code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case_ ( __lowercase ): UpperCAmelCase_ : Any = filter(lambda __lowercase : p.requires_grad , model.parameters() ) UpperCAmelCase_ : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : Dict = logging.getLogger(__name__) def snake_case_ ( __lowercase , __lowercase ): if metric == "rouge2": UpperCAmelCase_ : List[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": UpperCAmelCase_ : str = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": UpperCAmelCase_ : Optional[Any] = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": UpperCAmelCase_ : Union[str, Any] = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) UpperCAmelCase_ : Optional[int] = ModelCheckpoint( dirpath=__lowercase , filename=__lowercase , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def snake_case_ ( __lowercase , __lowercase ): return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__lowercase , verbose=__lowercase , ) class lowerCAmelCase__( pl.Callback ): '''simple docstring''' def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__snake_case ) @rank_zero_only def _lowerCamelCase ( self : Tuple , __snake_case : pl.Trainer , __snake_case : pl.LightningModule , __snake_case : str , __snake_case : Optional[Any]=True ): '''simple docstring''' logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase_ : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results UpperCAmelCase_ : int = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ : Optional[Any] = od / '''test_results.txt''' UpperCAmelCase_ : Any = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ : Tuple = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase_ : Tuple = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__snake_case ) generations_file.parent.mkdir(exist_ok=__snake_case ) with open(__snake_case , '''a+''' ) as writer: for key in sorted(__snake_case ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ : str = metrics[key] if isinstance(__snake_case , torch.Tensor ): UpperCAmelCase_ : Dict = val.item() UpperCAmelCase_ : Optional[int] = f'''{key}: {val:.6f}\n''' writer.write(__snake_case ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ : Union[str, Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__snake_case ) @rank_zero_only def _lowerCamelCase ( self : Any , __snake_case : Tuple , __snake_case : List[str] ): '''simple docstring''' try: UpperCAmelCase_ : List[str] = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ : Union[str, Any] = pl_module.model.num_parameters() UpperCAmelCase_ : Tuple = count_trainable_parameters(__snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def _lowerCamelCase ( self : List[str] , __snake_case : pl.Trainer , __snake_case : pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__snake_case , __snake_case , '''test''' ) @rank_zero_only def _lowerCamelCase ( self : Any , __snake_case : pl.Trainer , __snake_case : Optional[int] ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger() @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : nn.Module A_ : List[nn.Module] = field(default_factory=snake_case__ ) A_ : list = field(default_factory=snake_case__ ) def _lowerCamelCase ( self : List[Any] , __snake_case : Any , __snake_case : Tensor , __snake_case : Tensor ): '''simple docstring''' UpperCAmelCase_ : Any = len(list(m.modules() ) ) == 1 or isinstance(__snake_case , nn.Convad ) or isinstance(__snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self : Union[str, Any] , __snake_case : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : nn.Module A_ : nn.Module A_ : int = 1 A_ : List = field(default_factory=snake_case__ ) A_ : List = field(default_factory=snake_case__ ) A_ : bool = True def __call__( self : Tuple , __snake_case : Tensor ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Tracker(self.dest )(__snake_case ).parametrized UpperCAmelCase_ : Union[str, Any] = Tracker(self.src )(__snake_case ).parametrized UpperCAmelCase_ : List[Any] = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip , __snake_case ) ) UpperCAmelCase_ : int = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip , __snake_case ) ) if len(__snake_case ) != len(__snake_case ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__snake_case )} operations while''' f''' destination module has {len(__snake_case )}.''' ) for dest_m, src_m in zip(__snake_case , __snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : nn.Module ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f'''Unexpected layer name {k}''' UpperCAmelCase_ : Union[str, Any] = len(__snake_case ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) UpperCAmelCase_ : List[Any] = nn.ModuleDict(__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Tensor ): '''simple docstring''' return get_trunk_forward_outputs( __snake_case , out_feat_keys=__snake_case , feature_blocks=self._feature_blocks , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Tuple , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] , __snake_case : str ): '''simple docstring''' # default to timm! if x not in self: UpperCAmelCase_ : Optional[Any] = self.convert_name_to_timm(__snake_case ) UpperCAmelCase_ : str = partial(lambda: (timm.create_model(__snake_case , pretrained=__snake_case ).eval(), None) ) else: UpperCAmelCase_ : List[Any] = super().__getitem__(__snake_case ) return val class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __getitem__( self : int , __snake_case : str ): '''simple docstring''' if "seer" in x and "in1k" not in x: UpperCAmelCase_ : List[str] = RegNetModel else: UpperCAmelCase_ : int = RegNetForImageClassification return val def snake_case_ ( __lowercase , __lowercase , __lowercase ): for from_key, to_key in keys: UpperCAmelCase_ : Dict = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ): print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ : int = from_model_func() UpperCAmelCase_ : Tuple = our_model_func(__lowercase ).eval() UpperCAmelCase_ : Any = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) UpperCAmelCase_ : Union[str, Any] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) if from_state_dict is not None: UpperCAmelCase_ : List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] UpperCAmelCase_ : Dict = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) UpperCAmelCase_ : Any = our_model(__lowercase , output_hidden_states=__lowercase ) UpperCAmelCase_ : List[Any] = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Tuple = from_model(__lowercase ) UpperCAmelCase_ : Optional[Any] = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) UpperCAmelCase_ : Tuple = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F'''Pushed {name}''' ) def snake_case_ ( __lowercase , __lowercase = None , __lowercase = True ): UpperCAmelCase_ : Optional[Any] = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : int = 1_0_0_0 UpperCAmelCase_ : Union[str, Any] = (1, num_labels) UpperCAmelCase_ : str = '''huggingface/label-files''' UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Optional[int] = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase_ : Any = {int(__lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Dict = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) UpperCAmelCase_ : Any = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Optional[int] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase , __lowercase ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : str = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location='''cpu''' ) UpperCAmelCase_ : Tuple = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Tuple = files['''classy_state_dict''']['''base_model''']['''model'''] UpperCAmelCase_ : Optional[int] = model_state_dict['''trunk'''] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Union[str, Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : str = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : int = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __UpperCamelCase : Optional[Any] = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__( unittest.TestCase , snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Any = load_tool('''text-classification''' ) self.tool.setup() UpperCAmelCase_ : str = load_tool('''text-classification''' , remote=__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' )
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
from math import pi def snake_case_ ( __lowercase , __lowercase ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
from math import factorial, pi def snake_case_ ( __lowercase , __lowercase = 3_0 ): if not isinstance(__lowercase , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__lowercase , __lowercase ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) UpperCAmelCase_ : Dict = float(__lowercase ) UpperCAmelCase_ : str = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__lowercase ) ) def snake_case_ ( __lowercase , __lowercase = 3_0 ): if not isinstance(__lowercase , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__lowercase , __lowercase ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) UpperCAmelCase_ : int = float(__lowercase ) UpperCAmelCase_ : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) # General docstring __UpperCamelCase : Any = 'RegNetConfig' # Base docstring __UpperCamelCase : int = 'facebook/regnet-y-040' __UpperCamelCase : int = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase : str = 'facebook/regnet-y-040' __UpperCamelCase : int = 'tabby, tabby cat' __UpperCamelCase : Optional[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int = 3 , __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : Optional[str] = "relu" , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase_ : str = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=__snake_case , strides=__snake_case , padding='''VALID''' , groups=__snake_case , use_bias=__snake_case , name='''convolution''' , ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) UpperCAmelCase_ : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.convolution(self.padding(__snake_case ) ) UpperCAmelCase_ : List[Any] = self.normalization(__snake_case ) UpperCAmelCase_ : List[Any] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , __snake_case : RegNetConfig , **__snake_case : Optional[int] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Any = config.num_channels UpperCAmelCase_ : Tuple = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Any = shape_list(__snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase_ : Dict = tf.transpose(__snake_case , perm=(0, 2, 3, 1) ) UpperCAmelCase_ : Tuple = self.embedder(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , __snake_case : int , __snake_case : int = 2 , **__snake_case : int ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : str = tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=1 , strides=__snake_case , use_bias=__snake_case , name='''convolution''' ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def _lowerCamelCase ( self : Any , __snake_case : tf.Tensor , __snake_case : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__snake_case ) , training=__snake_case ) class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , __snake_case : int , __snake_case : int , **__snake_case : Optional[Any] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='''pooler''' ) UpperCAmelCase_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _lowerCamelCase ( self : List[str] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self.pooler(__snake_case ) for layer_module in self.attention: UpperCAmelCase_ : List[str] = layer_module(__snake_case ) UpperCAmelCase_ : Any = hidden_state * pooled return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Tuple = in_channels != out_channels or stride != 1 UpperCAmelCase_ : int = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : List[Any] = ( TFRegNetShortCut(__snake_case , stride=__snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase_ : List[Any] = [ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='''layer.2''' ), ] UpperCAmelCase_ : List[Any] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self : Union[str, Any] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = hidden_state for layer_module in self.layers: UpperCAmelCase_ : List[str] = layer_module(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase_ : Union[str, Any] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 , **__snake_case : int ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : List[str] = in_channels != out_channels or stride != 1 UpperCAmelCase_ : List[Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : Union[str, Any] = ( TFRegNetShortCut(__snake_case , stride=__snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) UpperCAmelCase_ : Optional[int] = [ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='''layer.3''' ), ] UpperCAmelCase_ : List[str] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = hidden_state for layer_module in self.layers: UpperCAmelCase_ : List[str] = layer_module(__snake_case ) UpperCAmelCase_ : Any = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase_ : List[str] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 2 , **__snake_case : int ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer UpperCAmelCase_ : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(__snake_case , __snake_case , __snake_case , stride=__snake_case , name='''layers.0''' ), *[layer(__snake_case , __snake_case , __snake_case , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowerCamelCase ( self : int , __snake_case : List[Any] ): '''simple docstring''' for layer_module in self.layers: UpperCAmelCase_ : Tuple = layer_module(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , __snake_case : RegNetConfig , **__snake_case : Any ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) UpperCAmelCase_ : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case , name=f'''stages.{i+1}''' ) ) def _lowerCamelCase ( self : Dict , __snake_case : tf.Tensor , __snake_case : bool = False , __snake_case : bool = True ): '''simple docstring''' UpperCAmelCase_ : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ : Optional[Any] = hidden_states + (hidden_state,) UpperCAmelCase_ : Union[str, Any] = stage_module(__snake_case ) if output_hidden_states: UpperCAmelCase_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) @keras_serializable class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' A_ : Dict = RegNetConfig def __init__( self : int , __snake_case : List[str] , **__snake_case : List[Any] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : List[Any] = config UpperCAmelCase_ : int = TFRegNetEmbeddings(__snake_case , name='''embedder''' ) UpperCAmelCase_ : Union[str, Any] = TFRegNetEncoder(__snake_case , name='''encoder''' ) UpperCAmelCase_ : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='''pooler''' ) @unpack_inputs def _lowerCamelCase ( self : str , __snake_case : tf.Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Union[str, Any] = self.embedder(__snake_case , training=__snake_case ) UpperCAmelCase_ : Tuple = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) UpperCAmelCase_ : Any = encoder_outputs[0] UpperCAmelCase_ : Union[str, Any] = self.pooler(__snake_case ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase_ : str = tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) UpperCAmelCase_ : Dict = tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase_ : Tuple = tuple([tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[Any] = RegNetConfig A_ : Dict = 'regnet' A_ : str = 'pixel_values' @property def _lowerCamelCase ( self : int ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCamelCase : List[Any] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCamelCase : str = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , snake_case__ , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : RegNetConfig , *__snake_case : Union[str, Any] , **__snake_case : List[str] ): '''simple docstring''' super().__init__(__snake_case , *__snake_case , **__snake_case ) UpperCAmelCase_ : str = TFRegNetMainLayer(__snake_case , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : List[str] , __snake_case : tf.Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Tuple=False , ): '''simple docstring''' UpperCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Dict = self.regnet( pixel_values=__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case__ , ) class lowerCAmelCase__( snake_case__ , snake_case__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , *__snake_case : List[str] , **__snake_case : Optional[int] ): '''simple docstring''' super().__init__(__snake_case , *__snake_case , **__snake_case ) UpperCAmelCase_ : Any = config.num_labels UpperCAmelCase_ : List[Any] = TFRegNetMainLayer(__snake_case , name='''regnet''' ) # classification head UpperCAmelCase_ : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Tuple , __snake_case : tf.Tensor = None , __snake_case : tf.Tensor = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Tuple=False , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : str = self.regnet( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) UpperCAmelCase_ : List[str] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ : List[Any] = self.classifier[0](__snake_case ) UpperCAmelCase_ : Optional[int] = self.classifier[1](__snake_case ) UpperCAmelCase_ : Optional[Any] = None if labels is None else self.hf_compute_loss(labels=__snake_case , logits=__snake_case ) if not return_dict: UpperCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = RoFormerTokenizer A_ : int = RoFormerTokenizerFast A_ : Dict = True A_ : Optional[Any] = True def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().setUp() def _lowerCamelCase ( self : int , **__snake_case : Any ): '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__snake_case ) def _lowerCamelCase ( self : List[str] , **__snake_case : str ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''永和服装饰品有限公司,今天天气非常好''' UpperCAmelCase_ : List[str] = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = self.get_chinese_input_output_texts() UpperCAmelCase_ : int = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) UpperCAmelCase_ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Union[str, Any] = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() UpperCAmelCase_ : Union[str, Any] = self.get_chinese_input_output_texts() UpperCAmelCase_ : List[str] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) UpperCAmelCase_ : str = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[List[PIL.Image.Image], np.ndarray] A_ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __UpperCamelCase : List[Any] = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : str = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : List[str] = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : str = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } __UpperCamelCase : Union[str, Any] = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } __UpperCamelCase : Optional[Any] = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def snake_case_ ( __lowercase ): if isinstance(__lowercase , __lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False ): UpperCAmelCase_ : Dict = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] UpperCAmelCase_ : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] UpperCAmelCase_ : List[Any] = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] UpperCAmelCase_ : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] UpperCAmelCase_ : Any = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] UpperCAmelCase_ : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] UpperCAmelCase_ : int = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.skip_connection.weight'''] UpperCAmelCase_ : int = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ): UpperCAmelCase_ : Optional[int] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) UpperCAmelCase_ : List[Any] = checkpoint[F'''{old_prefix}.norm.weight'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.norm.bias'''] UpperCAmelCase_ : Any = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : str = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Union[str, Any] = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Optional[int] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : str = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ : Any = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : int = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Optional[int] = checkpoint['''time_embed.0.weight'''] UpperCAmelCase_ : Any = checkpoint['''time_embed.0.bias'''] UpperCAmelCase_ : int = checkpoint['''time_embed.2.weight'''] UpperCAmelCase_ : str = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ : Any = checkpoint['''label_emb.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase_ : List[Any] = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase_ : List[Any] = unet_config['''down_block_types'''] UpperCAmelCase_ : Tuple = unet_config['''layers_per_block'''] UpperCAmelCase_ : int = unet_config['''attention_head_dim'''] UpperCAmelCase_ : List[Any] = unet_config['''block_out_channels'''] UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Union[str, Any] = channels_list[0] for i, layer_type in enumerate(__lowercase ): UpperCAmelCase_ : Optional[int] = channels_list[i] UpperCAmelCase_ : Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowercase ): UpperCAmelCase_ : List[Any] = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : Tuple = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : int = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Any = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowercase ): UpperCAmelCase_ : Dict = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : int = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[int] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Tuple = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) UpperCAmelCase_ : Optional[Any] = F'''down_blocks.{i}.attentions.{j}''' UpperCAmelCase_ : Optional[Any] = F'''input_blocks.{current_layer}.1''' UpperCAmelCase_ : List[Any] = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : Any = F'''down_blocks.{i}.downsamplers.0''' UpperCAmelCase_ : str = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : List[str] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 UpperCAmelCase_ : str = current_channels # hardcoded the mid-block for now UpperCAmelCase_ : Optional[int] = '''mid_block.resnets.0''' UpperCAmelCase_ : List[str] = '''middle_block.0''' UpperCAmelCase_ : List[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = '''mid_block.attentions.0''' UpperCAmelCase_ : int = '''middle_block.1''' UpperCAmelCase_ : List[Any] = convert_attention(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = '''mid_block.resnets.1''' UpperCAmelCase_ : Union[str, Any] = '''middle_block.2''' UpperCAmelCase_ : Optional[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = unet_config['''up_block_types'''] for i, layer_type in enumerate(__lowercase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : List[str] = F'''output_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[int] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : Optional[Any] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer-1}.1''' UpperCAmelCase_ : Tuple = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) UpperCAmelCase_ : Optional[Any] = F'''up_blocks.{i}.attentions.{j}''' UpperCAmelCase_ : Union[str, Any] = F'''output_blocks.{current_layer}.1''' UpperCAmelCase_ : Union[str, Any] = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : List[Any] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer-1}.2''' UpperCAmelCase_ : Dict = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : str = checkpoint['''out.0.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''out.0.bias'''] UpperCAmelCase_ : Union[str, Any] = checkpoint['''out.2.weight'''] UpperCAmelCase_ : int = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') __UpperCamelCase : str = parser.parse_args() __UpperCamelCase : Optional[Any] = strabool(args.class_cond) __UpperCamelCase : Optional[Any] = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __UpperCamelCase : Dict = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCamelCase : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __UpperCamelCase : Optional[Any] = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __UpperCamelCase : List[Any] = None __UpperCamelCase : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config) __UpperCamelCase : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __UpperCamelCase : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __UpperCamelCase : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCamelCase : Optional[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __UpperCamelCase : List[str] = CMStochasticIterativeScheduler(**scheduler_config) __UpperCamelCase : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Tuple = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCAmelCase_ : Optional[Any] = TOKENIZER_CLASSES else: UpperCAmelCase_ : Any = {tokenizer_name: getattr(__lowercase , tokenizer_name + '''Fast''' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCAmelCase_ : str = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase_ : str = True if checkpoint_name is None: UpperCAmelCase_ : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase_ : List[str] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCAmelCase_ : List[str] = tokenizer_class.from_pretrained(__lowercase , force_download=__lowercase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase_ : Optional[Any] = checkpoint.split('''/''' ) UpperCAmelCase_ : List[Any] = os.path.join(__lowercase , __lowercase ) elif add_prefix: UpperCAmelCase_ : Union[str, Any] = checkpoint UpperCAmelCase_ : Tuple = dump_path else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase_ : Dict = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase_ : Optional[Any] = file_path.split(__lowercase )[-1][0] if next_char == "/": UpperCAmelCase_ : Union[str, Any] = os.path.join(__lowercase , __lowercase ) UpperCAmelCase_ : Union[str, Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCAmelCase_ : Optional[int] = tokenizer.save_pretrained( __lowercase , legacy_format=__lowercase , filename_prefix=__lowercase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__lowercase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) __UpperCamelCase : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): if isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ): UpperCAmelCase_ : Tuple = len(set_a.intersection(__lowercase ) ) if alternative_union: UpperCAmelCase_ : List[Any] = len(__lowercase ) + len(__lowercase ) else: UpperCAmelCase_ : Tuple = len(set_a.union(__lowercase ) ) return intersection / union if isinstance(__lowercase , (list, tuple) ) and isinstance(__lowercase , (list, tuple) ): UpperCAmelCase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase_ : Tuple = len(__lowercase ) + len(__lowercase ) return len(__lowercase ) / union else: UpperCAmelCase_ : Union[str, Any] = set_a + [element for element in set_b if element not in set_a] return len(__lowercase ) / len(__lowercase ) return len(__lowercase ) / len(__lowercase ) return None if __name__ == "__main__": __UpperCamelCase : Optional[int] = {'a', 'b', 'c', 'd', 'e'} __UpperCamelCase : Optional[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
def snake_case_ ( __lowercase = 1 , __lowercase = 1_0_0_0 ): UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : str = 0 for divide_by_number in range(__lowercase , digit + 1 ): UpperCAmelCase_ : list[int] = [] UpperCAmelCase_ : int = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): UpperCAmelCase_ : Union[str, Any] = len(__lowercase ) UpperCAmelCase_ : str = divide_by_number else: has_been_divided.append(__lowercase ) UpperCAmelCase_ : Union[str, Any] = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
def snake_case_ ( __lowercase , __lowercase ) -> Tuple: return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ) -> Optional[int]: assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import string def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = '''''' for i in sequence: UpperCAmelCase_ : Optional[Any] = ord(__lowercase ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = string.ascii_letters UpperCAmelCase_ : int = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__lowercase )] if c in letters else c for c in sequence ) def snake_case_ ( ): from timeit import timeit print('''Running performance benchmarks...''' ) UpperCAmelCase_ : int = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=__lowercase )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=__lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'{example} encrypted in atbash: {atbash(example)}') benchmark()
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Dict = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Dict = 13 UpperCAmelCase_ : Any = 7 UpperCAmelCase_ : str = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Any = False UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : List[Any] = 99 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[int] = 32 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : List[Any] = 0.1 UpperCAmelCase_ : Union[str, Any] = 0.1 UpperCAmelCase_ : Union[str, Any] = 512 UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : Union[str, Any] = 0.02 UpperCAmelCase_ : Any = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : Any = '''last''' UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : int = None UpperCAmelCase_ : Optional[Any] = 0 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCAmelCase_ : int = None if self.use_input_lengths: UpperCAmelCase_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : str , __snake_case : List[Any] , __snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Any = TFFlaubertModel(config=__snake_case ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : str = [input_ids, input_mask] UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Any , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = TFFlaubertWithLMHeadModel(__snake_case ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : int = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : str = TFFlaubertForQuestionAnsweringSimple(__snake_case ) UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : int = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFFlaubertForSequenceClassification(__snake_case ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Tuple , __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Dict , __snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Tuple = TFFlaubertForTokenClassification(config=__snake_case ) UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.num_choices UpperCAmelCase_ : List[str] = TFFlaubertForMultipleChoice(config=__snake_case ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Dict = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : str = ( { 'feature-extraction': TFFlaubertModel, 'fill-mask': TFFlaubertWithLMHeadModel, 'question-answering': TFFlaubertForQuestionAnsweringSimple, 'text-classification': TFFlaubertForSequenceClassification, 'token-classification': TFFlaubertForTokenClassification, 'zero-shot': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) A_ : Any = False A_ : Any = False def _lowerCamelCase ( self : Tuple , __snake_case : Tuple , __snake_case : Any , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = TFFlaubertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__snake_case ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = TFFlaubertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase_ : int = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCAmelCase_ : Any = model(__snake_case )[0] UpperCAmelCase_ : Dict = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. UpperCAmelCase_ : List[str] = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , '''width_multiplier''' ) ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : int=13 , __snake_case : Tuple=64 , __snake_case : str=2 , __snake_case : Dict=3 , __snake_case : List[Any]="swish" , __snake_case : Optional[int]=3 , __snake_case : Any=32 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=0.02 , __snake_case : str=True , __snake_case : Dict=True , __snake_case : Optional[Any]=10 , __snake_case : str=None , __snake_case : Tuple=0.25 , __snake_case : Dict=0.0 , __snake_case : Any=0.0 , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : List[Any] = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Union[str, Any] = conv_kernel_size UpperCAmelCase_ : Optional[int] = output_stride UpperCAmelCase_ : Optional[int] = classifier_dropout_prob UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : Optional[int] = width_multiplier UpperCAmelCase_ : int = ffn_dropout UpperCAmelCase_ : Dict = attn_dropout def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCamelCase ( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MobileViTVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : str = MobileViTVaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Dict = self.num_labels UpperCAmelCase_ : int = MobileViTVaForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ : Optional[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) A_ : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) A_ : Union[str, Any] = False A_ : List[str] = False A_ : List[str] = False A_ : List[Any] = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = MobileViTVaModelTester(self ) UpperCAmelCase_ : int = MobileViTVaConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCamelCase ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self : str ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : str = model_class(__snake_case ) UpperCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(__snake_case : Optional[int] , __snake_case : Any , __snake_case : Union[str, Any] ): UpperCAmelCase_ : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ : str = outputs.hidden_states UpperCAmelCase_ : Union[str, Any] = 5 self.assertEqual(len(__snake_case ) , __snake_case ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ : List[str] = 2 for i in range(len(__snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = MobileViTVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ): UpperCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __snake_case ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Optional[int] = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**__snake_case ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ : Tuple = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : Union[str, Any] = model.to(__snake_case ) UpperCAmelCase_ : List[str] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**__snake_case ) UpperCAmelCase_ : Dict = outputs.logits # verify the logits UpperCAmelCase_ : Optional[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : Optional[int] = model.to(__snake_case ) UpperCAmelCase_ : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**__snake_case ) UpperCAmelCase_ : Any = outputs.logits.detach().cpu() UpperCAmelCase_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(50, 60)] ) UpperCAmelCase_ : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __snake_case ) UpperCAmelCase_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) UpperCAmelCase_ : str = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __snake_case )
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Any = 'EncodecFeatureExtractor' A_ : Dict = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Any , __snake_case : Tuple , __snake_case : Any ): '''simple docstring''' super().__init__(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = self.feature_extractor UpperCAmelCase_ : int = False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : Any=None , __snake_case : Tuple=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : str ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) UpperCAmelCase_ : int = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase_ : Dict = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase_ : str = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Tuple = args[0] UpperCAmelCase_ : List[str] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: UpperCAmelCase_ : Tuple = self.tokenizer(__snake_case , **__snake_case ) if audio is not None: UpperCAmelCase_ : Optional[int] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase_ : Optional[int] = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: UpperCAmelCase_ : Dict = audio_inputs['''padding_mask'''] return inputs def _lowerCamelCase ( self : int , *__snake_case : Tuple , **__snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase_ : Optional[Any] = kwargs.pop('''padding_mask''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = args[0] UpperCAmelCase_ : int = args[1:] if audio_values is not None: return self._decode_audio(__snake_case , padding_mask=__snake_case ) else: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[int] , *__snake_case : str , **__snake_case : str ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : Tuple , __snake_case : int , __snake_case : Optional = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = to_numpy(__snake_case ) UpperCAmelCase_ : Any = audio_values.shape if padding_mask is None: return list(__snake_case ) UpperCAmelCase_ : Tuple = to_numpy(__snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase_ : Dict = seq_len - padding_mask.shape[-1] UpperCAmelCase_ : Optional[Any] = 1 - self.feature_extractor.padding_value UpperCAmelCase_ : str = np.pad(__snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=__snake_case ) UpperCAmelCase_ : List[Any] = audio_values.tolist() for i in range(__snake_case ): UpperCAmelCase_ : Union[str, Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase_ : Any = sliced_audio.reshape(__snake_case , -1 ) return audio_values
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case_ ( __lowercase : Optional[Any] ): return (data["data"], data["target"]) def snake_case_ ( __lowercase : List[Any] , __lowercase : List[Any] , __lowercase : List[Any] ): UpperCAmelCase_ : Any = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(__lowercase , __lowercase ) # Predict target for test data UpperCAmelCase_ : List[Any] = xgb.predict(__lowercase ) UpperCAmelCase_ : List[Any] = predictions.reshape(len(__lowercase ) , 1 ) return predictions def snake_case_ ( ): UpperCAmelCase_ : str = fetch_california_housing() UpperCAmelCase_ : List[str] = data_handling(__lowercase ) UpperCAmelCase_ : Optional[int] = train_test_split( __lowercase , __lowercase , test_size=0.2_5 , random_state=1 ) UpperCAmelCase_ : Tuple = xgboost(__lowercase , __lowercase , __lowercase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowercase , __lowercase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowercase , __lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
def snake_case_ ( __lowercase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Any = len(__lowercase ) # No of vertices in graph UpperCAmelCase_ : Optional[int] = [0] * n UpperCAmelCase_ : List[str] = [False] * n def dfs(__lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowercase , __lowercase , __lowercase , id_ ) UpperCAmelCase_ : Optional[int] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase_ : str = min(low[at] , low[to] ) UpperCAmelCase_ : list[tuple[int, int]] = [] for i in range(__lowercase ): if not visited[i]: dfs(__lowercase , -1 , __lowercase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if index == number_of_items: return 0 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = knapsack(__lowercase , __lowercase , __lowercase , __lowercase , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase_ : Any = values[index] + knapsack( __lowercase , __lowercase , __lowercase , max_weight - weights[index] , index + 1 ) return max(__lowercase , __lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = StableDiffusionXLImgaImgPipeline A_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ : Dict = PipelineTesterMixin.required_optional_params - {'latents'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS A_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCAmelCase_ : List[str] = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=32 , ) UpperCAmelCase_ : Any = CLIPTextModel(__snake_case ) UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__snake_case ) UpperCAmelCase_ : Any = CLIPTextModelWithProjection(__snake_case ) UpperCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__snake_case ) UpperCAmelCase_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Any=0 ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase_ : str = image / 2 + 0.5 if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase_ : Tuple = torch.manual_seed(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = StableDiffusionXLImgaImgPipeline(**__snake_case ) UpperCAmelCase_ : Dict = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : str = sd_pipe(**__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : List[str] = StableDiffusionXLImgaImgPipeline(**__snake_case ) UpperCAmelCase_ : List[str] = sd_pipe.to(__snake_case ) UpperCAmelCase_ : List[str] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) # forward without prompt embeds UpperCAmelCase_ : str = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : List[Any] = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ : str = negative_prompt UpperCAmelCase_ : Union[str, Any] = 3 * [inputs['''prompt''']] UpperCAmelCase_ : int = sd_pipe(**__snake_case ) UpperCAmelCase_ : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : str = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ : str = 3 * [inputs.pop('''prompt''' )] ( UpperCAmelCase_ ) : Dict = sd_pipe.encode_prompt(__snake_case , negative_prompt=__snake_case ) UpperCAmelCase_ : Any = sd_pipe( **__snake_case , prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , pooled_prompt_embeds=__snake_case , negative_pooled_prompt_embeds=__snake_case , ) UpperCAmelCase_ : Tuple = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Any , __snake_case : Tuple , __snake_case : List[str]="cpu" , __snake_case : List[Any]=torch.floataa , __snake_case : Tuple=0 ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase_ : Tuple = np.random.RandomState(__snake_case ).standard_normal((1, 4, 64, 64) ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) UpperCAmelCase_ : Dict = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Dict = self.get_inputs(__snake_case ) UpperCAmelCase_ : Dict = pipe(**__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = 'rwkv' A_ : List[str] = {'max_position_embeddings': 'context_length'} def __init__( self : Union[str, Any] , __snake_case : Dict=50_277 , __snake_case : Any=1_024 , __snake_case : Optional[Any]=4_096 , __snake_case : Tuple=32 , __snake_case : Any=None , __snake_case : str=None , __snake_case : Tuple=1E-5 , __snake_case : Union[str, Any]=0 , __snake_case : List[Any]=0 , __snake_case : Optional[Any]=6 , __snake_case : str=False , __snake_case : int=True , **__snake_case : str , ): '''simple docstring''' UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Tuple = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : List[Any] = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = rescale_every UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = bos_token_id UpperCAmelCase_ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : List[Any] = 2 while i * i <= n: UpperCAmelCase_ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def snake_case_ ( ): UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(__lowercase ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = 3_8_4 if "tiny" in model_name: UpperCAmelCase_ : Any = [3, 3, 9, 3] UpperCAmelCase_ : Union[str, Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: UpperCAmelCase_ : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase_ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: UpperCAmelCase_ : List[str] = [3, 3, 2_7, 3] UpperCAmelCase_ : Optional[Any] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] UpperCAmelCase_ : Any = 5_1_2 if "large" in model_name: UpperCAmelCase_ : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase_ : Dict = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] UpperCAmelCase_ : int = 7_6_8 if "xlarge" in model_name: UpperCAmelCase_ : Any = [3, 3, 2_7, 3] UpperCAmelCase_ : int = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] UpperCAmelCase_ : Optional[int] = 1_0_2_4 # set label information UpperCAmelCase_ : Dict = 1_5_0 UpperCAmelCase_ : Any = '''huggingface/label-files''' UpperCAmelCase_ : Tuple = '''ade20k-id2label.json''' UpperCAmelCase_ : Optional[int] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : int = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase_ : List[Any] = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = dct.pop(__lowercase ) UpperCAmelCase_ : List[Any] = val def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : str = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase_ : List[str] = model_name_to_url[model_name] UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ : Optional[Any] = get_upernet_config(__lowercase ) UpperCAmelCase_ : List[Any] = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ : str = state_dict.pop(__lowercase ) if "bn" in key: UpperCAmelCase_ : Tuple = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ : Optional[int] = val # rename keys UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image UpperCAmelCase_ : Optional[int] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) UpperCAmelCase_ : List[Any] = SegformerImageProcessor() UpperCAmelCase_ : int = processor(__lowercase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ : Tuple = model(__lowercase ) if model_name == "upernet-convnext-tiny": UpperCAmelCase_ : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase_ : List[Any] = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase_ : Dict = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase_ : Any = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import string from math import logaa def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) UpperCAmelCase_ : Optional[Any] = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Dict = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase_ : str = corpus_without_punctuation.split('''\n''' ) UpperCAmelCase_ : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def snake_case_ ( __lowercase , __lowercase ): return round(tf * idf , 3 )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' __UpperCamelCase : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __UpperCamelCase : Tuple = '.' if __name__ == "__main__": __UpperCamelCase : List[Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') __UpperCamelCase : List[str] = [] __UpperCamelCase : str = [] with open(doctest_file_path) as fp: for line in fp: __UpperCamelCase : Union[str, Any] = line.strip() __UpperCamelCase : Optional[int] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __UpperCamelCase : List[Any] = '\n'.join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase__: '''simple docstring''' def __init__( self : str , __snake_case : str=2 , __snake_case : Any=3 , __snake_case : Optional[Any]=64 , __snake_case : List[Any]=None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.random.default_rng(__snake_case ) UpperCAmelCase_ : str = length UpperCAmelCase_ : Union[str, Any] = rng.normal(size=(length,) ).astype(np.floataa ) UpperCAmelCase_ : int = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Tuple ): '''simple docstring''' return self.length def __getitem__( self : List[Any] , __snake_case : List[str] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowerCAmelCase__( torch.nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : List[Any]=0 , __snake_case : Union[str, Any]=0 , __snake_case : str=False ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : List[Any] = True def _lowerCamelCase ( self : List[Any] , __snake_case : Any=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : Any = False return x * self.a[0] + self.b[0] class lowerCAmelCase__( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __snake_case : List[str]=0 , __snake_case : Optional[int]=0 , __snake_case : Union[str, Any]=False ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Optional[int] = torch.nn.Parameter(torch.tensor(__snake_case ).float() ) UpperCAmelCase_ : Dict = torch.nn.Parameter(torch.tensor(__snake_case ).float() ) UpperCAmelCase_ : List[str] = True def _lowerCamelCase ( self : Any , __snake_case : str=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : int = False return x * self.a + self.b def snake_case_ ( __lowercase , __lowercase = 1_6 ): from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Dict = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ : Optional[Any] = load_dataset('''csv''' , data_files=__lowercase ) UpperCAmelCase_ : Optional[int] = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ : str = {v: i for i, v in enumerate(__lowercase )} def tokenize_function(__lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Optional[Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase , padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ : int = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : int = datasets.map( __lowercase , batched=__lowercase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : Tuple = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=2 ) UpperCAmelCase_ : Dict = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Any = 3 UpperCAmelCase_ : List[str] = (32, 32) UpperCAmelCase_ : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__snake_case ) @property def _lowerCamelCase ( self : Any ): '''simple docstring''' def extract(*__snake_case : Any , **__snake_case : List[str] ): class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.ones([0] ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] ): '''simple docstring''' self.pixel_values.to(__snake_case ) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.dummy_cond_unet UpperCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) UpperCAmelCase_ : int = self.dummy_vae UpperCAmelCase_ : Dict = self.dummy_text_encoder UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : int = StableDiffusionPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : int = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : int = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[int] = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : Any = sd_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : str = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__snake_case , )[0] UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Optional[int] = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : int = PNDMScheduler(skip_prk_steps=__snake_case ) UpperCAmelCase_ : List[str] = self.dummy_vae UpperCAmelCase_ : Dict = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : Dict = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Dict = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : List[Any] = sd_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Tuple = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__snake_case , )[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(pipe.scheduler , __snake_case ) assert pipe.safety_checker is None UpperCAmelCase_ : List[str] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__snake_case ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.dummy_cond_unet UpperCAmelCase_ : Optional[int] = PNDMScheduler(skip_prk_steps=__snake_case ) UpperCAmelCase_ : Tuple = self.dummy_vae UpperCAmelCase_ : str = self.dummy_text_encoder UpperCAmelCase_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase_ : Tuple = unet.half() UpperCAmelCase_ : Dict = vae.half() UpperCAmelCase_ : Tuple = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Tuple = StableDiffusionPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__snake_case ) UpperCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : List[Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase_ : Optional[Any] = 4_003_660_346 UpperCAmelCase_ : Optional[Any] = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : List[Any] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase_ : List[str] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__snake_case ) UpperCAmelCase_ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase_ : str = 2_734_971_755 UpperCAmelCase_ : Tuple = 7 UpperCAmelCase_ : Any = torch.manual_seed(__snake_case ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase_ : Optional[int] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase_ : int = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Union[str, Any] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase_ : Optional[Any] = 1_044_355_234 UpperCAmelCase_ : int = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase_ : Dict = torch.manual_seed(__snake_case ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase_ : Union[str, Any] = model_name.find('''patch''' ) UpperCAmelCase_ : Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) UpperCAmelCase_ : Optional[Any] = XCLIPVisionConfig(patch_size=__lowercase , num_frames=__lowercase ) if "large" in model_name: UpperCAmelCase_ : Tuple = 7_6_8 UpperCAmelCase_ : Union[str, Any] = 3_0_7_2 UpperCAmelCase_ : Optional[int] = 1_2 UpperCAmelCase_ : Dict = 1_0_2_4 UpperCAmelCase_ : List[str] = 4_0_9_6 UpperCAmelCase_ : int = 1_6 UpperCAmelCase_ : int = 2_4 UpperCAmelCase_ : Tuple = 7_6_8 UpperCAmelCase_ : str = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ : Tuple = 3_3_6 UpperCAmelCase_ : List[str] = XCLIPConfig.from_text_vision_configs(__lowercase , __lowercase ) if "large" in model_name: UpperCAmelCase_ : Dict = 7_6_8 return config def snake_case_ ( __lowercase ): # text encoder if name == "token_embedding.weight": UpperCAmelCase_ : List[Any] = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": UpperCAmelCase_ : Union[str, Any] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: UpperCAmelCase_ : Optional[int] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: UpperCAmelCase_ : Dict = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): UpperCAmelCase_ : Tuple = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase_ : Optional[int] = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: UpperCAmelCase_ : Tuple = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase_ : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": UpperCAmelCase_ : Optional[Any] = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): UpperCAmelCase_ : Union[str, Any] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: UpperCAmelCase_ : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: UpperCAmelCase_ : List[Any] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: UpperCAmelCase_ : str = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: UpperCAmelCase_ : List[Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: UpperCAmelCase_ : List[str] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase_ : Dict = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: UpperCAmelCase_ : Tuple = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": UpperCAmelCase_ : int = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): UpperCAmelCase_ : List[Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): UpperCAmelCase_ : int = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def snake_case_ ( __lowercase , __lowercase ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Any = orig_state_dict.pop(__lowercase ) if "attn.in_proj" in key: UpperCAmelCase_ : List[Any] = key.split('''.''' ) if key.startswith('''visual''' ): UpperCAmelCase_ : Any = key_split[3] UpperCAmelCase_ : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase_ : List[Any] = val[ :dim, : ] UpperCAmelCase_ : Any = val[ dim : dim * 2, : ] UpperCAmelCase_ : Tuple = val[ -dim:, : ] else: UpperCAmelCase_ : Dict = val[ :dim ] UpperCAmelCase_ : Union[str, Any] = val[ dim : dim * 2 ] UpperCAmelCase_ : List[Any] = val[ -dim: ] else: if "weight" in key: UpperCAmelCase_ : Union[str, Any] = val[ :dim, : ] UpperCAmelCase_ : Tuple = val[ dim : dim * 2, : ] UpperCAmelCase_ : Tuple = val[ -dim:, : ] else: UpperCAmelCase_ : int = val[:dim] UpperCAmelCase_ : int = val[ dim : dim * 2 ] UpperCAmelCase_ : List[str] = val[-dim:] elif key.startswith('''mit''' ): UpperCAmelCase_ : List[str] = key_split[2] UpperCAmelCase_ : int = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase_ : Optional[int] = val[:dim, :] UpperCAmelCase_ : Any = val[dim : dim * 2, :] UpperCAmelCase_ : Any = val[-dim:, :] else: UpperCAmelCase_ : Any = val[:dim] UpperCAmelCase_ : str = val[dim : dim * 2] UpperCAmelCase_ : Any = val[-dim:] else: UpperCAmelCase_ : str = key_split[2] UpperCAmelCase_ : str = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ : Dict = val[:dim, :] UpperCAmelCase_ : Optional[Any] = val[ dim : dim * 2, : ] UpperCAmelCase_ : List[str] = val[-dim:, :] else: UpperCAmelCase_ : Any = val[:dim] UpperCAmelCase_ : Optional[int] = val[ dim : dim * 2 ] UpperCAmelCase_ : int = val[-dim:] else: UpperCAmelCase_ : Optional[Any] = rename_key(__lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase_ : List[str] = val.T UpperCAmelCase_ : int = val return orig_state_dict def snake_case_ ( __lowercase ): if num_frames == 8: UpperCAmelCase_ : Optional[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: UpperCAmelCase_ : int = '''eating_spaghetti.npy''' elif num_frames == 3_2: UpperCAmelCase_ : Union[str, Any] = '''eating_spaghetti_32_frames.npy''' UpperCAmelCase_ : str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=__lowercase , repo_type='''dataset''' , ) UpperCAmelCase_ : Optional[Any] = np.load(__lowercase ) return list(__lowercase ) def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : Tuple = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } UpperCAmelCase_ : Dict = model_to_url[model_name] UpperCAmelCase_ : Union[str, Any] = 8 if "16-frames" in model_name: UpperCAmelCase_ : str = 1_6 elif "shot" in model_name: UpperCAmelCase_ : Tuple = 3_2 UpperCAmelCase_ : List[str] = get_xclip_config(__lowercase , __lowercase ) UpperCAmelCase_ : Any = XCLIPModel(__lowercase ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase_ : Dict = '''pytorch_model.bin''' gdown.cached_download(__lowercase , __lowercase , quiet=__lowercase ) UpperCAmelCase_ : int = torch.load(__lowercase , map_location='''cpu''' )['''model'''] else: UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(__lowercase )['''model'''] UpperCAmelCase_ : List[Any] = convert_state_dict(__lowercase , __lowercase ) UpperCAmelCase_ : Union[str, Any] = XCLIPModel(__lowercase ) UpperCAmelCase_ : Tuple = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase_ : Tuple = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 UpperCAmelCase_ : Tuple = VideoMAEImageProcessor(size=__lowercase ) UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) UpperCAmelCase_ : int = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) UpperCAmelCase_ : Union[str, Any] = XCLIPProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : List[Any] = prepare_video(__lowercase ) UpperCAmelCase_ : str = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__lowercase , return_tensors='''pt''' , padding=__lowercase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) # Verify outputs UpperCAmelCase_ : Dict = outputs.logits_per_video UpperCAmelCase_ : Any = logits_per_video.softmax(dim=1 ) print('''Probs:''' , __lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase_ : Optional[int] = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase_ : int = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase_ : List[Any] = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase_ : str = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase_ : str = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ : List[str] = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase_ : Tuple = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase_ : List[str] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase_ : Any = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase_ : Any = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase_ : Optional[Any] = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase_ : int = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase_ : List[str] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase_ : List[Any] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase_ : int = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase_ : List[str] = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase_ : int = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(__lowercase , __lowercase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(__lowercase , organization='''nielsr''' ) processor.push_to_hub(__lowercase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(__lowercase , organization='''nielsr''' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCamelCase : Tuple = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import math from collections.abc import Iterator from itertools import takewhile def snake_case_ ( __lowercase ) -> str: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( ) -> Tuple: UpperCAmelCase_ : str = 2 while True: if is_prime(__lowercase ): yield num num += 1 def snake_case_ ( __lowercase = 2_0_0_0_0_0_0 ) -> List[str]: return sum(takewhile(lambda __lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , snake_case__ , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = RobertaConfig A_ : List[Any] = 'roberta' def __init__( self : str , __snake_case : Tuple ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Tuple = RobertaEmbeddings(__snake_case ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , snake_case__ , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = RobertaConfig A_ : int = 'roberta' def __init__( self : str , __snake_case : Optional[int] ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : int = config.num_labels UpperCAmelCase_ : Dict = config.num_hidden_layers UpperCAmelCase_ : Dict = DeeRobertaModel(__snake_case ) UpperCAmelCase_ : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_ : str = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : int=None , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Union[str, Any]=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=-1 , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_layers try: UpperCAmelCase_ : List[Any] = self.roberta( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , position_ids=__snake_case , head_mask=__snake_case , inputs_embeds=__snake_case , ) UpperCAmelCase_ : Optional[int] = outputs[1] UpperCAmelCase_ : List[Any] = self.dropout(__snake_case ) UpperCAmelCase_ : str = self.classifier(__snake_case ) UpperCAmelCase_ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase_ : Optional[Any] = e.message UpperCAmelCase_ : Tuple = e.exit_layer UpperCAmelCase_ : Any = outputs[0] if not self.training: UpperCAmelCase_ : Tuple = entropy(__snake_case ) UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : Optional[int] = MSELoss() UpperCAmelCase_ : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : Any = CrossEntropyLoss() UpperCAmelCase_ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase_ : int = [] for highway_exit in outputs[-1]: UpperCAmelCase_ : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(__snake_case ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : Union[str, Any] = MSELoss() UpperCAmelCase_ : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : Tuple = CrossEntropyLoss() UpperCAmelCase_ : Optional[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__snake_case ) if train_highway: UpperCAmelCase_ : Optional[int] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase_ : Optional[Any] = (loss,) + outputs if not self.training: UpperCAmelCase_ : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase_ : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __lowercase , __lowercase ): print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(__lowercase ): print(F'''{i}\t\t{d}''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): for j in range(__lowercase ): UpperCAmelCase_ : str = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = [float('''inf''' )] * vertex_count UpperCAmelCase_ : Optional[Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__lowercase ): UpperCAmelCase_ : Optional[int] = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCAmelCase_ : Tuple = distance[u] + w UpperCAmelCase_ : Dict = check_negative_cycle(__lowercase , __lowercase , __lowercase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[int] = int(input('Enter number of vertices: ').strip()) __UpperCamelCase : Optional[int] = int(input('Enter number of edges: ').strip()) __UpperCamelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) __UpperCamelCase : Optional[int] = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) __UpperCamelCase : Optional[Any] = {'src': src, 'dst': dest, 'weight': weight} __UpperCamelCase : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) __UpperCamelCase : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Any = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = int(__lowercase ) UpperCAmelCase_ : Dict = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=3_0_0 ): # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase_ : Tuple = F'''{elt:.6f}''' if isinstance(__lowercase , __lowercase ) else str(__lowercase ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCAmelCase__: '''simple docstring''' A_ : int = 5 A_ : List[Any] = 0.2 def __init__( self : List[str] , __snake_case : int , __snake_case : Optional[str] = None , __snake_case : bool = True , __snake_case : Optional["NotebookTrainingTracker"] = None , __snake_case : int = 300 , ): '''simple docstring''' UpperCAmelCase_ : Any = total UpperCAmelCase_ : Union[str, Any] = '''''' if prefix is None else prefix UpperCAmelCase_ : str = leave UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : List[Any] = width UpperCAmelCase_ : str = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Any = None def _lowerCamelCase ( self : Optional[int] , __snake_case : int , __snake_case : bool = False , __snake_case : str = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = value if comment is not None: UpperCAmelCase_ : int = comment if self.last_value is None: UpperCAmelCase_ : int = time.time() UpperCAmelCase_ : Optional[int] = value UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = self.warmup UpperCAmelCase_ : List[Any] = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase_ : Union[str, Any] = time.time() UpperCAmelCase_ : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase_ : int = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase_ : Optional[int] = None if value >= self.total: UpperCAmelCase_ : Optional[int] = self.total UpperCAmelCase_ : str = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase_ : Any = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Tuple = current_time if self.average_time_per_item is None: UpperCAmelCase_ : Dict = 1 else: UpperCAmelCase_ : int = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowerCamelCase ( self : Tuple , __snake_case : List[Any] , __snake_case : List[str]=None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: UpperCAmelCase_ : int = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: UpperCAmelCase_ : Optional[Any] = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: UpperCAmelCase_ : Tuple = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase_ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any]=None ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Tuple = None if column_names is None else [column_names] UpperCAmelCase_ : Dict = None def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase_ : Dict = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Optional[int] ): '''simple docstring''' if self.inner_table is None: UpperCAmelCase_ : List[Any] = [list(values.keys() ), list(values.values() )] else: UpperCAmelCase_ : Union[str, Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) UpperCAmelCase_ : Union[str, Any] = columns self.inner_table.append([values[c] for c in columns] ) def _lowerCamelCase ( self : Dict , __snake_case : Dict , __snake_case : Any=None , __snake_case : List[str]=300 ): '''simple docstring''' UpperCAmelCase_ : str = NotebookProgressBar(__snake_case , prefix=__snake_case , parent=self , width=__snake_case ) return self.child_bar def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = None self.display() class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = False def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Any , __snake_case : str , **__snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) UpperCAmelCase_ : Any = NotebookTrainingTracker(state.max_steps , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , **__snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) UpperCAmelCase_ : str = False def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : Dict=None , **__snake_case : int ): '''simple docstring''' if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase_ : List[Any] = self.training_tracker.add_child(len(__snake_case ) ) else: UpperCAmelCase_ : List[str] = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase_ : List[str] = None def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Union[str, Any]=None , **__snake_case : Dict ): '''simple docstring''' # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase_ : Union[str, Any] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase_ : str = state.global_step self.training_tracker.write_line(__snake_case ) def _lowerCamelCase ( self : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : int=None , **__snake_case : int ): '''simple docstring''' if self.training_tracker is not None: UpperCAmelCase_ : List[Any] = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase_ : Dict = log['''loss'''] break if self.first_column == "Epoch": UpperCAmelCase_ : Dict = int(state.epoch ) else: UpperCAmelCase_ : Dict = state.global_step UpperCAmelCase_ : Dict = '''eval''' for k in metrics: if k.endswith('''_loss''' ): UpperCAmelCase_ : Optional[Any] = re.sub(R'''\_loss$''' , '''''' , __snake_case ) UpperCAmelCase_ : Union[str, Any] = metrics.pop('''total_flos''' , __snake_case ) UpperCAmelCase_ : str = metrics.pop('''epoch''' , __snake_case ) UpperCAmelCase_ : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , __snake_case ) UpperCAmelCase_ : int = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , __snake_case ) UpperCAmelCase_ : int = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , __snake_case ) UpperCAmelCase_ : Optional[int] = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , __snake_case ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Optional[Any] = k.split('''_''' ) UpperCAmelCase_ : Optional[Any] = ''' '''.join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase_ : Optional[Any] = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() UpperCAmelCase_ : Tuple = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase_ : Any = True def _lowerCamelCase ( self : str , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Tuple , **__snake_case : str ): '''simple docstring''' self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__snake_case ) UpperCAmelCase_ : List[str] = None
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = VQModel A_ : Optional[int] = 'sample' @property def _lowerCamelCase ( self : List[Any] , __snake_case : Union[str, Any]=(32, 32) ): '''simple docstring''' UpperCAmelCase_ : int = 4 UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) return {"sample": image} @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return (3, 32, 32) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return (3, 32, 32) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } UpperCAmelCase_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : int ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__snake_case ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(__snake_case ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase_ : Union[str, Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase_ : List[Any] = image.to(__snake_case ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(__snake_case ).sample UpperCAmelCase_ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase_ : Dict = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) )
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def snake_case_ ( __lowercase : Optional[Any] ): UpperCAmelCase_ : str = {} UpperCAmelCase_ : Tuple = tokenizer(example['''content'''] , truncation=__lowercase )['''input_ids'''] UpperCAmelCase_ : Dict = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __UpperCamelCase : str = HfArgumentParser(PretokenizationArguments) __UpperCamelCase : Union[str, Any] = parser.parse_args() if args.num_workers is None: __UpperCamelCase : Any = multiprocessing.cpu_count() __UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) __UpperCamelCase : int = time.time() __UpperCamelCase : Dict = load_dataset(args.dataset_name, split='train') print(F'Dataset loaded in {time.time()-t_start:.2f}s') __UpperCamelCase : Optional[int] = time.time() __UpperCamelCase : Optional[int] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') __UpperCamelCase : Any = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = len(__lowercase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ : Optional[int] = arr[mi::-1] + arr[mi + 1 : len(__lowercase )] # Reverse whole list UpperCAmelCase_ : int = arr[cur - 1 :: -1] + arr[cur : len(__lowercase )] cur -= 1 return arr if __name__ == "__main__": __UpperCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() __UpperCamelCase : Tuple = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : str = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple=0 ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__snake_case ) ) UpperCAmelCase_ : Dict = np.random.RandomState(__snake_case ) UpperCAmelCase_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs() UpperCAmelCase_ : List[Any] = pipe(**__snake_case ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : List[str] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs() UpperCAmelCase_ : List[Any] = pipe(**__snake_case ).images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) # warmup pass to apply optimizations UpperCAmelCase_ : Dict = pipe(**self.get_dummy_inputs() ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : int = pipe(**__snake_case ).images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : List[Any] = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : str = pipe(**__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Tuple = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : List[str] = pipe(**__snake_case ).images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Any = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs() UpperCAmelCase_ : List[str] = pipe(**__snake_case ).images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = ort.SessionOptions() UpperCAmelCase_ : Tuple = False return options def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase_ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default UpperCAmelCase_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : List[Any] = '''A fantasy landscape, trending on artstation''' UpperCAmelCase_ : str = np.random.RandomState(0 ) UpperCAmelCase_ : int = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type='''np''' , ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase_ : Any = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase_ : Dict = init_image.resize((768, 512) ) UpperCAmelCase_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = '''A fantasy landscape, trending on artstation''' UpperCAmelCase_ : Dict = np.random.RandomState(0 ) UpperCAmelCase_ : Any = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type='''np''' , ) UpperCAmelCase_ : Optional[Any] = output.images UpperCAmelCase_ : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
def snake_case_ ( __lowercase = 5_0 ): UpperCAmelCase_ : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
def snake_case_ ( __lowercase ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) UpperCAmelCase_ : Any = [True] * (num + 1) UpperCAmelCase_ : Any = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowercase ): UpperCAmelCase_ : Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[Any] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
def snake_case_ ( __lowercase ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
import operator def snake_case_ ( __lowercase , __lowercase = False , __lowercase = None ): UpperCAmelCase_ : Any = operator.lt if reverse else operator.gt UpperCAmelCase_ : Optional[int] = solution or [] if not arr: return solution UpperCAmelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(__lowercase ): if _operator(__lowercase , sublist[-1] ): sublist.append(__lowercase ) arr.pop(__lowercase ) # merging sublist into solution list if not solution: solution.extend(__lowercase ) else: while sublist: UpperCAmelCase_ : Any = sublist.pop(0 ) for i, xx in enumerate(__lowercase ): if not _operator(__lowercase , __lowercase ): solution.insert(__lowercase , __lowercase ) break else: solution.append(__lowercase ) strand_sort(__lowercase , __lowercase , __lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
import qiskit def snake_case_ ( __lowercase = 2 ): UpperCAmelCase_ : Union[str, Any] = qubits # Using Aer's simulator UpperCAmelCase_ : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register UpperCAmelCase_ : Any = qiskit.QuantumCircuit(__lowercase , __lowercase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowercase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowercase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowercase ) ) , list(range(__lowercase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase__: '''simple docstring''' A_ : str = BlenderbotConfig A_ : Tuple = {} A_ : str = 'gelu' def __init__( self : Dict , __snake_case : str , __snake_case : Optional[Any]=13 , __snake_case : Any=7 , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=False , __snake_case : str=99 , __snake_case : Optional[Any]=32 , __snake_case : List[Any]=2 , __snake_case : Dict=4 , __snake_case : Union[str, Any]=37 , __snake_case : List[str]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=20 , __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=1 , __snake_case : List[Any]=0 , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = pad_token_id UpperCAmelCase_ : int = bos_token_id def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : int = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def _lowerCamelCase ( self : Tuple , __snake_case : List[str] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = TFBlenderbotModel(config=__snake_case ).get_decoder() UpperCAmelCase_ : Optional[int] = inputs_dict['''input_ids'''] UpperCAmelCase_ : List[Any] = input_ids[:1, :] UpperCAmelCase_ : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ : str = inputs_dict['''head_mask'''] UpperCAmelCase_ : Dict = 1 # first forward pass UpperCAmelCase_ : Optional[int] = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) UpperCAmelCase_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : Optional[int] = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase_ : Union[str, Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCAmelCase_ : Any = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Any = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () A_ : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () A_ : Dict = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) A_ : Optional[Any] = True A_ : Dict = False A_ : List[str] = False def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = TFBlenderbotModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self , config_class=__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Dict = ['My friends are cool but they eat too many carbs.'] A_ : Optional[Any] = 'facebook/blenderbot-400M-distill' @cached_property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase_ : str = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : List[Any] = 13 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : Optional[int] = 30 UpperCAmelCase_ : str = self.seq_length + self.mem_len UpperCAmelCase_ : Optional[Any] = 15 UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : str = 99 UpperCAmelCase_ : List[Any] = [10, 50, 80] UpperCAmelCase_ : Dict = 32 UpperCAmelCase_ : List[Any] = 32 UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : Tuple = 8 UpperCAmelCase_ : Union[str, Any] = 128 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : List[str] = self.vocab_size - 1 UpperCAmelCase_ : Optional[int] = 0.01 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : int , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFTransfoXLModel(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ).to_tuple() UpperCAmelCase_ : Dict = {'''input_ids''': input_ids_a, '''mems''': mems_a} UpperCAmelCase_ : Tuple = model(__snake_case ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCamelCase ( self : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Any = TFTransfoXLLMHeadModel(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case ).to_tuple() UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} UpperCAmelCase_ : List[str] = model(__snake_case ).to_tuple() UpperCAmelCase_ : Dict = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase_ : List[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} UpperCAmelCase_ : Union[str, Any] = model(__snake_case ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = TFTransfoXLForSequenceClassification(__snake_case ) UpperCAmelCase_ : List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() (UpperCAmelCase_) : str = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) A_ : Union[str, Any] = () if is_tf_available() else () A_ : Optional[int] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented A_ : Dict = False A_ : int = False A_ : Any = False A_ : str = False def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Dict , __snake_case : int , __snake_case : str , __snake_case : int ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = TFTransfoXLModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=__snake_case , d_embed=37 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.model_tester.set_seed() UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.model_tester.set_seed() UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(__snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase_ : int = model.get_output_embeddings() assert isinstance(__snake_case , tf.keras.layers.Layer ) UpperCAmelCase_ : int = model.get_bias() assert name is None else: UpperCAmelCase_ : int = model.get_output_embeddings() assert x is None UpperCAmelCase_ : Union[str, Any] = model.get_bias() assert name is None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = TFTransfoXLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase_ : Union[str, Any] = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase_ : Union[str, Any] = model.generate(__snake_case , max_length=200 , do_sample=__snake_case ) self.assertListEqual(output_ids[0].numpy().tolist() , __snake_case )
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
import os import sys __UpperCamelCase : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCamelCase : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoConfig.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoTokenizer.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModel.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModel.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForCausalLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForMaskedLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForSequenceClassification.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForQuestionAnswering.from_pretrained(*__lowercase , **__lowercase )
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case_ ( __lowercase ): UpperCAmelCase_ : Any = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase_ : Union[str, Any] = s_dict.pop(__lowercase ) elif "subsample" in key: UpperCAmelCase_ : List[Any] = s_dict.pop(__lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Dict = emb.weight.shape UpperCAmelCase_ : Union[str, Any] = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : int = mam_aaa['''args'''] UpperCAmelCase_ : Dict = mam_aaa['''model'''] UpperCAmelCase_ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__lowercase ) rename_keys(__lowercase ) UpperCAmelCase_ : int = state_dict['''decoder.embed_tokens.weight'''].shape[0] UpperCAmelCase_ : Optional[Any] = args.share_decoder_input_output_embed UpperCAmelCase_ : str = [int(__lowercase ) for i in args.conv_kernel_sizes.split(''',''' )] UpperCAmelCase_ : List[Any] = SpeechaTextConfig( vocab_size=__lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowercase , num_beams=5 , max_length=2_0_0 , use_cache=__lowercase , decoder_start_token_id=2 , early_stopping=__lowercase , ) UpperCAmelCase_ : Tuple = SpeechaTextForConditionalGeneration(__lowercase ) UpperCAmelCase_ : List[Any] = model.model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0 and not set(__lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase_ : List[Any] = lm_head_weights model.save_pretrained(__lowercase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __UpperCamelCase : Tuple = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def snake_case_ ( __lowercase , __lowercase , __lowercase = 1_0**-1_0 ): UpperCAmelCase_ : Optional[Any] = a while True: UpperCAmelCase_ : Any = Decimal(__lowercase ) - ( Decimal(eval(__lowercase ) ) / Decimal(eval(str(diff(__lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowercase ) ) < precision: # noqa: S307 return float(__lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : int = ProphetNetTokenizer A_ : Union[str, Any] = False def _lowerCamelCase ( self : Any ): '''simple docstring''' super().setUp() UpperCAmelCase_ : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self : List[str] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''UNwant\u00E9d,running''' UpperCAmelCase_ : List[str] = '''unwanted, running''' return input_text, output_text def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase_ : Any = {} for i, token in enumerate(__snake_case ): UpperCAmelCase_ : List[str] = i UpperCAmelCase_ : List[Any] = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase_ : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ : Optional[int] = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] UpperCAmelCase_ : str = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase_ : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _lowerCamelCase ( self : Any ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase_ : int = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase_ : List[Any] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.dummy_uncond_unet UpperCAmelCase_ : Optional[int] = ScoreSdeVeScheduler() UpperCAmelCase_ : str = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case ) sde_ve.to(__snake_case ) sde_ve.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : str = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case ).images UpperCAmelCase_ : str = torch.manual_seed(0 ) UpperCAmelCase_ : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case , return_dict=__snake_case )[ 0 ] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''google/ncsnpp-church-256''' UpperCAmelCase_ : Dict = UNetaDModel.from_pretrained(__snake_case ) UpperCAmelCase_ : List[Any] = ScoreSdeVeScheduler.from_pretrained(__snake_case ) UpperCAmelCase_ : Optional[int] = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case ) sde_ve.to(__snake_case ) sde_ve.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : Optional[Any] = logging.getLogger(__name__) def snake_case_ ( __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , ): UpperCAmelCase_ : Dict = bnb_quantization_config.load_in_abit UpperCAmelCase_ : Optional[int] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCAmelCase_ : Optional[Any] = [] # custom device map if isinstance(__lowercase , __lowercase ) and len(device_map.keys() ) > 1: UpperCAmelCase_ : Any = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase_ : List[str] = get_keys_to_not_convert(__lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowercase ) UpperCAmelCase_ : Optional[int] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowercase ) # compatibility with peft UpperCAmelCase_ : List[Any] = load_in_abit UpperCAmelCase_ : Optional[int] = load_in_abit UpperCAmelCase_ : Optional[Any] = get_parameter_device(__lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCAmelCase_ : str = replace_with_bnb_layers(__lowercase , __lowercase , modules_to_not_convert=__lowercase ) # convert param to the right dtype UpperCAmelCase_ : int = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase_ : str = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCAmelCase_ : Dict = getattr(__lowercase , __lowercase , __lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowercase ): param.to(__lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCAmelCase_ : int = replace_with_bnb_layers( __lowercase , __lowercase , modules_to_not_convert=__lowercase ) UpperCAmelCase_ : Optional[int] = get_quantized_model_device_map( __lowercase , __lowercase , __lowercase , max_memory=__lowercase , no_split_module_classes=__lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Optional[Any] = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowercase , __lowercase , __lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowercase , offload_state_dict=__lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowercase , device_map=__lowercase , offload_dir=__lowercase ) def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ): if device_map is None: if torch.cuda.is_available(): UpperCAmelCase_ : List[Any] = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowercase , __lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCAmelCase_ : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : Tuple = special_dtypes UpperCAmelCase_ : List[str] = no_split_module_classes UpperCAmelCase_ : str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase_ : Union[str, Any] = get_balanced_memory( __lowercase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowercase , **__lowercase , ) UpperCAmelCase_ : List[Any] = max_memory UpperCAmelCase_ : List[Any] = infer_auto_device_map(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ): # check if don't have any quantized module on the cpu UpperCAmelCase_ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase_ : int = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None ): if modules_to_not_convert is None: UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Union[str, Any] = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , ): UpperCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase_ : Union[str, Any] = [] current_key_name.append(__lowercase ) if isinstance(__lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase_ : Dict = '''.'''.join(__lowercase ) UpperCAmelCase_ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase_ : Tuple = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase_ : List[str] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase_ : Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCAmelCase_ : Optional[Any] = module.weight.data if module.bias is not None: UpperCAmelCase_ : List[str] = module.bias.data bnb_module.requires_grad_(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = True if len(list(module.children() ) ) > 0: UpperCAmelCase_ : Tuple = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case_ ( __lowercase ): # Create a copy of the model with init_empty_weights(): UpperCAmelCase_ : List[str] = deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase_ : int = find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase_ : Optional[int] = sum(__lowercase , [] ) UpperCAmelCase_ : Optional[Any] = len(__lowercase ) > 0 # Check if it is a base model UpperCAmelCase_ : Union[str, Any] = False if hasattr(__lowercase , '''base_model_prefix''' ): UpperCAmelCase_ : Optional[int] = not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase_ : Optional[Any] = list(model.named_children() ) UpperCAmelCase_ : int = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase_ : int = set(__lowercase ) - set(__lowercase ) UpperCAmelCase_ : List[str] = list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys UpperCAmelCase_ : Optional[Any] = ['''.weight''', '''.bias'''] UpperCAmelCase_ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase_ : List[str] = name.replace(__lowercase , '''''' ) filtered_module_names.append(__lowercase ) return filtered_module_names def snake_case_ ( __lowercase ): for m in model.modules(): if isinstance(__lowercase , bnb.nn.Linearabit ): return True return False def snake_case_ ( __lowercase ): return next(parameter.parameters() ).device def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowercase , __lowercase , 0 , dtype=__lowercase , value=__lowercase ) UpperCAmelCase_ : Optional[int] = param_name UpperCAmelCase_ : Optional[int] = model if "." in tensor_name: UpperCAmelCase_ : int = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase_ : Any = getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) UpperCAmelCase_ : Any = new_module UpperCAmelCase_ : int = splits[-1] # offload weights UpperCAmelCase_ : Any = False offload_weight(module._parameters[tensor_name] , __lowercase , __lowercase , index=__lowercase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowercase , index=__lowercase , ) else: offload_weight(__lowercase , __lowercase , __lowercase , index=__lowercase ) offload_weight(__lowercase , param_name.replace('''weight''' , '''SCB''' ) , __lowercase , index=__lowercase ) set_module_tensor_to_device(__lowercase , __lowercase , '''meta''' , dtype=__lowercase , value=torch.empty(*param.size() ) )
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : str , __snake_case : int , __snake_case : List[str] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_ : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ): '''simple docstring''' # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __snake_case ): UpperCAmelCase_ : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_ : List[str] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase_ : Dict = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ : Optional[Any] = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case ).prev_sample UpperCAmelCase_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : str = MobileBertConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : int = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint UpperCAmelCase_ : Dict = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __snake_case : int , __snake_case : Dict=7 , __snake_case : Any=3 , __snake_case : Dict=18 , __snake_case : Optional[Any]=30 , __snake_case : Tuple=400 , __snake_case : List[str]=True , __snake_case : Tuple=None , __snake_case : Tuple=True , __snake_case : Dict=False , __snake_case : Any=True , __snake_case : Optional[Any]=True , __snake_case : Dict=[0.5, 0.5, 0.5] , __snake_case : int=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : Optional[Any] = min_resolution UpperCAmelCase_ : Union[str, Any] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[Any] = size if size is not None else {'''height''': 18, '''width''': 20} UpperCAmelCase_ : Dict = do_thumbnail UpperCAmelCase_ : int = do_align_axis UpperCAmelCase_ : Dict = do_pad UpperCAmelCase_ : Optional[int] = do_normalize UpperCAmelCase_ : List[str] = image_mean UpperCAmelCase_ : Any = image_std def _lowerCamelCase ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : str = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__snake_case , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCAmelCase_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self : str ): '''simple docstring''' pass @is_flaky() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Optional[Any] = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case_ ( __lowercase : List[Any] ): UpperCAmelCase_ : Tuple = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def snake_case_ ( __lowercase : List[str] ): UpperCAmelCase_ : Any = emb.weight.shape UpperCAmelCase_ : str = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) UpperCAmelCase_ : int = emb.weight.data return lin_layer def snake_case_ ( __lowercase : Any , __lowercase : Any=None ): UpperCAmelCase_ : Optional[Any] = {} for old_key in state_dict.keys(): UpperCAmelCase_ : Optional[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : Tuple = key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: UpperCAmelCase_ : Union[str, Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: UpperCAmelCase_ : Dict = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: UpperCAmelCase_ : Optional[int] = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: UpperCAmelCase_ : Any = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: UpperCAmelCase_ : Optional[int] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: UpperCAmelCase_ : Optional[int] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) UpperCAmelCase_ : Union[str, Any] = state_dict[old_key] return new_dict def snake_case_ ( __lowercase : int , __lowercase : List[Any] , __lowercase : List[str] , __lowercase : Union[str, Any] , __lowercase : Any = WEIGHTS_NAME ): UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): UpperCAmelCase_ : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): UpperCAmelCase_ : Optional[int] = torch.load(__lowercase )['''model'''] remove_ignore_keys_(__lowercase ) UpperCAmelCase_ : int = rename_fairseq_keys(__lowercase , __lowercase ) UpperCAmelCase_ : Dict = os.path.join( __lowercase , weights_name.replace('''.bin''' , F'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block UpperCAmelCase_ : Dict = os.path.join(__lowercase , weights_name.replace('''.bin''' , F'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) UpperCAmelCase_ : Tuple = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__lowercase ) UpperCAmelCase_ : Tuple = rename_fairseq_keys(__lowercase , __lowercase ) UpperCAmelCase_ : Tuple = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: UpperCAmelCase_ : Any = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index UpperCAmelCase_ : Optional[Any] = {} for idx, shard in enumerate(__lowercase ): UpperCAmelCase_ : Tuple = weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) UpperCAmelCase_ : int = os.path.join(__lowercase , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: UpperCAmelCase_ : int = shard_file # Add the metadata UpperCAmelCase_ : List[Any] = {'''total_size''': total_size} UpperCAmelCase_ : Any = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__lowercase , __lowercase ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '''\n''' f.write(__lowercase ) return metadata, index if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __UpperCamelCase : int = parser.parse_args() __UpperCamelCase : Dict = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase : Optional[int] = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase : List[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __UpperCamelCase : Union[str, Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCamelCase ( cls : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = TOKEN HfFolder.save_token(__snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Any = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCAmelCase_ : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : int = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : List[str] = False return models_are_equal @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(__snake_case ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : List[Any] = FlaxBertModel(__snake_case ) UpperCAmelCase_ : List[str] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''bert''' UpperCAmelCase_ : Any = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , *__snake_case : List[str] , **__snake_case : List[str] ): '''simple docstring''' warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
from torch import nn def snake_case_ ( __lowercase ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = 'laion/clap-htsat-unfused' lowercase__ = tempfile.mkdtemp() def UpperCAmelCase ( self : Dict , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" return RobertaTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase) def UpperCAmelCase ( self : List[str] , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_feature_extractor() lowercase__ = ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowercase__ = ClapProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" lowercase__ = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor()) processor.save_pretrained(self.tmpdirname) lowercase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') lowercase__ = self.get_feature_extractor(do_normalize=lowerCAmelCase , padding_value=1.0) lowercase__ = ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , lowerCAmelCase) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string()) self.assertIsInstance(processor.feature_extractor , lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase) lowercase__ = floats_list((3, 10_00)) lowercase__ = feature_extractor(lowerCAmelCase , return_tensors='np') lowercase__ = processor(audios=lowerCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase) lowercase__ = 'This is a test string' lowercase__ = processor(text=lowerCAmelCase) lowercase__ = tokenizer(lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.batch_decode(lowerCAmelCase) lowercase__ = tokenizer.batch_decode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.get_feature_extractor() lowercase__ = self.get_tokenizer() lowercase__ = ClapProcessor(tokenizer=lowerCAmelCase , feature_extractor=lowerCAmelCase) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : Any=32 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : int=4 , lowerCAmelCase : str=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Optional[Any]=5_12 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Any=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[int]=0 , ) -> Union[str, Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = projection_dim def UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) lowercase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Dict) -> Any: """simple docstring""" lowercase__ = TFDPRContextEncoder(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = TFDPRQuestionEncoder(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Any) -> List[Any]: """simple docstring""" lowercase__ = TFDPRReader(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) A : Optional[Any] = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} A : Any = False A : Union[str, Any] = False A : Dict = False A : Tuple = False A : Any = False def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" lowercase__ = TFDPRModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37) def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCAmelCase) @slow def UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFDPRContextEncoder.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFDPRContextEncoder.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFDPRQuestionEncoder.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFDPRReader.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @require_tf class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base') lowercase__ = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]]) # [CLS] hello, is my dog cute? [SEP] lowercase__ = model(lowerCAmelCase)[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowercase__ = tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4))
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = "microsoft/speecht5_tts" A : Dict = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Dict = SpeechTaProcessor A : Dict = SpeechTaForTextToSpeech A : Union[str, Any] = SpeechTaHifiGan A : Dict = ["text"] A : int = ["audio"] def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" if self.post_processor is None: lowercase__ = 'microsoft/speecht5_hifigan' super().setup() def UpperCAmelCase ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=None) -> int: """simple docstring""" lowercase__ = self.pre_processor(text=lowerCAmelCase , return_tensors='pt' , truncation=lowerCAmelCase) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.') lowercase__ = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation') lowercase__ = torch.tensor(embeddings_dataset[73_05]['xvector']).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> Dict: """simple docstring""" with torch.no_grad(): return self.post_processor(lowerCAmelCase).cpu().detach()
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = (KDPMaDiscreteScheduler,) A : str = 10 def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" lowercase__ = { 'num_train_timesteps': 11_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : Tuple) -> List[str]: """simple docstring""" for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" for beta_start, beta_end in zip([0.0_00_01, 0.00_01, 0.0_01] , [0.00_02, 0.0_02, 0.02]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> int: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : str) -> Any: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(prediction_type='v_prediction') lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ = sample.to(lowerCAmelCase) for i, t in enumerate(scheduler.timesteps): lowercase__ = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase) lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7) < 1E-2 assert abs(result_mean.item() - 0.00_02) < 1E-3 def UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" if torch_device == "mps": return lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase__ = sample.to(lowerCAmelCase) for i, t in enumerate(scheduler.timesteps): lowercase__ = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase) lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.41_25) < 1E-2 assert abs(result_mean.item() - 0.02_66) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25) < 1E-2 assert abs(result_mean.item() - 0.02_66) < 1E-3 def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" if torch_device == "mps": return lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter.to(lowerCAmelCase) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase__ = scheduler.scale_model_input(lowerCAmelCase , lowerCAmelCase) lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = output.prev_sample lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) if str(lowerCAmelCase).startswith('cpu'): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.41_25) < 1E-2 assert abs(result_mean.item() - 0.02_66) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.41_25) < 1E-2 assert abs(result_mean.item() - 0.02_66) < 1E-3
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Dict=13 , lowerCAmelCase : str=7 , lowerCAmelCase : Dict=True , lowerCAmelCase : str=True , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[Any]=99 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Union[str, Any]=5 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Union[str, Any]=64 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Optional[Any]=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Any=16 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : List[str]=None , ) -> Optional[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" return MPNetConfig.from_pretrained('microsoft/mpnet-base') def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Optional[Any]) -> int: """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = MPNetModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any) -> List[Any]: """simple docstring""" lowercase__ = MPNetForQuestionAnswering(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Any) -> int: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MPNetForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" lowercase__ = self.num_choices lowercase__ = MPNetForMultipleChoice(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict) -> Any: """simple docstring""" lowercase__ = self.num_labels lowercase__ = MPNetForTokenClassification(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ((lowercase__), (lowercase__), (lowercase__), (lowercase__), (lowercase__), (lowercase__)) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) A : List[Any] = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) A : List[Any] = False A : Dict = True def UpperCAmelCase ( self : str) -> Any: """simple docstring""" lowercase__ = MPNetModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37) def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Dict) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCAmelCase) @require_torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" lowercase__ = MPNetModel.from_pretrained('microsoft/mpnet-base') lowercase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) lowercase__ = model(lowerCAmelCase)[0] lowercase__ = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , lowerCAmelCase) lowercase__ = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]]) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1E-4))
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() a__ : str = logging.get_logger(__name__) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = WavaVecaForSequenceClassification.from_pretrained(A__ , config=A__ ) lowercase__ = downstream_dict['projector.weight'] lowercase__ = downstream_dict['projector.bias'] lowercase__ = downstream_dict['model.post_net.linear.weight'] lowercase__ = downstream_dict['model.post_net.linear.bias'] return model def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = WavaVecaForAudioFrameClassification.from_pretrained(A__ , config=A__ ) lowercase__ = downstream_dict['model.linear.weight'] lowercase__ = downstream_dict['model.linear.bias'] return model def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = WavaVecaForXVector.from_pretrained(A__ , config=A__ ) lowercase__ = downstream_dict['connector.weight'] lowercase__ = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowercase__ = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] lowercase__ = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] lowercase__ = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] lowercase__ = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] lowercase__ = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] lowercase__ = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] lowercase__ = downstream_dict['objective.W'] return model @torch.no_grad() def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = torch.load(A__ , map_location='cpu' ) lowercase__ = checkpoint['Downstream'] lowercase__ = WavaVecaConfig.from_pretrained(A__ ) lowercase__ = WavaVecaFeatureExtractor.from_pretrained( A__ , return_attention_mask=A__ , do_normalize=A__ ) lowercase__ = hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): lowercase__ = convert_classification(A__ , A__ , A__ ) elif arch.endswith('ForAudioFrameClassification' ): lowercase__ = convert_diarization(A__ , A__ , A__ ) elif arch.endswith('ForXVector' ): lowercase__ = convert_xvector(A__ , A__ , A__ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: lowercase__ = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": a__ : Tuple = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") a__ : Tuple = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed a__ : str = logging.getLogger(__name__) def _lowerCAmelCase ( A__=2 , A__=3 , A__=16 , A__ = 10 , A__ = 2 ): def get_dataset(A__ ): lowercase__ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(A__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase__ = get_dataset(A__ ) lowercase__ = get_dataset(A__ ) lowercase__ = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) lowercase__ = DataLoader(A__ , shuffle=A__ , batch_size=A__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__=None ): lowercase__ = [] for epoch in range(A__ ): # Train quickly model.train() for batch in dataloader: lowercase__, lowercase__ = batch lowercase__ = model(A__ ) lowercase__ = torch.nn.functional.mse_loss(A__ , A__ ) accelerator.backward(A__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Tuple) -> Tuple: """simple docstring""" super().__init__() lowercase__ = nn.Parameter(torch.randn(1)) lowercase__ = nn.Parameter(torch.randn(1)) def UpperCAmelCase ( self : Any , lowerCAmelCase : str) -> List[Any]: """simple docstring""" return x * self.a + self.b class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3) lowercase__, lowercase__ = dummy_dataloaders() lowercase__ = ProjectConfiguration(total_limit=1 , project_dir=lowerCAmelCase , automatic_checkpoint_naming=lowerCAmelCase) # Train baseline lowercase__ = Accelerator(project_config=lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir)) , 1) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3) lowercase__, lowercase__ = dummy_dataloaders() # Train baseline lowercase__ = Accelerator() lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Save initial lowercase__ = os.path.join(lowerCAmelCase , 'initial') accelerator.save_state(lowerCAmelCase) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() lowercase__ = train(3 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() # Train partially set_seed(42) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3) lowercase__, lowercase__ = dummy_dataloaders() lowercase__ = Accelerator() lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) accelerator.load_state(lowerCAmelCase) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = train(2 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Save everything lowercase__ = os.path.join(lowerCAmelCase , 'checkpoint') accelerator.save_state(lowerCAmelCase) # Load everything back in and make sure all states work accelerator.load_state(lowerCAmelCase) test_rands += train(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3) lowercase__, lowercase__ = dummy_dataloaders() lowercase__ = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase) # Train baseline lowercase__ = Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Save initial accelerator.save_state() ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() lowercase__ = train(3 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() # Train partially set_seed(42) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3) lowercase__, lowercase__ = dummy_dataloaders() lowercase__ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCAmelCase) lowercase__ = Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) accelerator.load_state(os.path.join(lowerCAmelCase , 'checkpoints' , 'checkpoint_0')) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = train(2 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase , 'checkpoints' , 'checkpoint_1')) test_rands += train(1 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) ((lowercase__), (lowercase__)) = model.a.item(), model.b.item() lowercase__ = optimizer.state_dict() self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" lowercase__ = torch.tensor([1, 2, 3]) lowercase__ = torch.tensor([2, 3, 4]) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(net.parameters()) lowercase__ = Accelerator() with self.assertRaises(lowerCAmelCase) as ve: accelerator.register_for_checkpointing(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = str(ve.exception) self.assertTrue('Item at index 0' in message) self.assertTrue('Item at index 1' in message) self.assertFalse('Item at index 2' in message) self.assertFalse('Item at index 3' in message) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) lowercase__ = DummyModel() lowercase__ = torch.optim.Adam(params=model.parameters() , lr=1E-3) lowercase__ = torch.optim.lr_scheduler.StepLR(lowerCAmelCase , step_size=1 , gamma=0.99) lowercase__, lowercase__ = dummy_dataloaders() lowercase__ = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase) # Train baseline lowercase__ = Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # Save initial accelerator.save_state() lowercase__ = scheduler.state_dict() train(3 , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) self.assertNotEqual(lowerCAmelCase , scheduler.state_dict()) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCAmelCase , 'checkpoints' , 'checkpoint_0')) self.assertEqual(lowerCAmelCase , scheduler.state_dict()) def UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: set_seed(42) lowercase__ = DummyModel() lowercase__ = ProjectConfiguration(automatic_checkpoint_naming=lowerCAmelCase , total_limit=2) # Train baseline lowercase__ = Accelerator(project_dir=lowerCAmelCase , project_config=lowerCAmelCase) lowercase__ = accelerator.prepare(lowerCAmelCase) # Save 3 states: for _ in range(11): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCAmelCase , 'checkpoints' , 'checkpoint_0'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase , 'checkpoints' , 'checkpoint_9'))) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase , 'checkpoints' , 'checkpoint_10'))) @require_cuda def UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" lowercase__ = ['torchrun', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__)] execute_subprocess_async(lowerCAmelCase , env=os.environ.copy()) if __name__ == "__main__": a__ : Tuple = "/tmp/accelerate/state_checkpointing" a__ : List[str] = DummyModel() a__ : Any = torch.optim.Adam(params=model.parameters(), lr=1E-3) a__ : Any = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) a__ , a__ : List[Any] = dummy_dataloaders() a__ : Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline a__ : Any = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) a__ , a__ , a__ , a__ , a__ : Any = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) a__ , a__ : Union[str, Any] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: a__ : Dict = group["params"][0].device break assert param_device.type == accelerator.device.type a__ : Tuple = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: a__ : List[Any] = group["params"][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: a__ : Union[str, Any] = group["params"][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @require_torch def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" lowercase__ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused') lowercase__ = load_dataset('ashraq/esc50') lowercase__ = dataset['train']['audio'][-1]['array'] lowercase__ = audio_classifier(lowerCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(lowerCAmelCase) , [{'score': 0.5_01, 'label': 'Sound of a dog'}, {'score': 0.4_99, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF') def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" pass @slow @require_torch def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog lowercase__ = load_dataset('ashraq/esc50') lowercase__ = dataset['train']['audio'][-1]['array'] lowercase__ = audio_classifier(lowerCAmelCase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(lowerCAmelCase) , [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ] , ) lowercase__ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner']) self.assertEqual( nested_simplify(lowerCAmelCase) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) lowercase__ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5) self.assertEqual( nested_simplify(lowerCAmelCase) , [ [ {'score': 0.9_99, 'label': 'Sound of a dog'}, {'score': 0.0_01, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF') def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" pass
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) a__ : List[Any] = { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/config.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/config.json" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "fnet" def __init__( self : Optional[int] , lowerCAmelCase : Optional[int]=3_20_00 , lowerCAmelCase : Optional[int]=7_68 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : Optional[Any]=30_72 , lowerCAmelCase : List[str]="gelu_new" , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=5_12 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : Dict=1E-1_2 , lowerCAmelCase : List[str]=False , lowerCAmelCase : Optional[int]=5_12 , lowerCAmelCase : Tuple=3 , lowerCAmelCase : Any=1 , lowerCAmelCase : Tuple=2 , **lowerCAmelCase : List[str] , ) -> Any: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = use_tpu_fourier_optimizations lowercase__ = tpu_short_seq_length
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import math def _lowerCAmelCase ( A__ ): return math.sqrt(A__ ) * math.sqrt(A__ ) == num def _lowerCAmelCase ( A__ ): lowercase__ = 0 lowercase__ = n while left <= right: lowercase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowercase__ = mid - 1 else: lowercase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ : Dict = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def _lowerCAmelCase ( A__ , A__ ): inspect_dataset(A__ , A__ ) lowercase__ = path + '.py' assert script_name in os.listdir(A__ ) assert "__pycache__" not in os.listdir(A__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def _lowerCAmelCase ( A__ , A__ ): inspect_metric(A__ , A__ ) lowercase__ = path + '.py' assert script_name in os.listdir(A__ ) assert "__pycache__" not in os.listdir(A__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = get_dataset_config_info(A__ , config_name=A__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): with pytest.raises(A__ ): get_dataset_config_info(A__ , config_name=A__ ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = get_dataset_config_names(A__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = get_dataset_infos(A__ ) assert list(infos.keys() ) == expected_configs lowercase__ = expected_configs[0] assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = get_dataset_infos(A__ ) assert expected_config in infos lowercase__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): with pytest.raises(A__ ): get_dataset_split_names(A__ , config_name=A__ )
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from math import factorial def _lowerCAmelCase ( A__ , A__ ): # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(A__ ) // (factorial(A__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", F'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", F'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", F'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import csv import tweepy # Twitter API credentials a__ : Optional[int] = "" a__ : Union[str, Any] = "" a__ : str = "" a__ : Optional[Any] = "" def _lowerCAmelCase ( A__ ): # authorize twitter, initialize tweepy lowercase__ = tweepy.OAuthHandler(A__ , A__ ) auth.set_access_token(A__ , A__ ) lowercase__ = tweepy.API(A__ ) # initialize a list to hold all the tweepy Tweets lowercase__ = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowercase__ = api.user_timeline(screen_name=A__ , count=200 ) # save most recent tweets alltweets.extend(A__ ) # save the id of the oldest tweet less one lowercase__ = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(A__ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates lowercase__ = api.user_timeline( screen_name=A__ , count=200 , max_id=A__ ) # save most recent tweets alltweets.extend(A__ ) # update the id of the oldest tweet less one lowercase__ = alltweets[-1].id - 1 print(F'''...{len(A__ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv lowercase__ = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , 'w' ) as f: lowercase__ = csv.writer(A__ ) writer.writerow(['id', 'created_at', 'text'] ) writer.writerows(A__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("FirePing32")
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _lowerCAmelCase ( ): lowercase__ = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) return image def _lowerCAmelCase ( A__ ): lowercase__ = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = dct.pop(A__ ) lowercase__ = val def _lowerCAmelCase ( A__ , A__ ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowercase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowercase__ = torch.cat((q_bias, torch.zeros_like(A__ , requires_grad=A__ ), v_bias) ) lowercase__ = qkv_bias def _lowerCAmelCase ( A__ ): lowercase__ = 364 if 'coco' in model_name else 224 lowercase__ = InstructBlipVisionConfig(image_size=A__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase__ = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase__ = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase__ = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf' , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: lowercase__ = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf' , vocab_size=32_001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase__ = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() lowercase__ = InstructBlipConfig(vision_config=A__ , text_config=A__ , qformer_config=A__ ) return config, image_size @torch.no_grad() def _lowerCAmelCase ( A__ , A__=None , A__=False ): lowercase__ = AutoTokenizer.from_pretrained('bert-base-uncased' , truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: lowercase__ = TaTokenizerFast.from_pretrained('google/flan-t5-xl' , truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase__ = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b' , truncation_side='left' , bos_token='</s>' , unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) lowercase__, lowercase__ = get_blipa_config(A__ ) lowercase__ = InstructBlipForConditionalGeneration(A__ ).eval() lowercase__ = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } lowercase__, lowercase__ = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowercase__ = 'cuda:1' if torch.cuda.is_available() else 'cpu' lowercase__ = 'cuda:2' if torch.cuda.is_available() else 'cpu' lowercase__, lowercase__, lowercase__ = load_model_and_preprocess( name=A__ , model_type=A__ , is_eval=A__ , device=A__ ) original_model.eval() print('Done!' ) # update state dict keys lowercase__ = original_model.state_dict() lowercase__ = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase__ = state_dict.pop(A__ ) if key.startswith('Qformer.bert' ): lowercase__ = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowercase__ = key.replace('self' , 'attention' ) if "llm_proj" in key: lowercase__ = key.replace('llm_proj' , 'language_projection' ) if "t5_proj" in key: lowercase__ = key.replace('t5_proj' , 'language_projection' ) if key.startswith('llm_model' ): lowercase__ = key.replace('llm_model' , 'language_model' ) if key.startswith('t5' ): lowercase__ = key.replace('t5' , 'language' ) lowercase__ = val # read in qv biases read_in_q_v_bias(A__ , A__ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(A__ , strict=A__ ) lowercase__ = load_demo_image() lowercase__ = 'What is unusual about this image?' # create processor lowercase__ = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=A__ , image_std=A__ ) lowercase__ = InstructBlipProcessor( image_processor=A__ , tokenizer=A__ , qformer_tokenizer=A__ , ) lowercase__ = processor(images=A__ , text=A__ , return_tensors='pt' ).to(A__ ) # make sure processor creates exact same pixel values lowercase__ = vis_processors['eval'](A__ ).unsqueeze(0 ).to(A__ ) lowercase__ = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A__ ) original_model.to(A__ ) hf_model.to(A__ ) with torch.no_grad(): if "vicuna" in model_name: lowercase__ = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits lowercase__ = hf_model(**A__ ).logits else: lowercase__ = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits lowercase__ = tokenizer('\n' , return_tensors='pt' ).input_ids.to(A__ ) lowercase__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowercase__ = hf_model(**A__ , labels=A__ ).logits print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase__ = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , A__ , atol=A__ ) print('Looks ok!' ) print('Generating with original model...' ) lowercase__ = original_model.generate({'image': original_pixel_values, 'prompt': prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) lowercase__ = hf_model.generate( **A__ , do_sample=A__ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase__ = 2 print('Original generation:' , A__ ) lowercase__ = processor.batch_decode(A__ , skip_special_tokens=A__ ) lowercase__ = [text.strip() for text in output_text] print('HF generation:' , A__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(A__ ) hf_model.save_pretrained(A__ ) if push_to_hub: processor.push_to_hub(F'''Salesforce/{model_name}''' ) hf_model.push_to_hub(F'''Salesforce/{model_name}''' ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() a__ : Tuple = [ "instructblip-vicuna-7b", "instructblip-vicuna-13b", "instructblip-flan-t5-xl", "instructblip-flan-t5-xxl", ] parser.add_argument( "--model_name", default="instructblip-flan-t5-xl", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) a__ : Any = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file lowercase__ = TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter lowercase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowercase__ = TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams lowercase__ = 4 lowercase__ = True # hparam_utils.py hparams lowercase__ = 0.66_46_94 lowercase__ = 0.20_79_51 lowercase__ = 0.12_11_94 lowercase__ = True lowercase__ = True lowercase__ = False lowercase__ = 0.0_35_25_13 lowercase__ = TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowercase__ = 4 lowercase__ = False # hparam_utils.py hparams lowercase__ = 36.45_19 lowercase__ = 0.90_34_21 lowercase__ = 2_22.0_88 lowercase__ = True lowercase__ = True lowercase__ = True lowercase__ = 0.76_31_41 lowercase__ = TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": lowercase__ = TapasForSequenceClassification(config=A__ ) elif task == "MLM": lowercase__ = TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": lowercase__ = TapasModel(config=A__ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__ , A__ , A__ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A__ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) lowercase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(A__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = checkpoint lowercase__ = {} lowercase__ = vae_state_dict['encoder.conv_in.weight'] lowercase__ = vae_state_dict['encoder.conv_in.bias'] lowercase__ = vae_state_dict['encoder.conv_out.weight'] lowercase__ = vae_state_dict['encoder.conv_out.bias'] lowercase__ = vae_state_dict['encoder.norm_out.weight'] lowercase__ = vae_state_dict['encoder.norm_out.bias'] lowercase__ = vae_state_dict['decoder.conv_in.weight'] lowercase__ = vae_state_dict['decoder.conv_in.bias'] lowercase__ = vae_state_dict['decoder.conv_out.weight'] lowercase__ = vae_state_dict['decoder.conv_out.bias'] lowercase__ = vae_state_dict['decoder.norm_out.weight'] lowercase__ = vae_state_dict['decoder.norm_out.bias'] lowercase__ = vae_state_dict['quant_conv.weight'] lowercase__ = vae_state_dict['quant_conv.bias'] lowercase__ = vae_state_dict['post_quant_conv.weight'] lowercase__ = vae_state_dict['post_quant_conv.bias'] # Retrieves the keys for the encoder down blocks only lowercase__ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'encoder.down' in layer} ) lowercase__ = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(A__ ) } # Retrieves the keys for the decoder up blocks only lowercase__ = len({'.'.join(layer.split('.' )[:3] ) for layer in vae_state_dict if 'decoder.up' in layer} ) lowercase__ = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(A__ ) } for i in range(A__ ): lowercase__ = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: lowercase__ = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) lowercase__ = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) lowercase__ = renew_vae_resnet_paths(A__ ) lowercase__ = {'old': F'''down.{i}.block''', 'new': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) lowercase__ = [key for key in vae_state_dict if 'encoder.mid.block' in key] lowercase__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase__ = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] lowercase__ = renew_vae_resnet_paths(A__ ) lowercase__ = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) lowercase__ = [key for key in vae_state_dict if 'encoder.mid.attn' in key] lowercase__ = renew_vae_attention_paths(A__ ) lowercase__ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) conv_attn_to_linear(A__ ) for i in range(A__ ): lowercase__ = num_up_blocks - 1 - i lowercase__ = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: lowercase__ = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] lowercase__ = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] lowercase__ = renew_vae_resnet_paths(A__ ) lowercase__ = {'old': F'''up.{block_id}.block''', 'new': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) lowercase__ = [key for key in vae_state_dict if 'decoder.mid.block' in key] lowercase__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): lowercase__ = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] lowercase__ = renew_vae_resnet_paths(A__ ) lowercase__ = {'old': F'''mid.block_{i}''', 'new': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) lowercase__ = [key for key in vae_state_dict if 'decoder.mid.attn' in key] lowercase__ = renew_vae_attention_paths(A__ ) lowercase__ = {'old': 'mid.attn_1', 'new': 'mid_block.attentions.0'} assign_to_checkpoint(A__ , A__ , A__ , additional_replacements=[meta_path] , config=A__ ) conv_attn_to_linear(A__ ) return new_checkpoint def _lowerCAmelCase ( A__ , A__ , ): # Only support V1 lowercase__ = requests.get( ' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml' ) lowercase__ = io.BytesIO(r.content ) lowercase__ = OmegaConf.load(A__ ) lowercase__ = 512 lowercase__ = 'cuda' if torch.cuda.is_available() else 'cpu' if checkpoint_path.endswith('safetensors' ): from safetensors import safe_open lowercase__ = {} with safe_open(A__ , framework='pt' , device='cpu' ) as f: for key in f.keys(): lowercase__ = f.get_tensor(A__ ) else: lowercase__ = torch.load(A__ , map_location=A__ )['state_dict'] # Convert the VAE model. lowercase__ = create_vae_diffusers_config(A__ , image_size=A__ ) lowercase__ = custom_convert_ldm_vae_checkpoint(A__ , A__ ) lowercase__ = AutoencoderKL(**A__ ) vae.load_state_dict(A__ ) vae.save_pretrained(A__ ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--vae_pt_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the VAE.pt to convert.") a__ : List[str] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase ( self : Dict) -> str: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = (3, 32, 1_28) lowercase__ = tempfile.mkdtemp() # fmt: off lowercase__ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase) + '\n') lowercase__ = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 1_28}, } lowercase__ = os.path.join(self.tmpdirname , lowerCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : str , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname) def UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" lowercase__ = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta) lowercase__ = Image.fromarray(np.moveaxis(lowerCAmelCase , 0 , -1)) return image_input def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowercase__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.char_tokenizer , lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.get_tokenizer() lowercase__ = self.get_image_processor() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) processor.save_pretrained(self.tmpdirname) lowercase__ = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') lowercase__ = self.get_image_processor(do_normalize=lowerCAmelCase , padding_value=1.0) lowercase__ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCAmelCase , padding_value=1.0) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.char_tokenizer , lowerCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , lowerCAmelCase) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = self.prepare_image_inputs() lowercase__ = image_processor(lowerCAmelCase , return_tensors='np') lowercase__ = processor(images=lowerCAmelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2) def UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = 'test' lowercase__ = processor(text=lowerCAmelCase) lowercase__ = tokenizer(lowerCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def UpperCAmelCase ( self : Union[str, Any]) -> Any: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = 'test' lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCAmelCase , images=lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'labels']) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase): processor() def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase__ = processor.char_decode(lowerCAmelCase) lowercase__ = tokenizer.batch_decode(lowerCAmelCase) lowercase__ = [seq.replace(' ' , '') for seq in decoded_tok] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = None lowercase__ = self.prepare_image_inputs() lowercase__ = processor(text=lowerCAmelCase , images=lowerCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names) def UpperCAmelCase ( self : int) -> List[str]: """simple docstring""" lowercase__ = self.get_image_processor() lowercase__ = self.get_tokenizer() lowercase__ = MgpstrProcessor(tokenizer=lowerCAmelCase , image_processor=lowerCAmelCase) lowercase__ = torch.randn(1 , 27 , 38) lowercase__ = torch.randn(1 , 27 , 5_02_57) lowercase__ = torch.randn(1 , 27 , 3_05_22) lowercase__ = processor.batch_decode([char_input, bpe_input, wp_input]) self.assertListEqual(list(results.keys()) , ['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'])
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
from __future__ import annotations import os from collections.abc import Mapping a__ : Union[str, Any] = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : set[int] , lowerCAmelCase : Mapping[EdgeT, int]) -> None: """simple docstring""" lowercase__ = vertices lowercase__ = { (min(lowerCAmelCase), max(lowerCAmelCase)): weight for edge, weight in edges.items() } def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : EdgeT , lowerCAmelCase : int) -> None: """simple docstring""" self.vertices.add(edge[0]) self.vertices.add(edge[1]) lowercase__ = weight def UpperCAmelCase ( self : int) -> Graph: """simple docstring""" lowercase__ = Graph({min(self.vertices)} , {}) lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 while len(subgraph.vertices) < len(self.vertices): lowercase__ = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase__ = edge lowercase__ = weight subgraph.add_edge(lowerCAmelCase , lowerCAmelCase) return subgraph def _lowerCAmelCase ( A__ = "p107_network.txt" ): lowercase__ = os.path.abspath(os.path.dirname(A__ ) ) lowercase__ = os.path.join(A__ , A__ ) lowercase__ = {} lowercase__ = 42 lowercase__ = 42 lowercase__ = 42 with open(A__ ) as f: lowercase__ = f.read().strip().split('\n' ) lowercase__ = [line.split(',' ) for line in data] for edgea in range(1 , len(A__ ) ): for edgea in range(A__ ): if adjaceny_matrix[edgea][edgea] != "-": lowercase__ = int(adjaceny_matrix[edgea][edgea] ) lowercase__ = Graph(set(range(len(A__ ) ) ) , A__ ) lowercase__ = graph.prims_algorithm() lowercase__ = sum(graph.edges.values() ) lowercase__ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[str] = "▁" a__ : Dict = {"vocab_file": "sentencepiece.bpe.model"} a__ : List[str] = { "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } a__ : List[Any] = { "facebook/mbart-large-50-one-to-many-mmt": 10_24, } # fmt: off a__ : int = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[int] = VOCAB_FILES_NAMES A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Any = PRETRAINED_VOCAB_FILES_MAP A : List[str] = ["input_ids", "attention_mask"] A : List[int] = [] A : List[int] = [] def __init__( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Any="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : str="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Optional[Any] , ) -> None: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = kwargs.get('additional_special_tokens' , []) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(lowerCAmelCase)) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = src_lang if src_lang is not None else 'en_XX' lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def UpperCAmelCase ( self : Any) -> int: """simple docstring""" return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase ( self : str) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> None: """simple docstring""" lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __getstate__( self : List[str]) -> Dict: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : List[str] , lowerCAmelCase : Dict) -> None: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(lowerCAmelCase) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : str , lowerCAmelCase : int) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = [] lowercase__ = '' lowercase__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase) + token lowercase__ = True lowercase__ = [] else: current_sub_tokens.append(lowerCAmelCase) lowercase__ = False out_string += self.sp_model.decode(lowerCAmelCase) return out_string.strip() def UpperCAmelCase ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase , 'wb') as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase) return (out_vocab_file,) def UpperCAmelCase ( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase) lowercase__ = [1] * len(self.prefix_tokens) lowercase__ = [1] * len(self.suffix_tokens) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase)) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase)) + ([0] * len(lowerCAmelCase)) + suffix_ones def UpperCAmelCase ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') lowercase__ = src_lang lowercase__ = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) lowercase__ = self.convert_tokens_to_ids(lowerCAmelCase) lowercase__ = tgt_lang_id return inputs def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : Optional[Any] , ) -> BatchEncoding: """simple docstring""" lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def UpperCAmelCase ( self : Union[str, Any]) -> Any: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCAmelCase ( self : Any , lowerCAmelCase : str) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[src_lang] lowercase__ = [self.cur_lang_code_id] lowercase__ = [self.eos_token_id] def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[tgt_lang] lowercase__ = [self.cur_lang_code_id] lowercase__ = [self.eos_token_id]
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Optional[Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = "efficientformer" def __init__( self : Any , lowerCAmelCase : List[int] = [3, 2, 6, 4] , lowerCAmelCase : List[int] = [48, 96, 2_24, 4_48] , lowerCAmelCase : List[bool] = [True, True, True, True] , lowerCAmelCase : int = 4_48 , lowerCAmelCase : int = 32 , lowerCAmelCase : int = 4 , lowerCAmelCase : int = 7 , lowerCAmelCase : int = 5 , lowerCAmelCase : int = 8 , lowerCAmelCase : int = 4 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : bool = True , lowerCAmelCase : bool = True , lowerCAmelCase : float = 1E-5 , lowerCAmelCase : str = "gelu" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1E-1_2 , lowerCAmelCase : int = 2_24 , lowerCAmelCase : float = 1E-0_5 , **lowerCAmelCase : Union[str, Any] , ) -> None: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = hidden_sizes lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = patch_size lowercase__ = num_channels lowercase__ = depths lowercase__ = mlp_expansion_ratio lowercase__ = downsamples lowercase__ = dim lowercase__ = key_dim lowercase__ = attention_ratio lowercase__ = resolution lowercase__ = pool_size lowercase__ = downsample_patch_size lowercase__ = downsample_stride lowercase__ = downsample_pad lowercase__ = drop_path_rate lowercase__ = num_metaad_blocks lowercase__ = distillation lowercase__ = use_layer_scale lowercase__ = layer_scale_init_value lowercase__ = image_size lowercase__ = batch_norm_eps
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase__: '''simple docstring''' @staticmethod def UpperCAmelCase ( *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> int: """simple docstring""" pass @is_pipeline_test @require_vision class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @require_torch def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCAmelCase) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase) , [ [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], ] , ) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(lowerCAmelCase) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase) , [ [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], [ {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, {'score': 0.3_33, 'label': ANY(lowerCAmelCase)}, ], ] , ) @slow @require_torch def UpperCAmelCase ( self : int) -> int: """simple docstring""" lowercase__ = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(lowerCAmelCase) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" lowercase__ = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') lowercase__ = image_classifier(lowerCAmelCase , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(lowerCAmelCase) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) lowercase__ = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(lowerCAmelCase) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" lowercase__ = load_tool('text-to-speech') self.tool.setup() def UpperCAmelCase ( self : Any) -> Dict: """simple docstring""" torch.manual_seed(0) lowercase__ = self.tool('hey') lowercase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85]) , )) def UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" torch.manual_seed(0) lowercase__ = self.tool('hey') lowercase__ = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85]) , ))
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
def _lowerCAmelCase ( A__ = 1_000 ): lowercase__ = 2**power lowercase__ = str(A__ ) lowercase__ = list(A__ ) lowercase__ = 0 for i in list_num: sum_of_num += int(A__ ) return sum_of_num if __name__ == "__main__": a__ : Any = int(input("Enter the power of 2: ").strip()) print("2 ^ ", power, " = ", 2**power) a__ : Union[str, Any] = solution(power) print("Sum of the digits is: ", result)
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a__ : int = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") a__ : Optional[Any] = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a__ : int = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a__ : List[str] = sorted(arg_to_scheduler.keys()) a__ : Any = "{" + ", ".join(arg_to_scheduler_choices) + "}" class UpperCAmelCase__( pl.LightningModule ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : argparse.Namespace , lowerCAmelCase : List[str]=None , lowerCAmelCase : Tuple="base" , lowerCAmelCase : Any=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(lowerCAmelCase) lowercase__ = 0 lowercase__ = Path(self.hparams.output_dir) lowercase__ = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: lowercase__ = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=lowerCAmelCase , **lowerCAmelCase , ) else: lowercase__ = config lowercase__ = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , lowerCAmelCase , lowerCAmelCase): assert hasattr(self.config , lowerCAmelCase), f'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , lowerCAmelCase , getattr(self.hparams , lowerCAmelCase)) if tokenizer is None: lowercase__ = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=lowerCAmelCase , ) else: lowercase__ = tokenizer lowercase__ = MODEL_MODES[mode] if model is None: lowercase__ = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path) , config=self.config , cache_dir=lowerCAmelCase , ) else: lowercase__ = model def UpperCAmelCase ( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_type.from_pretrained(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = arg_to_scheduler[self.hparams.lr_scheduler] lowercase__ = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps()) lowercase__ = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.model lowercase__ = ['bias', 'LayerNorm.weight'] lowercase__ = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: lowercase__ = Adafactor( lowerCAmelCase , lr=self.hparams.learning_rate , scale_parameter=lowerCAmelCase , relative_step=lowerCAmelCase) else: lowercase__ = AdamW( lowerCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon) lowercase__ = optimizer lowercase__ = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any) -> int: """simple docstring""" return self.validation_step(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" return self.validation_end(lowerCAmelCase) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = max(1 , self.hparams.gpus) # TODO: consider num_tpu_cores lowercase__ = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self : Any , lowerCAmelCase : Tuple) -> str: """simple docstring""" if stage == "test": lowercase__ = len(self.test_dataloader().dataset) else: lowercase__ = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=lowerCAmelCase) lowercase__ = len(self.train_dataloader().dataset) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : bool = False) -> List[str]: """simple docstring""" raise NotImplementedError('You must implement this for your task') def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" return self.train_loader def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( lowerCAmelCase , list(filter(lowerCAmelCase , self.hparams.model_name_or_path.split('/'))).pop() , str(self.hparams.max_seq_length) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Dict[str, Any]) -> None: """simple docstring""" lowercase__ = self.output_dir.joinpath('best_tfmr') lowercase__ = self.step_count self.model.save_pretrained(lowerCAmelCase) self.tokenizer.save_pretrained(lowerCAmelCase) @staticmethod def UpperCAmelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any) -> int: """simple docstring""" parser.add_argument( '--model_name_or_path' , default=lowerCAmelCase , type=lowerCAmelCase , required=lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=lowerCAmelCase , help='Pretrained config name or path if not the same as model_name') parser.add_argument( '--tokenizer_name' , default=lowerCAmelCase , type=lowerCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(lowerCAmelCase).parent / 'test_run' / 'cache') , type=lowerCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=lowerCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=lowerCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=lowerCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=lowerCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=lowerCAmelCase , help='The initial learning rate for Adam.') parser.add_argument( '--lr_scheduler' , default='linear' , choices=lowerCAmelCase , metavar=lowerCAmelCase , type=lowerCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=lowerCAmelCase , help='Weight decay if we apply some.') parser.add_argument('--adam_epsilon' , default=1E-8 , type=lowerCAmelCase , help='Epsilon for Adam optimizer.') parser.add_argument('--warmup_steps' , default=0 , type=lowerCAmelCase , help='Linear warmup over warmup_steps.') parser.add_argument('--num_workers' , default=4 , type=lowerCAmelCase , help='kwarg passed to DataLoader') parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=lowerCAmelCase) parser.add_argument('--train_batch_size' , default=32 , type=lowerCAmelCase) parser.add_argument('--eval_batch_size' , default=32 , type=lowerCAmelCase) parser.add_argument('--adafactor' , action='store_true') class UpperCAmelCase__( pl.Callback ): '''simple docstring''' def UpperCAmelCase ( self : int , lowerCAmelCase : Any , lowerCAmelCase : List[Any]) -> Any: """simple docstring""" if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class UpperCAmelCase__( pl.Callback ): '''simple docstring''' def UpperCAmelCase ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(lowerCAmelCase) class UpperCAmelCase__( pl.Callback ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" lowercase__ = trainer.lr_schedulers[0]['scheduler'] lowercase__ = {f'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr())} pl_module.logger.log_metrics(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : pl.Trainer , lowerCAmelCase : pl.LightningModule) -> List[str]: """simple docstring""" rank_zero_info('***** Validation results *****') lowercase__ = trainer.callback_metrics # Log results for key in sorted(lowerCAmelCase): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCAmelCase , str(metrics[key]))) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : pl.Trainer , lowerCAmelCase : pl.LightningModule) -> str: """simple docstring""" rank_zero_info('***** Test results *****') lowercase__ = trainer.callback_metrics # Log and save results to file lowercase__ = os.path.join(pl_module.hparams.output_dir , 'test_results.txt') with open(lowerCAmelCase , 'w') as writer: for key in sorted(lowerCAmelCase): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(lowerCAmelCase , str(metrics[key]))) writer.write('{} = {}\n'.format(lowerCAmelCase , str(metrics[key]))) def _lowerCAmelCase ( A__ , A__ ): # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(A__ ).parent / 'test_run' / 'model_checkpoints' ) , type=A__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=A__ , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=A__ ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=A__ , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=A__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=A__ , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(A__ ).parent / 'test_run' / 'dummy-train-data' ) , type=A__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _lowerCAmelCase ( A__ , A__ , A__=None , A__=True , A__=[] , A__=None , A__=None , **A__ , ): pl.seed_everything(args.seed ) # init model lowercase__ = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=A__ ) # add custom checkpoints if checkpoint_callback is None: lowercase__ = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(A__ ) if logging_callback is None: lowercase__ = LoggingCallback() lowercase__ = {} if args.fpaa: lowercase__ = 16 if args.gpus > 1: lowercase__ = 'auto' lowercase__ = 'ddp' lowercase__ = args.accumulate_grad_batches lowercase__ = None lowercase__ = 'auto' lowercase__ = pl.Trainer.from_argparse_args( A__ , weights_summary=A__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=A__ , val_check_interval=1 , num_sanity_val_steps=2 , **A__ , ) if args.do_train: trainer.fit(A__ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
from __future__ import annotations import math def _lowerCAmelCase ( A__ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(A__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True a__ : Any = [num for num in range(3, 10_00_01, 2) if not is_prime(num)] def _lowerCAmelCase ( A__ ): if not isinstance(A__ , A__ ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) lowercase__ = [] for num in range(len(A__ ) ): lowercase__ = 0 while 2 * i * i <= odd_composites[num]: lowercase__ = odd_composites[num] - 2 * i * i if is_prime(A__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(A__ ) == n: return list_nums return [] def _lowerCAmelCase ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _lowerCAmelCase ( A__ , A__ ): lowercase__ = F'''{sampling_rate}''' lowercase__ = '1' lowercase__ = 'f32le' lowercase__ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(A__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase__ = ffmpeg_process.communicate(A__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowercase__ = output_stream[0] lowercase__ = np.frombuffer(A__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _lowerCAmelCase ( A__ , A__ , A__ = "f32le" , ): lowercase__ = F'''{sampling_rate}''' lowercase__ = '1' if format_for_conversion == "s16le": lowercase__ = 2 elif format_for_conversion == "f32le": lowercase__ = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowercase__ = platform.system() if system == "Linux": lowercase__ = 'alsa' lowercase__ = 'default' elif system == "Darwin": lowercase__ = 'avfoundation' lowercase__ = ':0' elif system == "Windows": lowercase__ = 'dshow' lowercase__ = 'default' lowercase__ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase__ = _ffmpeg_stream(A__ , A__ ) for item in iterator: yield item def _lowerCAmelCase ( A__ , A__ , A__ = None , A__ = None , A__ = "f32le" , ): if stream_chunk_s is not None: lowercase__ = stream_chunk_s else: lowercase__ = chunk_length_s lowercase__ = ffmpeg_microphone(A__ , A__ , format_for_conversion=A__ ) if format_for_conversion == "s16le": lowercase__ = np.intaa lowercase__ = 2 elif format_for_conversion == "f32le": lowercase__ = np.floataa lowercase__ = 4 else: raise ValueError(F'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowercase__ = chunk_length_s / 6 lowercase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(A__ , (int, float) ): lowercase__ = [stride_length_s, stride_length_s] lowercase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase__ = datetime.datetime.now() lowercase__ = datetime.timedelta(seconds=A__ ) for item in chunk_bytes_iter(A__ , A__ , stride=(stride_left, stride_right) , stream=A__ ): # Put everything back in numpy scale lowercase__ = np.frombuffer(item['raw'] , dtype=A__ ) lowercase__ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowercase__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _lowerCAmelCase ( A__ , A__ , A__ , A__ = False ): lowercase__ = B'' lowercase__, lowercase__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( F'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowercase__ = 0 for raw in iterator: acc += raw if stream and len(A__ ) < chunk_len: lowercase__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(A__ ) >= chunk_len: # We are flushing the accumulator lowercase__ = (_stride_left, stride_right) lowercase__ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowercase__ = False yield item lowercase__ = stride_left lowercase__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(A__ ) > stride_left: lowercase__ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowercase__ = False yield item def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 2**24 # 16Mo try: with subprocess.Popen(A__ , stdout=subprocess.PIPE , bufsize=A__ ) as ffmpeg_process: while True: lowercase__ = ffmpeg_process.stdout.read(A__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging a__ : str = logging.get_logger(__name__) def _lowerCAmelCase ( A__ , A__ ): try: with open(A__ , 'rb' ) as flax_state_f: lowercase__ = from_bytes(A__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(A__ ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(A__ , A__ ) def _lowerCAmelCase ( A__ , A__ ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights lowercase__ = flatten_dict(jax.tree_util.tree_map(lambda A__ : x.dtype == jnp.bfloataa , A__ ) ).values() if any(A__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) lowercase__ = jax.tree_util.tree_map( lambda A__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , A__ ) lowercase__ = '' lowercase__ = flatten_dict(A__ , sep='.' ) lowercase__ = pt_model.state_dict() # keep track of unexpected & missing keys lowercase__ = [] lowercase__ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase__ = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowercase__ = flax_key_tuple_array[:-1] + ['weight'] lowercase__ = jnp.transpose(A__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowercase__ = flax_key_tuple_array[:-1] + ['weight'] lowercase__ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowercase__ = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(A__ ): lowercase__ = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) lowercase__ = '.'.join(A__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict lowercase__ = np.asarray(A__ ) if not isinstance(A__ , np.ndarray ) else flax_tensor lowercase__ = torch.from_numpy(A__ ) # remove from missing keys missing_keys.remove(A__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(A__ ) pt_model.load_state_dict(A__ ) # re-transform missing_keys to list lowercase__ = list(A__ ) if len(A__ ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(A__ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' ' use it for predictions and inference.' ) return pt_model
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
def _lowerCAmelCase ( A__ = 1_000 ): lowercase__, lowercase__ = 1, 1 lowercase__ = 2 while True: lowercase__ = 0 lowercase__ = fa + fa lowercase__, lowercase__ = fa, f index += 1 for _ in str(A__ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a__ : List[str] = logging.get_logger(__name__) def _lowerCAmelCase ( A__ ): if isinstance(A__ , np.ndarray ): return list(tensor.shape ) lowercase__ = tf.shape(A__ ) if tensor.shape == tf.TensorShape(A__ ): return dynamic lowercase__ = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(A__ )] def _lowerCAmelCase ( A__ , A__ = None , A__ = None ): return tf.nn.softmax(logits=logits + 1E-9 , axis=A__ , name=A__ ) def _lowerCAmelCase ( A__ , A__ , A__ , A__=1E-5 , A__=-1 ): # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A__ , A__ ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized lowercase__, lowercase__ = tf.nn.moments(A__ , axes=[axis] , keepdims=A__ ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis lowercase__ = [1] * inputs.shape.rank lowercase__ = shape_list(A__ )[axis] lowercase__ = tf.reshape(A__ , A__ ) lowercase__ = tf.reshape(A__ , A__ ) # Compute layer normalization using the batch_normalization # function. lowercase__ = tf.nn.batch_normalization( A__ , A__ , A__ , offset=A__ , scale=A__ , variance_epsilon=A__ , ) return outputs def _lowerCAmelCase ( A__ , A__=0 , A__=-1 ): # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input lowercase__ = tf.shape(A__ ) lowercase__ = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) lowercase__ = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(A__ , A__ ) def _lowerCAmelCase ( A__ ): if not isinstance(A__ , tf.Tensor ): lowercase__ = tf.convert_to_tensor(A__ ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: lowercase__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: lowercase__ = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) lowercase__ = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowerCAmelCase ( A__ , A__ , A__ = "input_ids" ): tf.debugging.assert_less( A__ , tf.cast(A__ , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(A__ )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = 64_512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. lowercase__ = [x for x in data if len(A__ ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) lowercase__ = np.asarray(A__ ) lowercase__ = 1 lowercase__ = np.array_split(A__ , A__ ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 lowercase__ = np.array_split(A__ , A__ ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(A__ ): lowercase__ = chunk_data else: lowercase__ = data def _lowerCAmelCase ( A__ , A__ ): if name in group.attrs: lowercase__ = [n.decode('utf8' ) if hasattr(A__ , 'decode' ) else n for n in group.attrs[name]] else: lowercase__ = [] lowercase__ = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(A__ , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _lowerCAmelCase ( A__ ): def _expand_single_ad_tensor(A__ ): if isinstance(A__ , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(A__ , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , A__ )
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1