention_mask=inputs['''attention_mask'''].to(__magic_name__ ) , )
UpperCAmelCase_ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ )
UpperCAmelCase_ : List[str] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCAmelCase_ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__magic_name__ )
UpperCAmelCase_ : Tuple = model.generate(input_ids=__magic_name__ , max_length=model.config.max_length - num_paddings )
UpperCAmelCase_ : int = tokenizer.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__magic_name__ , __magic_name__ )
self.assertListEqual(__magic_name__ , [non_padded_sentence, padded_sentence] )
@slow
def UpperCAmelCase__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase_ : List[Any] = BioGptModel.from_pretrained(__magic_name__ )
self.assertIsNotNone(__magic_name__ )
def UpperCAmelCase__ ( self : Tuple ) -> str:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[str] = 3
UpperCAmelCase_ : Tuple = input_dict['''input_ids''']
UpperCAmelCase_ : Dict = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCAmelCase_ : Dict = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : int = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase_ : List[Any] = 3
UpperCAmelCase_ : Optional[int] = '''multi_label_classification'''
UpperCAmelCase_ : int = input_dict['''input_ids''']
UpperCAmelCase_ : str = input_ids.ne(1 ).to(__magic_name__ )
UpperCAmelCase_ : Any = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCAmelCase_ : Union[str, Any] = BioGptForSequenceClassification(__magic_name__ )
model.to(__magic_name__ )
model.eval()
UpperCAmelCase_ : str = model(__magic_name__ , attention_mask=__magic_name__ , labels=__magic_name__ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class __a (unittest.TestCase ):
@slow
def UpperCAmelCase__ ( self : List[Any] ) -> str:
"""simple docstring"""
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : List[str] = torch.tensor([[2, 48_05, 9, 6_56, 21]] )
UpperCAmelCase_ : str = model(__magic_name__ )[0]
UpperCAmelCase_ : Optional[int] = 4_23_84
UpperCAmelCase_ : Tuple = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __magic_name__ )
UpperCAmelCase_ : List[Any] = torch.tensor(
[[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __magic_name__ , atol=1E-4 ) )
@slow
def UpperCAmelCase__ ( self : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ : Any = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCAmelCase_ : str = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__magic_name__ )
torch.manual_seed(0 )
UpperCAmelCase_ : Optional[Any] = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__magic_name__ )
UpperCAmelCase_ : Optional[int] = model.generate(
**__magic_name__ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=__magic_name__ , )
UpperCAmelCase_ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__magic_name__ )
UpperCAmelCase_ : Optional[Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__magic_name__ , __magic_name__ )
| 644
| 1
|
'''simple docstring'''
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __a (lowerCamelCase , unittest.TestCase ):
# TODO: is there an appropriate internal test set?
__a : Optional[Any] = "ssube/stable-diffusion-x4-upscaler-onnx"
def UpperCAmelCase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any]=0 ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = floats_tensor((1, 3, 1_28, 1_28) , rng=random.Random(__magic_name__ ) )
UpperCAmelCase_ : List[str] = torch.manual_seed(__magic_name__ )
UpperCAmelCase_ : int = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def UpperCAmelCase__ ( self : Dict ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs()
UpperCAmelCase_ : List[Any] = pipe(**__magic_name__ ).images
UpperCAmelCase_ : str = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__magic_name__ )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : int = self.get_dummy_inputs()
UpperCAmelCase_ : Union[str, Any] = pipe(**__magic_name__ ).images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Any = np.array(
[0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : Union[str, Any] = self.get_dummy_inputs()
UpperCAmelCase_ : str = pipe(**__magic_name__ ).images
UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Dict = np.array(
[0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : int ) -> Dict:
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[str] = self.get_dummy_inputs()
UpperCAmelCase_ : Optional[int] = pipe(**__magic_name__ ).images
UpperCAmelCase_ : Any = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def UpperCAmelCase__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
UpperCAmelCase_ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' )
UpperCAmelCase_ : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = self.get_dummy_inputs()
UpperCAmelCase_ : int = pipe(**__magic_name__ ).images
UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Union[str, Any] = np.array(
[0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class __a (unittest.TestCase ):
@property
def UpperCAmelCase__ ( self : Any ) -> int:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase_ : Dict = ort.SessionOptions()
UpperCAmelCase_ : Optional[int] = False
return options
def UpperCAmelCase__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
UpperCAmelCase_ : int = init_image.resize((1_28, 1_28) )
# using the PNDM scheduler by default
UpperCAmelCase_ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A fantasy landscape, trending on artstation'''
UpperCAmelCase_ : str = torch.manual_seed(0 )
UpperCAmelCase_ : List[Any] = pipe(
prompt=__magic_name__ , image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=10 , generator=__magic_name__ , output_type='''np''' , )
UpperCAmelCase_ : List[str] = output.images
UpperCAmelCase_ : Dict = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : int = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCAmelCase__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
UpperCAmelCase_ : int = init_image.resize((1_28, 1_28) )
UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' )
UpperCAmelCase_ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(
'''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__magic_name__ , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__magic_name__ )
UpperCAmelCase_ : List[Any] = '''A fantasy landscape, trending on artstation'''
UpperCAmelCase_ : Any = torch.manual_seed(0 )
UpperCAmelCase_ : Dict = pipe(
prompt=__magic_name__ , image=__magic_name__ , guidance_scale=7.5 , num_inference_steps=20 , generator=__magic_name__ , output_type='''np''' , )
UpperCAmelCase_ : int = output.images
UpperCAmelCase_ : List[str] = images[0, 2_55:2_58, 3_83:3_86, -1]
assert images.shape == (1, 5_12, 5_12, 3)
UpperCAmelCase_ : Optional[Any] = np.array(
[0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 644
|
'''simple docstring'''
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __a (lowerCamelCase , unittest.TestCase ):
__a : List[str] = BlenderbotSmallTokenizer
__a : List[Any] = False
def UpperCAmelCase__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
UpperCAmelCase_ : Tuple = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase_ : Optional[Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) )
UpperCAmelCase_ : int = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__magic_name__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__magic_name__ ) )
def UpperCAmelCase__ ( self : List[Any] , **__magic_name__ : Dict ) -> Tuple:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ )
def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[str] ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : str = '''adapt act apte'''
UpperCAmelCase_ : Tuple = '''adapt act apte'''
return input_text, output_text
def UpperCAmelCase__ ( self : str ) -> Any:
"""simple docstring"""
UpperCAmelCase_ : str = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ : List[Any] = '''adapt act apte'''
UpperCAmelCase_ : Dict = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase_ : Dict = tokenizer.tokenize(__magic_name__ )
self.assertListEqual(__magic_name__ , __magic_name__ )
UpperCAmelCase_ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase_ : Dict = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ )
def UpperCAmelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
UpperCAmelCase_ : List[Any] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [13_84]
UpperCAmelCase_ : Optional[int] = '''I am a small frog.'''
UpperCAmelCase_ : List[str] = tok([src_text] , padding=__magic_name__ , truncation=__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Dict = tok.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
UpperCAmelCase_ : int = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase_ : List[Any] = '''I am a small frog .'''
UpperCAmelCase_ : Any = '''.'''
UpperCAmelCase_ : List[Any] = tok(__magic_name__ )['''input_ids''']
UpperCAmelCase_ : Optional[int] = tok(__magic_name__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 644
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.