code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : pyspark.sql.DataFrame , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : bool = True , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : str = None , lowerCAmelCase : bool = True , lowerCAmelCase : str = "arrow" , **lowerCAmelCase : Optional[Any] , ) -> Any: """simple docstring""" super().__init__( split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = load_from_cache_file lowercase__ = file_format lowercase__ = Spark( df=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , working_dir=lowerCAmelCase , **lowerCAmelCase , ) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" if self.streaming: return self.builder.as_streaming_dataset(split=self.split) lowercase__ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowerCAmelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split)
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
from sklearn.metrics import matthews_corrcoef import datasets a__ : Optional[Any] = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" a__ : List[Any] = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" a__ : List[Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int32'), 'references': datasets.Value('int32'), }) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html' ] , ) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : str=None) -> Optional[int]: """simple docstring""" return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase , lowerCAmelCase , sample_weight=lowerCAmelCase)), }
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS a__ : Optional[int] = logging.get_logger(__name__) a__ : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Dict=None , lowerCAmelCase : List[str]=None , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" super().__init__(*lowerCAmelCase , **lowerCAmelCase) if config is None: assert isinstance(self.model , lowerCAmelCase), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config , lowerCAmelCase) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ' padding..') if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> Any: """simple docstring""" if self.optimizer is None: lowercase__ = ['bias', 'LayerNorm.weight'] lowercase__ = [ { 'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': self.args.weight_decay, }, { 'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {'scale_parameter': False, 'relative_step': False} else: lowercase__ = AdamW lowercase__ = { 'betas': (self.args.adam_betaa, self.args.adam_betaa), 'eps': self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCAmelCase , optim=lowerCAmelCase , **lowerCAmelCase , ) else: lowercase__ = optimizer_cls(lowerCAmelCase , **lowerCAmelCase) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCAmelCase) else: # ignoring --lr_scheduler logger.warning('scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.') def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any]) -> Dict: """simple docstring""" lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps) else: lowercase__ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCAmelCase) return scheduler def UpperCAmelCase ( self : List[Any]) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCAmelCase , use_cache=lowerCAmelCase)[0] lowercase__ = self.loss_fn(logits.view(-1 , logits.shape[-1]) , labels.view(-1)) else: # compute usual loss via models lowercase__, lowercase__ = model(**lowerCAmelCase , labels=lowerCAmelCase , use_cache=lowerCAmelCase)[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCAmelCase , use_cache=lowerCAmelCase)[0] lowercase__ = torch.nn.functional.log_softmax(lowerCAmelCase , dim=-1) lowercase__, lowercase__ = self.loss_fn(lowerCAmelCase , lowerCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id) return loss, logits def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" lowercase__ = inputs.pop('labels') lowercase__, lowercase__ = self._compute_loss(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) return loss def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : nn.Module , lowerCAmelCase : Dict[str, Union[torch.Tensor, Any]] , lowerCAmelCase : bool , lowerCAmelCase : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" lowercase__ = self._prepare_inputs(lowerCAmelCase) lowercase__ = { 'max_length': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, 'num_beams': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , **lowerCAmelCase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCAmelCase , gen_kwargs['max_length']) lowercase__ = inputs.pop('labels') with torch.no_grad(): # compute loss on predict data lowercase__, lowercase__ = self._compute_loss(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCAmelCase , gen_kwargs['max_length']) return (loss, logits, labels) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( 'Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be' f''' padded to `max_length`={max_length}''') lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device) lowercase__ = tensor return padded_tensor
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" lowercase__ = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small') lowercase__ = AutoTokenizer.from_pretrained('google/mt5-small') lowercase__ = tokenizer('Hello there' , return_tensors='np').input_ids lowercase__ = tokenizer('Hi I am' , return_tensors='np').input_ids lowercase__ = shift_tokens_right(lowerCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id) lowercase__ = model(lowerCAmelCase , decoder_input_ids=lowerCAmelCase).logits lowercase__ = optax.softmax_cross_entropy(lowerCAmelCase , onehot(lowerCAmelCase , logits.shape[-1])).mean() lowercase__ = -(labels.shape[-1] * loss.item()) lowercase__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1E-4)
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
def _lowerCAmelCase ( A__ = 1_000 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
import requests def _lowerCAmelCase ( A__ , A__ ): lowercase__ = {'Content-Type': 'application/json'} lowercase__ = requests.post(A__ , json={'text': message_body} , headers=A__ ) if response.status_code != 200: lowercase__ = ( 'Request to slack returned an error ' F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(A__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : List[str] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Tuple=0) -> Any: """simple docstring""" lowercase__ = np.random.RandomState(lowerCAmelCase) lowercase__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowercase__ = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') lowercase__ = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowercase__ = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCAmelCase ( self : int) -> int: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') lowercase__ = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowercase__ = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') lowercase__ = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowercase__ = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') lowercase__ = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowercase__ = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') lowercase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) lowercase__ = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = 3 * [inputs['prompt']] # forward lowercase__ = pipe(**lowerCAmelCase) lowercase__ = output.images[0, -3:, -3:, -1] lowercase__ = self.get_dummy_inputs() lowercase__ = 3 * [inputs.pop('prompt')] lowercase__ = pipe.tokenizer( lowerCAmelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = text_inputs['input_ids'] lowercase__ = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] lowercase__ = prompt_embeds # forward lowercase__ = pipe(**lowerCAmelCase) lowercase__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs() lowercase__ = 3 * ['this is a negative prompt'] lowercase__ = negative_prompt lowercase__ = 3 * [inputs['prompt']] # forward lowercase__ = pipe(**lowerCAmelCase) lowercase__ = output.images[0, -3:, -3:, -1] lowercase__ = self.get_dummy_inputs() lowercase__ = 3 * [inputs.pop('prompt')] lowercase__ = [] for p in [prompt, negative_prompt]: lowercase__ = pipe.tokenizer( lowerCAmelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) lowercase__, lowercase__ = embeds # forward lowercase__ = pipe(**lowerCAmelCase) lowercase__ = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" lowercase__ = ort.SessionOptions() lowercase__ = False return options def UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = 'A painting of a squirrel eating a burger' np.random.seed(0) lowercase__ = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np') lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" lowercase__ = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx') lowercase__ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = 'open neural network exchange' lowercase__ = np.random.RandomState(0) lowercase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase , output_type='np') lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx') lowercase__ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=lowerCAmelCase , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = 'open neural network exchange' lowercase__ = np.random.RandomState(0) lowercase__ = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCAmelCase , output_type='np') lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" lowercase__ = 0 def test_callback_fn(lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : np.ndarray) -> None: lowercase__ = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowercase__ = latents[0, -3:, -3:, -1] lowercase__ = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 lowercase__ = False lowercase__ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = 'Andromeda galaxy in a bottle' lowercase__ = np.random.RandomState(0) pipe( prompt=lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=lowerCAmelCase , callback=lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase ( self : str) -> Any: """simple docstring""" lowercase__ = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(lowerCAmelCase , lowerCAmelCase) assert pipe.safety_checker is None lowercase__ = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase) lowercase__ = OnnxStableDiffusionPipeline.from_pretrained(lowerCAmelCase) # sanity check that the pipeline still works assert pipe.safety_checker is None lowercase__ = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : List[Any] = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
def _lowerCAmelCase ( A__ , A__ ): while second != 0: lowercase__ = first & second first ^= second lowercase__ = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() a__ : int = int(input("Enter the first number: ").strip()) a__ : List[str] = int(input("Enter the second number: ").strip()) print(F'''{add(first, second) = }''')
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : int=True , lowerCAmelCase : str=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : str=99 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Tuple=37 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : Any=5_12 , lowerCAmelCase : Union[str, Any]=16 , lowerCAmelCase : str=2 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : List[str]=None , ) -> Union[str, Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = self.vocab_size - 1 def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowercase__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , *lowerCAmelCase : Tuple) -> List[str]: """simple docstring""" lowercase__ = OpenAIGPTModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase , head_mask=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , *lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" lowercase__ = OpenAIGPTLMHeadModel(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple , *lowerCAmelCase : Any) -> int: """simple docstring""" lowercase__ = OpenAIGPTDoubleHeadsModel(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , *lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" lowercase__ = self.num_labels lowercase__ = OpenAIGPTForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'head_mask': head_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Any = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A : Optional[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A : Union[str, Any] = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : str=False) -> Dict: """simple docstring""" lowercase__ = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase , ) lowercase__ = inputs_dict['labels'] lowercase__ = inputs_dict['labels'] lowercase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowerCAmelCase , ) lowercase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase) return inputs_dict def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" lowercase__ = OpenAIGPTModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , n_embd=37) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowerCAmelCase) @slow def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = OpenAIGPTModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @require_torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Any) -> str: """simple docstring""" lowercase__ = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt') model.to(lowerCAmelCase) lowercase__ = torch.tensor([[4_81, 47_35, 5_44]] , dtype=torch.long , device=lowerCAmelCase) # the president is lowercase__ = [ 4_81, 47_35, 5_44, 2_46, 9_63, 8_70, 7_62, 2_39, 2_44, 4_04_77, 2_44, 2_49, 7_19, 8_81, 4_87, 5_44, 2_40, 2_44, 6_03, 4_81, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowercase__ = model.generate(lowerCAmelCase , do_sample=lowerCAmelCase) self.assertListEqual(output_ids[0].tolist() , lowerCAmelCase)
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets a__ : Dict = datasets.logging.get_logger(__name__) a__ : Tuple = "\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n" a__ : Any = "\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n" a__ : Any = "\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting 'keep_singletons=False', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the 'NP_only' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting 'min_span', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n 'mentions': mentions\n 'muc': MUC metric [Vilain et al, 1995]\n 'bcub': B-cubed [Bagga and Baldwin, 1998]\n 'ceafe': CEAFe [Luo et al., 2005]\n 'lea': LEA [Moosavi and Strube, 2016]\n 'conll_score': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric('coval')\n >>> words = ['bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -',\n ... 'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)',\n ... 'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)',\n ... 'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -',\n ... 'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -',\n ... 'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {'mentions/recall': 1.0,[...] 'conll_score': 100.0}\n" def _lowerCAmelCase ( A__ , A__ , A__=False , A__=False , A__=True , A__=False , A__="dummy_doc" ): lowercase__ = {doc: key_lines} lowercase__ = {doc: sys_lines} lowercase__ = {} lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__, lowercase__ = reader.get_doc_mentions(A__ , key_doc_lines[doc] , A__ ) key_singletons_num += singletons_num if NP_only or min_span: lowercase__ = reader.set_annotated_parse_trees(A__ , key_doc_lines[doc] , A__ , A__ ) lowercase__, lowercase__ = reader.get_doc_mentions(A__ , sys_doc_lines[doc] , A__ ) sys_singletons_num += singletons_num if NP_only or min_span: lowercase__ = reader.set_annotated_parse_trees(A__ , key_doc_lines[doc] , A__ , A__ ) if remove_nested: lowercase__, lowercase__ = reader.remove_nested_coref_mentions(A__ , A__ ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters lowercase__, lowercase__ = reader.remove_nested_coref_mentions(A__ , A__ ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters lowercase__ = reader.get_mention_assignments(A__ , A__ ) lowercase__ = reader.get_mention_assignments(A__ , A__ ) lowercase__ = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' F'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' ) logger.info( 'Number of resulting singleton clusters in the key ' F'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' ) if not keep_singletons: logger.info( F'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ''' 'files, respectively' ) return doc_coref_infos def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ): lowercase__ = get_coref_infos(A__ , A__ , A__ , A__ , A__ , A__ ) lowercase__ = {} lowercase__ = 0 lowercase__ = 0 for name, metric in metrics: lowercase__, lowercase__, lowercase__ = evaluator.evaluate_documents(A__ , A__ , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({F'''{name}/recall''': recall, F'''{name}/precision''': precision, F'''{name}/f1''': fa} ) logger.info( name.ljust(10 ) , F'''Recall: {recall * 100:.2f}''' , F''' Precision: {precision * 100:.2f}''' , F''' F1: {fa * 100:.2f}''' , ) if conll_subparts_num == 3: lowercase__ = (conll / 3) * 100 logger.info(F'''CoNLL score: {conll:.2f}''' ) output_scores.update({'conll_score': conll} ) return output_scores def _lowerCAmelCase ( A__ ): lowercase__ = False for line in key_lines: if not line.startswith('#' ): if len(line.split() ) > 6: lowercase__ = line.split()[5] if not parse_col == "-": lowercase__ = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string')), 'references': datasets.Sequence(datasets.Value('string')), }) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : int , lowerCAmelCase : Dict=True , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : int=False) -> Optional[int]: """simple docstring""" lowercase__ = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: lowercase__ = util.check_gold_parse_annotation(lowerCAmelCase) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" lowercase__ = evaluate( key_lines=lowerCAmelCase , sys_lines=lowerCAmelCase , metrics=lowerCAmelCase , NP_only=lowerCAmelCase , remove_nested=lowerCAmelCase , keep_singletons=lowerCAmelCase , min_span=lowerCAmelCase , ) return score
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a__ : str = logging.get_logger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = [label.strip() for label in labels.split(',') if label.strip()] return labels def __call__( self : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" if len(lowerCAmelCase) == 0 or len(lowerCAmelCase) == 0: raise ValueError('You must include at least one label and at least one sequence.') if hypothesis_template.format(labels[0]) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(lowerCAmelCase)) if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = [sequences] lowercase__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCAmelCase)] for label in labels]) return sequence_pairs, sequences @add_end_docstrings(lowerCamelCase ) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : Dict=ZeroShotClassificationArgumentHandler() , *lowerCAmelCase : Tuple , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = args_parser super().__init__(*lowerCAmelCase , **lowerCAmelCase) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.') @property def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail'): return ind return -1 def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=True , lowerCAmelCase : Dict=TruncationStrategy.ONLY_FIRST , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" lowercase__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`') lowercase__ = self.tokenizer.eos_token try: lowercase__ = self.tokenizer( lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , ) except Exception as e: if "too short" in str(lowerCAmelCase): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase__ = self.tokenizer( lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , padding=lowerCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def UpperCAmelCase ( self : str , **lowerCAmelCase : List[str]) -> int: """simple docstring""" if kwargs.get('multi_class' , lowerCAmelCase) is not None: lowercase__ = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.') lowercase__ = {} if "candidate_labels" in kwargs: lowercase__ = self._args_parser._parse_labels(kwargs['candidate_labels']) if "hypothesis_template" in kwargs: lowercase__ = kwargs['hypothesis_template'] lowercase__ = {} if "multi_label" in kwargs: lowercase__ = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self : Optional[int] , lowerCAmelCase : Union[str, List[str]] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" if len(lowerCAmelCase) == 0: pass elif len(lowerCAmelCase) == 1 and "candidate_labels" not in kwargs: lowercase__ = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''') return super().__call__(lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="This example is {}.") -> str: """simple docstring""" lowercase__, lowercase__ = self._args_parser(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCAmelCase , lowerCAmelCase)): lowercase__ = self._parse_and_tokenize([sequence_pair]) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCAmelCase) - 1, **model_input, } def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = inputs['candidate_label'] lowercase__ = inputs['sequence'] lowercase__ = {k: inputs[k] for k in self.tokenizer.model_input_names} lowercase__ = self.model(**lowerCAmelCase) lowercase__ = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def UpperCAmelCase ( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : int=False) -> List[str]: """simple docstring""" lowercase__ = [outputs['candidate_label'] for outputs in model_outputs] lowercase__ = [outputs['sequence'] for outputs in model_outputs] lowercase__ = np.concatenate([output['logits'].numpy() for output in model_outputs]) lowercase__ = logits.shape[0] lowercase__ = len(lowerCAmelCase) lowercase__ = N // n lowercase__ = logits.reshape((num_sequences, n, -1)) if multi_label or len(lowerCAmelCase) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase__ = self.entailment_id lowercase__ = -1 if entailment_id == 0 else 0 lowercase__ = reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase__ = np.exp(lowerCAmelCase) / np.exp(lowerCAmelCase).sum(-1 , keepdims=lowerCAmelCase) lowercase__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase__ = reshaped_outputs[..., self.entailment_id] lowercase__ = np.exp(lowerCAmelCase) / np.exp(lowerCAmelCase).sum(-1 , keepdims=lowerCAmelCase) lowercase__ = list(reversed(scores[0].argsort())) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(A__ , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = _distribute_shards(**A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = _split_gen_kwargs(A__ , A__ ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( A__ , A__ ): if expected is RuntimeError: with pytest.raises(A__ ): _number_of_shards_in_gen_kwargs(A__ ) else: lowercase__ = _number_of_shards_in_gen_kwargs(A__ ) assert out == expected
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a__ : int = get_logger() a__ : Optional[dict] = None class UpperCAmelCase__( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Optional[Any]) -> List[str]: """simple docstring""" super().__init__(features=lowerCAmelCase) import jax from jaxlib.xla_client import Device if isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError( f'''Expected {device} to be a `str` not {type(lowerCAmelCase)}, as `jaxlib.xla_extension.Device` ''' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.') lowercase__ = device if isinstance(lowerCAmelCase , lowerCAmelCase) else str(jax.devices()[0]) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys()): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys())}, so falling back to the default ''' f'''device: {str(jax.devices()[0])}.''') lowercase__ = str(jax.devices()[0]) lowercase__ = jnp_array_kwargs @staticmethod def UpperCAmelCase ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(lowerCAmelCase): device for device in jax.devices()} def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCAmelCase , lowerCAmelCase) and column: if all( isinstance(lowerCAmelCase , jax.Array) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return jnp.stack(lowerCAmelCase , axis=0) return column def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCAmelCase , (str, bytes, type(lowerCAmelCase))): return value elif isinstance(lowerCAmelCase , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() lowercase__ = {} if isinstance(lowerCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowercase__ = {'dtype': jnp.intaa} else: lowercase__ = {'dtype': jnp.intaa} elif isinstance(lowerCAmelCase , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): lowercase__ = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase , PIL.Image.Image): lowercase__ = np.asarray(lowerCAmelCase) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowercase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device]): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowerCAmelCase , **{**default_dtype, **self.jnp_array_kwargs}) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowerCAmelCase , torch.Tensor): return self._tensorize(data_struct.detach().cpu().numpy()[()]) if hasattr(lowerCAmelCase , '__array__') and not isinstance(lowerCAmelCase , jax.Array): lowercase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase , np.ndarray): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase) for substruct in data_struct]) elif isinstance(lowerCAmelCase , (list, tuple)): return self._consolidate([self.recursive_tensorize(lowerCAmelCase) for substruct in data_struct]) return self._tensorize(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : dict) -> int: """simple docstring""" return map_nested(self._recursive_tensorize , lowerCAmelCase , map_list=lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : pa.Table) -> Mapping: """simple docstring""" lowercase__ = self.numpy_arrow_extractor().extract_row(lowerCAmelCase) lowercase__ = self.python_features_decoder.decode_row(lowerCAmelCase) return self.recursive_tensorize(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : pa.Table) -> "jax.Array": """simple docstring""" lowercase__ = self.numpy_arrow_extractor().extract_column(lowerCAmelCase) lowercase__ = self.python_features_decoder.decode_column(lowerCAmelCase , pa_table.column_names[0]) lowercase__ = self.recursive_tensorize(lowerCAmelCase) lowercase__ = self._consolidate(lowerCAmelCase) return column def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : pa.Table) -> Mapping: """simple docstring""" lowercase__ = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase) lowercase__ = self.python_features_decoder.decode_batch(lowerCAmelCase) lowercase__ = self.recursive_tensorize(lowerCAmelCase) for column_name in batch: lowercase__ = self._consolidate(batch[column_name]) return batch
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
from math import ceil def _lowerCAmelCase ( A__ , A__ ): lowercase__ = list(range(0 , A__ ) ) lowercase__ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowercase__ = [] for i in device_map_blocks: if device_map_blocks.count(A__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(A__ ) # Missing blocks lowercase__ = [i for i in blocks if i not in device_map_blocks] lowercase__ = [i for i in device_map_blocks if i not in blocks] if len(A__ ) != 0: raise ValueError( 'Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.' ' These attention blocks were specified more than once: ' + str(A__ ) ) if len(A__ ) != 0: raise ValueError( 'There are attention blocks for this model that are not specified in the device_map. Add these attention ' 'blocks to a device on the device_map: ' + str(A__ ) ) if len(A__ ) != 0: raise ValueError( 'The device_map contains more attention blocks than this model has. Remove these from the device_map:' + str(A__ ) ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = list(range(A__ ) ) lowercase__ = int(ceil(n_layers / len(A__ ) ) ) lowercase__ = [layers[i : i + n_blocks] for i in range(0 , A__ , A__ )] return dict(zip(A__ , A__ ) )
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
def _lowerCAmelCase ( A__ ): lowercase__ = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) lowercase__ = hex_num[0] == '-' if is_negative: lowercase__ = hex_num[1:] try: lowercase__ = int(A__ , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) lowercase__ = '' while int_num > 0: lowercase__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a__ : Optional[int] = logging.getLogger(__name__) torch.set_grad_enabled(False) a__ : Tuple = "cuda" if torch.cuda.is_available() else "cpu" def _lowerCAmelCase ( A__ , A__=100 , A__=" " ): lowercase__ = text.split(A__ ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(A__ ) , A__ )] def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = [], [] for title, text in zip(documents['title'] , documents['text'] ): if text is not None: for passage in split_text(A__ ): titles.append(title if title is not None else '' ) texts.append(A__ ) return {"title": titles, "text": texts} def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = ctx_tokenizer( documents['title'] , documents['text'] , truncation=A__ , padding='longest' , return_tensors='pt' )['input_ids'] lowercase__ = ctx_encoder(input_ids.to(device=A__ ) , return_dict=A__ ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def _lowerCAmelCase ( A__ , A__ , A__ , ): ###################################### logger.info('Step 1 - Create the dataset' ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way lowercase__ = load_dataset( 'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words lowercase__ = dataset.map(A__ , batched=A__ , num_proc=processing_args.num_proc ) # And compute the embeddings lowercase__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=A__ ) lowercase__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) lowercase__ = Features( {'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space lowercase__ = dataset.map( partial(A__ , ctx_encoder=A__ , ctx_tokenizer=A__ ) , batched=A__ , batch_size=processing_args.batch_size , features=A__ , ) # And finally save your dataset lowercase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' ) dataset.save_to_disk(A__ ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info('Step 2 - Index the dataset' ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search lowercase__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index('embeddings' , custom_index=A__ ) # And save the index lowercase__ = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' ) dataset.get_index('embeddings' ).save(A__ ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class UpperCAmelCase__: '''simple docstring''' A : str = field( default=str(Path(lowerCamelCase ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) A : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) A : str = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) A : str = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) A : Optional[str] = field( default=str(Path(lowerCamelCase ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : Optional[int] = field( default=lowerCamelCase , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) A : int = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class UpperCAmelCase__: '''simple docstring''' A : int = field( default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) A : int = field( default=128 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a__ : Optional[int] = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a__ , a__ , a__ : Optional[int] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a__ : int = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _lowerCAmelCase ( A__="" ): lowercase__ = tempfile.mkdtemp() return os.path.join(A__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple) -> List[str]: """simple docstring""" lowercase__ = torch.rand(12 , dtype=torch.floataa) - 0.5 lowercase__ = AgentAudio(lowerCAmelCase) lowercase__ = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4)) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCAmelCase)) # Ensure that the file contains the same value as the original tensor lowercase__, lowercase__ = sf.read(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , torch.tensor(lowerCAmelCase) , atol=1E-4)) def UpperCAmelCase ( self : Any) -> str: """simple docstring""" lowercase__ = torch.rand(12 , dtype=torch.floataa) - 0.5 lowercase__ = get_new_path(suffix='.wav') sf.write(lowerCAmelCase , lowerCAmelCase , 1_60_00) lowercase__ = AgentAudio(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , agent_type.to_raw() , atol=1E-4)) self.assertEqual(agent_type.to_string() , lowerCAmelCase) @require_vision @require_torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = torch.randint(0 , 2_56 , (64, 64, 3)) lowercase__ = AgentImage(lowerCAmelCase) lowercase__ = str(agent_type.to_string()) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCAmelCase , agent_type._tensor , atol=1E-4)) self.assertIsInstance(agent_type.to_raw() , Image.Image) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase)) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png' lowercase__ = Image.open(lowerCAmelCase) lowercase__ = AgentImage(lowerCAmelCase) self.assertTrue(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" lowercase__ = Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png' lowercase__ = Image.open(lowerCAmelCase) lowercase__ = AgentImage(lowerCAmelCase) self.assertFalse(path.samefile(agent_type.to_string())) self.assertTrue(image == agent_type.to_raw()) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCAmelCase)) class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = 'Hey!' lowercase__ = AgentText(lowerCAmelCase) self.assertEqual(lowerCAmelCase , agent_type.to_string()) self.assertEqual(lowerCAmelCase , agent_type.to_raw()) self.assertEqual(lowerCAmelCase , lowerCAmelCase)
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
from datetime import datetime import matplotlib.pyplot as plt import torch def _lowerCAmelCase ( A__ ): for param in module.parameters(): lowercase__ = False def _lowerCAmelCase ( ): lowercase__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _lowerCAmelCase ( A__ ): lowercase__ = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def _lowerCAmelCase ( ): lowercase__ = datetime.now() lowercase__ = current_time.strftime('%H:%M:%S' ) return timestamp
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple=13 , lowerCAmelCase : List[Any]=30 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : int=32 , lowerCAmelCase : int=5 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Dict=37 , lowerCAmelCase : str="gelu" , lowerCAmelCase : str=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : Union[str, Any]=10 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : Any=3 , lowerCAmelCase : Union[str, Any]=0.6 , lowerCAmelCase : Optional[int]=None , ) -> Dict: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = mask_ratio lowercase__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) lowercase__ = (image_size // patch_size) ** 2 lowercase__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : Any) -> Dict: """simple docstring""" lowercase__ = ViTMAEModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = ViTMAEForPreTraining(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase) lowercase__ = (self.image_size // self.patch_size) ** 2 lowercase__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images lowercase__ = 1 lowercase__ = ViTMAEForPreTraining(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowercase__ = model(lowerCAmelCase) lowercase__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__ = config_and_inputs lowercase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Optional[int] = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () A : Dict = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} A : List[Any] = False A : List[Any] = False A : Optional[Any] = False A : Dict = False def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" lowercase__ = ViTMAEModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37) def UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear)) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) lowercase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : str) -> int: """simple docstring""" np.random.seed(2) lowercase__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) lowercase__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) lowercase__ = torch.from_numpy(lowerCAmelCase) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument lowercase__ = pt_noise super().check_pt_tf_models(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Any: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) lowercase__ = outputs[0].cpu().numpy() lowercase__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase) lowercase__ = model_class.from_pretrained(lowerCAmelCase) model.to(lowerCAmelCase) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) # Make sure we don't have nans lowercase__ = after_outputs[0].cpu().numpy() lowercase__ = 0 lowercase__ = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(lowerCAmelCase , 1E-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" pass @slow def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = ViTMAEModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) def _lowerCAmelCase ( ): lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" np.random.seed(2) lowercase__ = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(lowerCAmelCase) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCAmelCase , return_tensors='pt').to(lowerCAmelCase) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) lowercase__ = ViTMAEConfig() lowercase__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) lowercase__ = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCAmelCase , noise=torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase)) # verify the logits lowercase__ = torch.Size((1, 1_96, 7_68)) self.assertEqual(outputs.logits.shape , lowerCAmelCase) lowercase__ = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCAmelCase) , atol=1E-4))
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def _lowerCAmelCase ( A__ , A__ , A__ ): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , A__ ) lowercase__ = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: lowercase__ = dataset_size < in_memory_max_size else: lowercase__ = False lowercase__ = is_small_dataset(A__ ) assert result == expected
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a__ : Dict = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] = ["DeiTFeatureExtractor"] a__ : Dict = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : List[str] = 16 a__ : Dict = 32 def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ = 16 ): lowercase__ = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase__ = DatasetDict( { 'train': dataset['train'].select(A__ ), 'validation': dataset['train'].select(A__ ), 'test': dataset['validation'], } ) def tokenize_function(A__ ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A__ , max_length=A__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase__ = datasets.map( A__ , batched=A__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase__ = 16 elif accelerator.mixed_precision != "no": lowercase__ = 8 else: lowercase__ = None return tokenizer.pad( A__ , padding='longest' , max_length=A__ , pad_to_multiple_of=A__ , return_tensors='pt' , ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets['train'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowercase__ = DataLoader( tokenized_datasets['validation'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) lowercase__ = DataLoader( tokenized_datasets['test'] , shuffle=A__ , collate_fn=A__ , batch_size=A__ ) return train_dataloader, eval_dataloader, test_dataloader def _lowerCAmelCase ( A__ , A__ ): # New Code # lowercase__ = [] # Download the dataset lowercase__ = load_dataset('glue' , 'mrpc' ) # Create our splits lowercase__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowercase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config['lr'] lowercase__ = int(config['num_epochs'] ) lowercase__ = int(config['seed'] ) lowercase__ = int(config['batch_size'] ) lowercase__ = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation lowercase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowercase__ = batch_size // MAX_GPU_BATCH_SIZE lowercase__ = MAX_GPU_BATCH_SIZE set_seed(A__ ) # New Code # # Create our folds: lowercase__ = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) lowercase__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A__ ): lowercase__, lowercase__, lowercase__ = get_fold_dataloaders( A__ , A__ , A__ , A__ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase__ = model.to(accelerator.device ) # Instantiate optimizer lowercase__ = AdamW(params=model.parameters() , lr=A__ ) # Instantiate scheduler lowercase__ = get_linear_schedule_with_warmup( optimizer=A__ , num_warmup_steps=100 , num_training_steps=(len(A__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = accelerator.prepare( A__ , A__ , A__ , A__ , A__ ) # Now we train the model for epoch in range(A__ ): model.train() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase__ = model(**A__ ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A__ ) lowercase__ = outputs.logits.argmax(dim=-1 ) lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=A__ , references=A__ , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , A__ ) # New Code # # We also run predictions on the test set at the very end lowercase__ = [] for step, batch in enumerate(A__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A__ ) lowercase__ = outputs.logits lowercase__, lowercase__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A__ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowercase__ = torch.cat(A__ , dim=0 ) lowercase__ = torch.stack(A__ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowercase__ = metric.compute(predictions=A__ , references=A__ ) accelerator.print('Average test metrics from all folds:' , A__ ) def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A__ , default=A__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=A__ , default=3 , help='The number of splits to perform across the dataset' ) lowercase__ = parser.parse_args() lowercase__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(A__ , A__ ) if __name__ == "__main__": main()
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a__ : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right a__ : int = 5_00_03 a__ : Dict = 5_00_02 @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Any = PLBartTokenizer A : str = None A : str = False def UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = PLBartTokenizer(lowerCAmelCase , language_codes='base' , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = PLBartTokenizer(lowerCAmelCase , language_codes='base' , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) lowercase__ = tokenizer.vocab_size lowercase__ = [tokenizer.convert_ids_to_tokens(lowerCAmelCase) for x in range(end - 4 , lowerCAmelCase)] self.assertListEqual(lowerCAmelCase , ['__java__', '__python__', '__en_XX__', '<mask>']) lowercase__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' lowercase__ = tokenizer(lowerCAmelCase).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) , lowerCAmelCase , ) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = PLBartTokenizer(lowerCAmelCase , language_codes='multi' , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) lowercase__ = tokenizer.vocab_size lowercase__ = [tokenizer.convert_ids_to_tokens(lowerCAmelCase) for x in range(end - 7 , lowerCAmelCase)] self.assertListEqual( lowerCAmelCase , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__']) lowercase__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' lowercase__ = tokenizer(lowerCAmelCase).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) , lowerCAmelCase , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' A : List[Any] = "uclanlp/plbart-python-en_XX" A : List[Any] = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] A : Any = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] A : str = [ 134, 5452, 33460, 33441, 33463, 33465, 33463, 33449, 988, 20, 33456, 19, 33456, 771, 39, 4258, 889, 3318, 33441, 33463, 33465, 33463, 33449, 2471, 2, PYTHON_CODE, ] @classmethod def UpperCAmelCase ( cls : Any) -> str: """simple docstring""" lowercase__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX') lowercase__ = 1 return cls def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_00_01) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_00_02) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_00_03) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" lowercase__ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" self.assertIn(lowerCAmelCase , self.tokenizer.all_special_ids) lowercase__ = [EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] lowercase__ = self.tokenizer.decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase) lowercase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase) def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase) lowercase__ = 10 lowercase__ = self.tokenizer(lowerCAmelCase , max_length=lowerCAmelCase , truncation=lowerCAmelCase).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , lowerCAmelCase) self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Optional[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__']) , [5_00_04, 5_00_01]) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = tempfile.mkdtemp() lowercase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase) lowercase__ = PLBartTokenizer.from_pretrained(lowerCAmelCase) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , return_tensors='pt') lowercase__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE]) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase) self.assertEqual(batch.decoder_input_ids[1][-1] , 2) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE]) @require_torch def UpperCAmelCase ( self : Dict) -> str: """simple docstring""" lowercase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) lowercase__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) self.assertEqual((2, 26) , batch.input_ids.shape) self.assertEqual((2, 26) , batch.attention_mask.shape) lowercase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE]) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.tokenizer(self.src_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=3 , return_tensors='pt') lowercase__ = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=10 , return_tensors='pt') lowercase__ = targets['input_ids'] lowercase__ = shift_tokens_right(lowerCAmelCase , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java') self.assertEqual( nested_simplify(lowerCAmelCase) , { # A, test, EOS, en_XX 'input_ids': [[1_50, 2_42, 2, 5_00_03]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_00_01, } , )
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = (DDPMScheduler,) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99) - 0.02)) < 1E-5 def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__ = len(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0) for t in reversed(range(lowerCAmelCase)): # 1. predict noise residual lowercase__ = model(lowerCAmelCase , lowerCAmelCase) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 2_58.96_06) < 1E-2 assert abs(result_mean.item() - 0.33_72) < 1E-3 def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(prediction_type='v_prediction') lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__ = len(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = torch.manual_seed(0) for t in reversed(range(lowerCAmelCase)): # 1. predict noise residual lowercase__ = model(lowerCAmelCase , lowerCAmelCase) # 2. predict previous mean of sample x_t-1 lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase__ = pred_prev_sample lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 2_02.02_96) < 1E-2 assert abs(result_mean.item() - 0.26_31) < 1E-3 def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__ = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase) lowercase__ = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase): if i == len(lowerCAmelCase) - 1: lowercase__ = -1 else: lowercase__ = timesteps[i + 1] lowercase__ = scheduler.previous_timestep(lowerCAmelCase) lowercase__ = prev_t.item() self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__ = [1_00, 87, 50, 51, 0] with self.assertRaises(lowerCAmelCase , msg='`custom_timesteps` must be in descending order.'): scheduler.set_timesteps(timesteps=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__ = [1_00, 87, 50, 1, 0] lowercase__ = len(lowerCAmelCase) with self.assertRaises(lowerCAmelCase , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.'): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase , timesteps=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=lowerCAmelCase)
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ : Optional[int] = logging.get_logger(__name__) a__ : Any = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} a__ : List[Any] = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } a__ : Dict = { "abeja/gpt-neox-japanese-2.7b": 20_48, } def _lowerCAmelCase ( A__ , A__ ): with open(A__ , 'r' , encoding='utf-8' ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = collections.OrderedDict() lowercase__ = collections.OrderedDict() lowercase__ = collections.OrderedDict() with open(A__ , 'r' , encoding='utf-8' ) as f: lowercase__ = f.readlines() lowercase__ = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(A__ ): lowercase__ = b lowercase__ = idx for wd in b: lowercase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Tuple = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[Any]="<|endoftext|>" , lowerCAmelCase : Dict="<|endoftext|>" , lowerCAmelCase : int="<|startoftext|>" , lowerCAmelCase : str="<|endoftext|>" , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" super().__init__( unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , do_clean_text=lowerCAmelCase , **lowerCAmelCase , ) if not os.path.isfile(lowerCAmelCase): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`') if not os.path.isfile(lowerCAmelCase): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`') lowercase__ = do_clean_text lowercase__, lowercase__, lowercase__, lowercase__ = load_vocab_and_emoji(lowerCAmelCase , lowerCAmelCase) lowercase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji) @property def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" return len(self.raw_vocab) def UpperCAmelCase ( self : str) -> str: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder) def UpperCAmelCase ( self : Any , lowerCAmelCase : Dict) -> Tuple: """simple docstring""" return self.subword_tokenizer.tokenize(lowerCAmelCase , clean=self.do_clean_text) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" return self.vocab.get(lowerCAmelCase , self.vocab.get(self.unk_token)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" lowercase__ = ''.join(lowerCAmelCase).strip() return out_string def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : "Conversation") -> List[int]: """simple docstring""" lowercase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) + [self.eos_token_id]) if len(lowerCAmelCase) > self.model_max_length: lowercase__ = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = 0 if os.path.isdir(lowerCAmelCase): lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file']) else: lowercase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) lowercase__ = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!') lowercase__ = token_index writer.write(','.join(lowerCAmelCase) + '\n') index += 1 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: json.dump(self.emoji , lowerCAmelCase) return vocab_file, emoji_file class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" lowercase__ = vocab # same as swe lowercase__ = ids_to_tokens # same as bpe lowercase__ = emoji lowercase__ = np.max([len(lowerCAmelCase) for w in self.vocab.keys()]) lowercase__ = re.compile(R'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)') lowercase__ = re.compile(R'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*') lowercase__ = re.compile(R'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}') lowercase__ = re.compile( R'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*') lowercase__ = re.compile( R'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*') lowercase__ = re.compile( R'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*') lowercase__ = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' lowercase__ = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' lowercase__ = str.maketrans({k: '<BLOCK>' for k in keisen + blocks}) def __len__( self : Dict) -> Dict: """simple docstring""" return len(self.ids_to_tokens) def UpperCAmelCase ( self : int , lowerCAmelCase : Dict) -> Any: """simple docstring""" lowercase__ = self.content_repattera.sub('<URL>' , lowerCAmelCase) lowercase__ = self.content_repattera.sub('<EMAIL>' , lowerCAmelCase) lowercase__ = self.content_repattera.sub('<TEL>' , lowerCAmelCase) lowercase__ = self.content_repattera.sub('<DATE>' , lowerCAmelCase) lowercase__ = self.content_repattera.sub('<DATE>' , lowerCAmelCase) lowercase__ = self.content_repattera.sub('<PRICE>' , lowerCAmelCase) lowercase__ = content.translate(self.content_transa) while "<BLOCK><BLOCK>" in content: lowercase__ = content.replace('<BLOCK><BLOCK>' , '<BLOCK>') return content def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : str=False) -> Tuple: """simple docstring""" lowercase__ = text.replace(' ' , '<SP>') lowercase__ = text.replace(' ' , '<SP>') lowercase__ = text.replace('\r\n' , '<BR>') lowercase__ = text.replace('\n' , '<BR>') lowercase__ = text.replace('\r' , '<BR>') lowercase__ = text.replace('\t' , '<TAB>') lowercase__ = text.replace('—' , 'ー') lowercase__ = text.replace('−' , 'ー') for k, v in self.emoji["emoji"].items(): if k in text: lowercase__ = text.replace(lowerCAmelCase , lowerCAmelCase) if clean: lowercase__ = self.clean_text(lowerCAmelCase) def check_simbol(lowerCAmelCase : str): lowercase__ = x.encode() if len(lowerCAmelCase) == 1 and len(lowerCAmelCase) == 2: lowercase__ = (int(e[0]) << 8) + int(e[1]) if ( (c >= 0XC_2_A_1 and c <= 0XC_2_B_F) or (c >= 0XC_7_8_0 and c <= 0XC_7_8_3) or (c >= 0XC_A_B_9 and c <= 0XC_B_B_F) or (c >= 0XC_C_8_0 and c <= 0XC_D_A_2) ): return True return False def checkuae(lowerCAmelCase : Optional[Any]): lowercase__ = x.encode() if len(lowerCAmelCase) == 1 and len(lowerCAmelCase) == 3: lowercase__ = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2]) if c >= 0XE_2_8_0_8_0 and c <= 0XE_2_B_0_7_F: return True return False lowercase__ = 0 lowercase__ = [] while pos < len(lowerCAmelCase): lowercase__ = min(len(lowerCAmelCase) , pos + self.maxlen + 1) if text[pos] == '<' else pos + 3 lowercase__ = [] # (token_id, token, pos) for e in range(lowerCAmelCase , lowerCAmelCase , -1): lowercase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase) > 2: lowercase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e)) if len(lowerCAmelCase) > 0: # the smallest token_id is adopted lowercase__, lowercase__, lowercase__ = sorted(lowerCAmelCase , key=lambda lowerCAmelCase: x[0])[0] result.append(lowerCAmelCase) lowercase__ = e else: lowercase__ = pos + 1 lowercase__ = text[pos:end] if check_simbol(lowerCAmelCase): result.append('<KIGOU>') elif checkuae(lowerCAmelCase): result.append('<U2000U2BFF>') else: for i in wd.encode('utf-8'): result.append('<|byte%d|>' % i) lowercase__ = end return result def UpperCAmelCase ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : List[Any]="\n") -> Optional[int]: """simple docstring""" lowercase__ = [] lowercase__ = [] lowercase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2])) else: if len(lowerCAmelCase) > 0: words.append(bytearray(lowerCAmelCase).decode('utf-8' , errors='replace')) lowercase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word]) elif word == "<SP>": words.append(' ') elif word == "<BR>": words.append(lowerCAmelCase) elif word == "<TAB>": words.append('\t') elif word == "<BLOCK>": words.append('▀') elif word == "<KIGOU>": words.append('ǀ') elif word == "<U2000U2BFF>": words.append('‖') else: words.append(lowerCAmelCase) if len(lowerCAmelCase) > 0: words.append(bytearray(lowerCAmelCase).decode('utf-8' , errors='replace')) lowercase__ = ''.join(lowerCAmelCase) return text
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": a__ : str = input("Enter image url: ").strip() print(F'''Downloading image from {url} ...''') a__ : Tuple = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image a__ : str = soup.find("meta", {"property": "og:image"})["content"] a__ : int = requests.get(image_url).content a__ : Dict = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, "wb") as fp: fp.write(image_data) print(F'''Done. Image saved to disk as {file_name}.''')
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
from functools import lru_cache def _lowerCAmelCase ( A__ ): lowercase__ = 2 lowercase__ = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(A__ ) if n > 1: factors.add(A__ ) return factors @lru_cache def _lowerCAmelCase ( A__ ): return len(unique_prime_factors(A__ ) ) def _lowerCAmelCase ( A__ ): return len(set(A__ ) ) in (0, 1) def _lowerCAmelCase ( A__ ): lowercase__ = 2 while True: # Increment each value of a generated range lowercase__ = [base + i for i in range(A__ )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowercase__ = [upf_len(A__ ) for x in group] checker.append(A__ ) # If all numbers in the list are equal, return the group variable. if equality(A__ ): return group # Increment our base variable by 1 base += 1 def _lowerCAmelCase ( A__ = 4 ): lowercase__ = run(A__ ) return results[0] if len(A__ ) else None if __name__ == "__main__": print(solution())
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys a__ : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
def _lowerCAmelCase ( A__ , A__ ): assert x is not None assert y is not None lowercase__ = len(A__ ) lowercase__ = len(A__ ) # declaring the array for storing the dp values lowercase__ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): lowercase__ = 1 if x[i - 1] == y[j - 1] else 0 lowercase__ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) lowercase__ = '' lowercase__, lowercase__ = m, n while i > 0 and j > 0: lowercase__ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: lowercase__ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": a__ : Union[str, Any] = "AGGTAB" a__ : str = "GXTXAYB" a__ : List[str] = 4 a__ : str = "GTAB" a__ , a__ : Optional[Any] = longest_common_subsequence(a, b) print("len =", ln, ", sub-sequence =", subseq) import doctest doctest.testmod()
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCAmelCase__: '''simple docstring''' A : List[Any] = XGLMConfig A : Dict = {} A : Tuple = "gelu" def __init__( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any]=14 , lowerCAmelCase : Union[str, Any]=7 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : Optional[Any]=99 , lowerCAmelCase : Any=32 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : int=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : int=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : Tuple=5_12 , lowerCAmelCase : List[Any]=0.02 , ) -> Union[str, Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = d_model lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = ffn_dim lowercase__ = activation_function lowercase__ = activation_dropout lowercase__ = attention_dropout lowercase__ = max_position_embeddings lowercase__ = initializer_range lowercase__ = None lowercase__ = 0 lowercase__ = 2 lowercase__ = 1 def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : List[str]) -> Tuple: """simple docstring""" lowercase__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = self.get_config() lowercase__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCAmelCase , ) def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Optional[int] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () A : List[Any] = ( {"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {} ) A : str = False A : str = False A : str = False def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = TFXGLMModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , n_embd=37) def UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" self.config_tester.run_common_tests() @slow def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = TFXGLMModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.') def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" super().test_resize_token_embeddings() @require_tf class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Any , lowerCAmelCase : List[str]=True) -> Dict: """simple docstring""" lowercase__ = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') lowercase__ = tf.convert_to_tensor([[2, 2_68, 98_65]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off lowercase__ = [2, 2_68, 98_65, 67, 11, 19_88, 5_72_52, 98_65, 5, 9_84, 67, 19_88, 21_38_38, 16_58, 53, 7_04_46, 33, 66_57, 2_78, 15_81] # fmt: on lowercase__ = model.generate(lowerCAmelCase , do_sample=lowerCAmelCase , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" lowercase__ = XGLMTokenizer.from_pretrained('facebook/xglm-564M') lowercase__ = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') tf.random.set_seed(0) lowercase__ = tokenizer('Today is a nice day and' , return_tensors='tf') lowercase__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0'): lowercase__ = model.generate(lowerCAmelCase , do_sample=lowerCAmelCase , seed=[7, 0]) lowercase__ = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase) lowercase__ = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" lowercase__ = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M') lowercase__ = XGLMTokenizer.from_pretrained('facebook/xglm-564M') lowercase__ = 'left' # use different length sentences to test batching lowercase__ = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] lowercase__ = tokenizer(lowerCAmelCase , return_tensors='tf' , padding=lowerCAmelCase) lowercase__ = inputs['input_ids'] lowercase__ = model.generate(input_ids=lowerCAmelCase , attention_mask=inputs['attention_mask'] , max_new_tokens=12) lowercase__ = tokenizer(sentences[0] , return_tensors='tf').input_ids lowercase__ = model.generate(input_ids=lowerCAmelCase , max_new_tokens=12) lowercase__ = tokenizer(sentences[1] , return_tensors='tf').input_ids lowercase__ = model.generate(input_ids=lowerCAmelCase , max_new_tokens=12) lowercase__ = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase) lowercase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase) lowercase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase) lowercase__ = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence])
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
def _lowerCAmelCase ( A__ ): lowercase__ = len(A__ ) lowercase__ = len(matrix[0] ) lowercase__ = min(A__ , A__ ) for row in range(A__ ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , A__ ): lowercase__ = matrix[col][row] / matrix[row][row] for i in range(A__ , A__ ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows lowercase__ = True for i in range(row + 1 , A__ ): if matrix[i][row] != 0: lowercase__, lowercase__ = matrix[i], matrix[row] lowercase__ = False break if reduce: rank -= 1 for i in range(A__ ): lowercase__ = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import inspect import unittest import torch import torch.nn as nn from accelerate.hooks import ( AlignDevicesHook, ModelHook, SequentialHook, add_hook_to_module, attach_align_device_hook, remove_hook_from_module, remove_hook_from_submodules, ) from accelerate.test_utils import require_multi_gpu class UpperCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Any) -> Union[str, Any]: """simple docstring""" super().__init__() lowercase__ = nn.Linear(3 , 4) lowercase__ = nn.BatchNormad(4) lowercase__ = nn.Linear(4 , 5) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase))) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[int] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" return (args[0] + 1,) + args[1:], kwargs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict) -> List[str]: """simple docstring""" return output + 1 class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" lowercase__ = ModelForTest() lowercase__ = ModelHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) self.assertEqual(test_model._hf_hook , lowerCAmelCase) self.assertTrue(hasattr(lowerCAmelCase , '_old_forward')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['x']) remove_hook_from_module(lowerCAmelCase) self.assertFalse(hasattr(lowerCAmelCase , '_hf_hook')) self.assertFalse(hasattr(lowerCAmelCase , '_old_forward')) def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" lowercase__ = ModelForTest() lowercase__ = ModelHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) add_hook_to_module(lowerCAmelCase , lowerCAmelCase , append=lowerCAmelCase) self.assertEqual(isinstance(test_model._hf_hook , lowerCAmelCase) , lowerCAmelCase) self.assertEqual(len(test_model._hf_hook.hooks) , 2) self.assertTrue(hasattr(lowerCAmelCase , '_old_forward')) # Check adding the hook did not change the name or the signature self.assertEqual(test_model.forward.__name__ , 'forward') self.assertListEqual(list(inspect.signature(test_model.forward).parameters) , ['x']) remove_hook_from_module(lowerCAmelCase) self.assertFalse(hasattr(lowerCAmelCase , '_hf_hook')) self.assertFalse(hasattr(lowerCAmelCase , '_old_forward')) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = ModelForTest() lowercase__ = torch.randn(2 , 3) lowercase__ = test_model(x + 1) lowercase__ = test_model(x + 2) lowercase__ = PreForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain lowercase__ = PreForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks lowercase__ = SequentialHook(PreForwardHook() , PreForwardHook()) add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) assert torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = ModelForTest() lowercase__ = torch.randn(2 , 3) lowercase__ = test_model(lowerCAmelCase) lowercase__ = PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1E-5)) # Attaching a hook to a model when it already has one replaces, does not chain lowercase__ = PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1 , atol=1E-5)) # You need to use the sequential hook to chain two or more hooks lowercase__ = SequentialHook(PostForwardHook() , PostForwardHook()) add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) assert torch.allclose(lowerCAmelCase , output + 2 , atol=1E-5) def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = ModelForTest() lowercase__ = torch.randn(2 , 3) lowercase__ = test_model(lowerCAmelCase) lowercase__ = PostForwardHook() add_hook_to_module(lowerCAmelCase , lowerCAmelCase) lowercase__ = test_model(lowerCAmelCase) self.assertTrue(torch.allclose(lowerCAmelCase , output + 1)) self.assertTrue(outputa.requires_grad) lowercase__ = True lowercase__ = test_model(lowerCAmelCase) self.assertFalse(outputa.requires_grad) @require_multi_gpu def UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" lowercase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.batchnorm , AlignDevicesHook(execution_device=0)) add_hook_to_module(model.lineara , AlignDevicesHook(execution_device=1)) self.assertEqual(model.lineara.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.weight.device , torch.device(0)) self.assertEqual(model.batchnorm.running_mean.device , torch.device(0)) self.assertEqual(model.lineara.weight.device , torch.device(1)) # We can still make a forward pass. The input does not need to be on any particular device lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , torch.device(1)) # We can add a general hook to put back output on same device as input. add_hook_to_module(lowerCAmelCase , AlignDevicesHook(io_same_device=lowerCAmelCase)) lowercase__ = torch.randn(2 , 3).to(0) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , torch.device(0)) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices lowercase__ = {'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True} add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase)) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) # Buffers are not included in the offload by default, so are on the execution device lowercase__ = torch.device(hook_kwargs['execution_device']) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase) lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , lowerCAmelCase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # Now test with buffers included in the offload lowercase__ = { 'execution_device': 0 if torch.cuda.is_available() else 'cpu', 'offload': True, 'offload_buffers': True, } add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase)) add_hook_to_module(model.batchnorm , AlignDevicesHook(**lowerCAmelCase)) add_hook_to_module(model.lineara , AlignDevicesHook(**lowerCAmelCase)) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta')) lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , lowerCAmelCase) # Removing hooks loads back the weights in the model. remove_hook_from_module(model.lineara) remove_hook_from_module(model.batchnorm) remove_hook_from_module(model.lineara) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" lowercase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices lowercase__ = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) # Buffers are not included in the offload by default, so are on the execution device lowercase__ = torch.device(lowerCAmelCase) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase) lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , lowerCAmelCase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # Now test with buffers included in the offload attach_align_device_hook(lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , offload_buffers=lowerCAmelCase) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta')) lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , lowerCAmelCase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) def UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" lowercase__ = ModelForTest() # Everything is on CPU self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # This will move each submodule on different devices lowercase__ = 0 if torch.cuda.is_available() else 'cpu' attach_align_device_hook( lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict()) # Parameters have been offloaded, so on the meta device self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) # Buffers are not included in the offload by default, so are on the execution device lowercase__ = torch.device(lowerCAmelCase) self.assertEqual(model.batchnorm.running_mean.device , lowerCAmelCase) lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , lowerCAmelCase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) # Now test with buffers included in the offload attach_align_device_hook( lowerCAmelCase , execution_device=lowerCAmelCase , offload=lowerCAmelCase , weights_map=model.state_dict() , offload_buffers=lowerCAmelCase , ) # Parameters have been offloaded, so on the meta device, buffers included self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.weight.device , torch.device('meta')) self.assertEqual(model.lineara.weight.device , torch.device('meta')) self.assertEqual(model.batchnorm.running_mean.device , torch.device('meta')) lowercase__ = torch.randn(2 , 3) lowercase__ = model(lowerCAmelCase) self.assertEqual(output.device , lowerCAmelCase) # Removing hooks loads back the weights in the model. remove_hook_from_submodules(lowerCAmelCase) self.assertEqual(model.lineara.weight.device , torch.device('cpu')) self.assertEqual(model.batchnorm.weight.device , torch.device('cpu')) self.assertEqual(model.lineara.weight.device , torch.device('cpu'))
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def _lowerCAmelCase ( A__ ): lowercase__ = 384 lowercase__ = 7 if "tiny" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 6, 2) lowercase__ = (3, 6, 12, 24) elif "small" in model_name: lowercase__ = 96 lowercase__ = (2, 2, 18, 2) lowercase__ = (3, 6, 12, 24) elif "base" in model_name: lowercase__ = 128 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) lowercase__ = 12 lowercase__ = 512 elif "large" in model_name: lowercase__ = 192 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) lowercase__ = 12 lowercase__ = 768 # set label information lowercase__ = 150 lowercase__ = 'huggingface/label-files' lowercase__ = 'ade20k-id2label.json' lowercase__ = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) lowercase__ = {int(A__ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = SwinConfig( embed_dim=A__ , depths=A__ , num_heads=A__ , window_size=A__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) lowercase__ = UperNetConfig( backbone_config=A__ , auxiliary_in_channels=A__ , num_labels=A__ , idalabel=A__ , labelaid=A__ , ) return config def _lowerCAmelCase ( A__ ): lowercase__ = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.norm2.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', F'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.stages.{i}.downsample.reduction.weight''', F'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.weight''', F'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.downsample.norm.bias''', F'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = dct.pop(A__ ) lowercase__ = val def _lowerCAmelCase ( A__ , A__ ): lowercase__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): lowercase__ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowercase__ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) lowercase__ = state_dict.pop(F'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowercase__ = in_proj_weight[:dim, :] lowercase__ = in_proj_bias[: dim] lowercase__ = in_proj_weight[ dim : dim * 2, : ] lowercase__ = in_proj_bias[ dim : dim * 2 ] lowercase__ = in_proj_weight[ -dim :, : ] lowercase__ = in_proj_bias[-dim :] # fmt: on def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = x.shape lowercase__ = x.reshape(A__ , 4 , in_channel // 4 ) lowercase__ = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A__ , A__ ) return x def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = x.shape lowercase__ = x.reshape(A__ , in_channel // 4 , 4 ) lowercase__ = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A__ , A__ ) return x def _lowerCAmelCase ( A__ ): lowercase__ = x.shape[0] lowercase__ = x.reshape(4 , in_channel // 4 ) lowercase__ = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A__ ) return x def _lowerCAmelCase ( A__ ): lowercase__ = x.shape[0] lowercase__ = x.reshape(in_channel // 4 , 4 ) lowercase__ = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A__ ) return x def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' , file_name=A__ )[ 'state_dict' ] for name, param in state_dict.items(): print(A__ , param.shape ) lowercase__ = get_upernet_config(A__ ) lowercase__ = UperNetForSemanticSegmentation(A__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A__ ) if "bn" in key: lowercase__ = key.replace('bn' , 'batch_norm' ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: lowercase__ = reverse_correct_unfold_reduction_order(A__ ) if "norm" in key: lowercase__ = reverse_correct_unfold_norm_order(A__ ) model.load_state_dict(A__ ) # verify on image lowercase__ = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ).convert('RGB' ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(A__ , return_tensors='pt' ).pixel_values with torch.no_grad(): lowercase__ = model(A__ ) lowercase__ = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": lowercase__ = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ) elif model_name == "upernet-swin-small": lowercase__ = torch.tensor( [[-7.19_21, -7.19_21, -6.95_32], [-7.19_21, -7.19_21, -6.95_32], [-7.09_08, -7.09_08, -6.85_34]] ) elif model_name == "upernet-swin-base": lowercase__ = torch.tensor( [[-6.58_51, -6.58_51, -6.43_30], [-6.58_51, -6.58_51, -6.43_30], [-6.47_63, -6.47_63, -6.32_54]] ) elif model_name == "upernet-swin-large": lowercase__ = torch.tensor( [[-7.52_97, -7.52_97, -7.38_02], [-7.52_97, -7.52_97, -7.38_02], [-7.40_44, -7.40_44, -7.25_86]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A__ ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F'''upernet-swin-{size}''' for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a__ : Any = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[Any]) -> Optional[Any]: """simple docstring""" self.test() def UpperCAmelCase ( self : Union[str, Any]) -> Any: """simple docstring""" lowercase__ = 0 lowercase__ = False while not completed: if counter == 1: self.reset() lowercase__ = self.advance() if not self.does_advance(lowerCAmelCase): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.') lowercase__, lowercase__, lowercase__ = self.update(lowerCAmelCase) counter += 1 if counter > 1_00_00: raise Exception('update() does not fulfill the constraint.') if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.') @abstractmethod def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> List[str]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def UpperCAmelCase ( self : int , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def UpperCAmelCase ( self : str) -> Any: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[Any]=False) -> int: """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : List[int]) -> Union[str, Any]: """simple docstring""" super(lowerCAmelCase , self).__init__() if not isinstance(lowerCAmelCase , lowerCAmelCase) or len(lowerCAmelCase) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''') if any((not isinstance(lowerCAmelCase , lowerCAmelCase) or token_id < 0) for token_id in token_ids): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''') lowercase__ = token_ids lowercase__ = len(self.token_ids) lowercase__ = -1 # the index of the currently fulfilled step lowercase__ = False def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int) -> int: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase)}''') if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase ( self : Any , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(lowerCAmelCase)}''') lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(lowerCAmelCase): self.fulfilled_idx += 1 lowercase__ = True if self.fulfilled_idx == (self.seqlen - 1): lowercase__ = True lowercase__ = completed else: # failed to make progress. lowercase__ = True self.reset() return stepped, completed, reset def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = False lowercase__ = 0 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[str]=False) -> Any: """simple docstring""" lowercase__ = PhrasalConstraint(self.token_ids) if stateful: lowercase__ = self.seqlen lowercase__ = self.fulfilled_idx lowercase__ = self.completed return new_constraint class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : List[List[int]] , lowerCAmelCase : Any=True) -> Tuple: """simple docstring""" lowercase__ = max([len(lowerCAmelCase) for one in nested_token_ids]) lowercase__ = {} for token_ids in nested_token_ids: lowercase__ = root for tidx, token_id in enumerate(lowerCAmelCase): if token_id not in level: lowercase__ = {} lowercase__ = level[token_id] if no_subsets and self.has_subsets(lowerCAmelCase , lowerCAmelCase): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f''' {nested_token_ids}.''') lowercase__ = root def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" lowercase__ = self.trie for current_token in current_seq: lowercase__ = start[current_token] lowercase__ = list(start.keys()) return next_tokens def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> int: """simple docstring""" lowercase__ = self.next_tokens(lowerCAmelCase) return len(lowerCAmelCase) == 0 def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Dict) -> Any: """simple docstring""" lowercase__ = list(root.values()) if len(lowerCAmelCase) == 0: return 1 else: return sum([self.count_leaves(lowerCAmelCase) for nn in next_nodes]) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" lowercase__ = self.count_leaves(lowerCAmelCase) return len(lowerCAmelCase) != leaf_count class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : List[List[int]]) -> int: """simple docstring""" super(lowerCAmelCase , self).__init__() if not isinstance(lowerCAmelCase , lowerCAmelCase) or len(lowerCAmelCase) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''') if any(not isinstance(lowerCAmelCase , lowerCAmelCase) for token_ids in nested_token_ids): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''') if any( any((not isinstance(lowerCAmelCase , lowerCAmelCase) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''') lowercase__ = DisjunctiveTrie(lowerCAmelCase) lowercase__ = nested_token_ids lowercase__ = self.trie.max_height lowercase__ = [] lowercase__ = False def UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" lowercase__ = self.trie.next_tokens(self.current_seq) if len(lowerCAmelCase) == 0: return None else: return token_list def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> List[Any]: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase)}''') lowercase__ = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def UpperCAmelCase ( self : List[str] , lowerCAmelCase : int) -> int: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowerCAmelCase)}''') lowercase__ = False lowercase__ = False lowercase__ = False if self.does_advance(lowerCAmelCase): self.current_seq.append(lowerCAmelCase) lowercase__ = True else: lowercase__ = True self.reset() lowercase__ = self.trie.reached_leaf(self.current_seq) lowercase__ = completed return stepped, completed, reset def UpperCAmelCase ( self : str) -> Optional[Any]: """simple docstring""" lowercase__ = False lowercase__ = [] def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Union[str, Any]=False) -> str: """simple docstring""" lowercase__ = DisjunctiveConstraint(self.token_ids) if stateful: lowercase__ = self.seqlen lowercase__ = self.current_seq lowercase__ = self.completed return new_constraint class UpperCAmelCase__: '''simple docstring''' def __init__( self : int , lowerCAmelCase : List[Constraint]) -> Tuple: """simple docstring""" lowercase__ = constraints # max # of steps required to fulfill a given constraint lowercase__ = max([c.seqlen for c in constraints]) lowercase__ = len(lowerCAmelCase) lowercase__ = False self.init_state() def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = [] lowercase__ = None lowercase__ = [constraint.copy(stateful=lowerCAmelCase) for constraint in self.constraints] def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase__ = constraint.advance() if isinstance(lowerCAmelCase , lowerCAmelCase): token_list.append(lowerCAmelCase) elif isinstance(lowerCAmelCase , lowerCAmelCase): token_list.extend(lowerCAmelCase) else: lowercase__ = self.inprogress_constraint.advance() if isinstance(lowerCAmelCase , lowerCAmelCase): token_list.append(lowerCAmelCase) elif isinstance(lowerCAmelCase , lowerCAmelCase): token_list.extend(lowerCAmelCase) if len(lowerCAmelCase) == 0: return None else: return token_list def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Optional[List[int]]) -> int: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase__, lowercase__ = self.add(lowerCAmelCase) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int) -> Dict: """simple docstring""" if not isinstance(lowerCAmelCase , lowerCAmelCase): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''') lowercase__, lowercase__ = False, False if self.completed: lowercase__ = True lowercase__ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase__, lowercase__, lowercase__ = self.inprogress_constraint.update(lowerCAmelCase) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowerCAmelCase)) lowercase__ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) lowercase__ = None if len(self.pending_constraints) == 0: # we're done! lowercase__ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(lowerCAmelCase): lowercase__, lowercase__, lowercase__ = pending_constraint.update(lowerCAmelCase) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.') if complete: self.complete_constraints.append(lowerCAmelCase) lowercase__ = None if not complete and stepped: lowercase__ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase__ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase__ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=True) -> List[str]: """simple docstring""" lowercase__ = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase__ = [ constraint.copy(stateful=lowerCAmelCase) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase__ = self.inprogress_constraint.copy(stateful=lowerCAmelCase) lowercase__ = [constraint.copy() for constraint in self.pending_constraints] return new_state
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3]) self.assertEqual(x.component(0) , 1) self.assertEqual(x.component(2) , 3) lowercase__ = Vector() def UpperCAmelCase ( self : Optional[Any]) -> None: """simple docstring""" lowercase__ = Vector([0, 0, 0, 0, 0, 1]) self.assertEqual(str(lowerCAmelCase) , '(0,0,0,0,0,1)') def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3, 4]) self.assertEqual(len(lowerCAmelCase) , 4) def UpperCAmelCase ( self : Optional[int]) -> None: """simple docstring""" lowercase__ = Vector([1, 2]) lowercase__ = Vector([1, 2, 3, 4, 5]) lowercase__ = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) lowercase__ = Vector([1, -1, 1, -1, 2, -3, 4, -5]) self.assertAlmostEqual(x.euclidean_length() , 2.2_36 , 3) self.assertAlmostEqual(y.euclidean_length() , 7.4_16 , 3) self.assertEqual(z.euclidean_length() , 0) self.assertAlmostEqual(w.euclidean_length() , 7.6_16 , 3) def UpperCAmelCase ( self : List[str]) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3]) lowercase__ = Vector([1, 1, 1]) self.assertEqual((x + y).component(0) , 2) self.assertEqual((x + y).component(1) , 3) self.assertEqual((x + y).component(2) , 4) def UpperCAmelCase ( self : List[Any]) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3]) lowercase__ = Vector([1, 1, 1]) self.assertEqual((x - y).component(0) , 0) self.assertEqual((x - y).component(1) , 1) self.assertEqual((x - y).component(2) , 2) def UpperCAmelCase ( self : List[str]) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3]) lowercase__ = Vector([2, -1, 4]) # for test of dot product lowercase__ = Vector([1, -2, -1]) self.assertEqual(str(x * 3.0) , '(3.0,6.0,9.0)') self.assertEqual((a * b) , 0) def UpperCAmelCase ( self : Optional[int]) -> None: """simple docstring""" self.assertEqual(str(zero_vector(10)).count('0') , 10) def UpperCAmelCase ( self : Dict) -> None: """simple docstring""" self.assertEqual(str(unit_basis_vector(3 , 1)) , '(0,1,0)') def UpperCAmelCase ( self : Optional[Any]) -> None: """simple docstring""" lowercase__ = Vector([1, 2, 3]) lowercase__ = Vector([1, 0, 1]) self.assertEqual(str(axpy(2 , lowerCAmelCase , lowerCAmelCase)) , '(3,4,7)') def UpperCAmelCase ( self : Tuple) -> None: """simple docstring""" lowercase__ = Vector([1, 0, 0, 0, 0, 0]) lowercase__ = x.copy() self.assertEqual(str(lowerCAmelCase) , str(lowerCAmelCase)) def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Vector([1, 0, 0]) x.change_component(0 , 0) x.change_component(1 , 1) self.assertEqual(str(lowerCAmelCase) , '(0,1,0)') def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(lowerCAmelCase)) def UpperCAmelCase ( self : Union[str, Any]) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase__ = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(minors[x][y] , a.minor(lowerCAmelCase , lowerCAmelCase)) def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase__ = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height()): for y in range(a.width()): self.assertEqual(cofactors[x][y] , a.cofactor(lowerCAmelCase , lowerCAmelCase)) def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(-5 , a.determinant()) def UpperCAmelCase ( self : Dict) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3) lowercase__ = Vector([1, 2, 3]) self.assertEqual('(14,32,50)' , str(a * x)) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2)) def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) a.change_component(0 , 2 , 5) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(lowerCAmelCase)) def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) self.assertEqual(7 , a.component(2 , 1) , 0.01) def UpperCAmelCase ( self : Tuple) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b)) def UpperCAmelCase ( self : str) -> None: """simple docstring""" lowercase__ = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3) lowercase__ = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b)) def UpperCAmelCase ( self : Any) -> None: """simple docstring""" self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5)) , ) if __name__ == "__main__": unittest.main()
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) a__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name a__ : Optional[int] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def _lowerCAmelCase ( A__ , A__ , A__=8 ): lowercase__ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase__ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : UNetaDConditionModel , lowerCAmelCase : DDPMScheduler , lowerCAmelCase : VQModel , ) -> Any: """simple docstring""" super().__init__() self.register_modules( unet=lowerCAmelCase , scheduler=lowerCAmelCase , movq=lowerCAmelCase , ) lowercase__ = 2 ** (len(self.movq.config.block_out_channels) - 1) def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple) -> Dict: """simple docstring""" if latents is None: lowercase__ = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase , dtype=lowerCAmelCase) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''') lowercase__ = latents.to(lowerCAmelCase) lowercase__ = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : List[str]=0) -> Optional[int]: """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`') lowercase__ = torch.device(f'''cuda:{gpu_id}''') lowercase__ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[str]=0) -> Dict: """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0'): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.') lowercase__ = torch.device(f'''cuda:{gpu_id}''') if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=lowerCAmelCase) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase__ = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase__, lowercase__ = cpu_offload_with_hook(lowerCAmelCase , lowerCAmelCase , prev_module_hook=lowerCAmelCase) # We'll offload the last model manually. lowercase__ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" if not hasattr(self.unet , '_hf_hook'): return self.device for module in self.unet.modules(): if ( hasattr(lowerCAmelCase , '_hf_hook') and hasattr(module._hf_hook , 'execution_device') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(lowerCAmelCase) def __call__( self : Dict , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : int = 5_12 , lowerCAmelCase : int = 5_12 , lowerCAmelCase : int = 1_00 , lowerCAmelCase : float = 4.0 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[str] = "pil" , lowerCAmelCase : bool = True , ) -> Dict: """simple docstring""" lowercase__ = self._execution_device lowercase__ = guidance_scale > 1.0 if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = torch.cat(lowerCAmelCase , dim=0) if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = torch.cat(lowerCAmelCase , dim=0) if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = torch.cat(lowerCAmelCase , dim=0) lowercase__ = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: lowercase__ = image_embeds.repeat_interleave(lowerCAmelCase , dim=0) lowercase__ = negative_image_embeds.repeat_interleave(lowerCAmelCase , dim=0) lowercase__ = hint.repeat_interleave(lowerCAmelCase , dim=0) lowercase__ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase) lowercase__ = torch.cat([hint, hint] , dim=0).to(dtype=self.unet.dtype , device=lowerCAmelCase) self.scheduler.set_timesteps(lowerCAmelCase , device=lowerCAmelCase) lowercase__ = self.scheduler.timesteps lowercase__ = self.movq.config.latent_channels lowercase__, lowercase__ = downscale_height_and_width(lowerCAmelCase , lowerCAmelCase , self.movq_scale_factor) # create initial latent lowercase__ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCAmelCase)): # expand the latents if we are doing classifier free guidance lowercase__ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents lowercase__ = {'image_embeds': image_embeds, 'hint': hint} lowercase__ = self.unet( sample=lowerCAmelCase , timestep=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , added_cond_kwargs=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] if do_classifier_free_guidance: lowercase__, lowercase__ = noise_pred.split(latents.shape[1] , dim=1) lowercase__, lowercase__ = noise_pred.chunk(2) lowercase__, lowercase__ = variance_pred.chunk(2) lowercase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase__ = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , 'variance_type') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase__, lowercase__ = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , generator=lowerCAmelCase , )[0] # post-processing lowercase__ = self.movq.decode(lowerCAmelCase , force_not_quantize=lowerCAmelCase)['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''') if output_type in ["np", "pil"]: lowercase__ = image * 0.5 + 0.5 lowercase__ = image.clamp(0 , 1) lowercase__ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCAmelCase) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase)
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : Union[str, Any] = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( A__ , A__ , A__ , A__=1_024 ): lowercase__, lowercase__ = [], [] lowercase__ = list(zip(A__ , A__ ) ) lowercase__, lowercase__ = sorted_examples[0] def is_too_big(A__ ): return tok(A__ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): lowercase__ = new_src + ' ' + src lowercase__ = new_tgt + ' ' + tgt if is_too_big(A__ ) or is_too_big(A__ ): # cant fit, finalize example finished_src.append(A__ ) finished_tgt.append(A__ ) lowercase__, lowercase__ = src, tgt else: # can fit, keep adding lowercase__, lowercase__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A__ ) finished_tgt.append(A__ ) return finished_src, finished_tgt def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = Path(A__ ) save_path.mkdir(exist_ok=A__ ) for split in ["train"]: lowercase__, lowercase__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' lowercase__ = [x.rstrip() for x in Path(A__ ).open().readlines()] lowercase__ = [x.rstrip() for x in Path(A__ ).open().readlines()] lowercase__, lowercase__ = pack_examples(A__ , A__ , A__ , A__ ) print(F'''packed {split} split from {len(A__ )} examples -> {len(A__ )}.''' ) Path(save_path / F'''{split}.source''' ).open('w' ).write('\n'.join(A__ ) ) Path(save_path / F'''{split}.target''' ).open('w' ).write('\n'.join(A__ ) ) for split in ["val", "test"]: lowercase__, lowercase__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(A__ , save_path / F'''{split}.source''' ) shutil.copyfile(A__ , save_path / F'''{split}.target''' ) def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=A__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=A__ , default=128 ) parser.add_argument('--data_dir' , type=A__ ) parser.add_argument('--save_path' , type=A__ ) lowercase__ = parser.parse_args() lowercase__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a__ : int = logging.get_logger(__name__) a__ : List[Any] = {"vocab_file": "spiece.model"} a__ : Optional[int] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=False , lowerCAmelCase : List[str]=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[Any]="<s>" , lowerCAmelCase : Any="</s>" , lowerCAmelCase : Tuple="<unk>" , lowerCAmelCase : Tuple="<sep>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[Any]="<cls>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Optional[int]=["<eop>", "<eod>"] , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Optional[Any] , ) -> None: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCAmelCase , remove_space=lowerCAmelCase , keep_accents=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) lowercase__ = 3 lowercase__ = do_lower_case lowercase__ = remove_space lowercase__ = keep_accents lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(lowerCAmelCase) try: import jieba except ModuleNotFoundError as error: raise error.__class__( 'You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ' 'See https://pypi.org/project/jieba/ for installation.') lowercase__ = jieba lowercase__ = str.maketrans(' \n' , '\u2582\u2583') @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" return len(self.sp_model) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(lowerCAmelCase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Any) -> List[str]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Optional[Any] , lowerCAmelCase : str) -> Tuple: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCAmelCase ( self : int , lowerCAmelCase : Any) -> List[str]: """simple docstring""" if self.remove_space: lowercase__ = ' '.join(inputs.strip().split()) else: lowercase__ = inputs lowercase__ = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: lowercase__ = unicodedata.normalize('NFKD' , lowerCAmelCase) lowercase__ = ''.join([c for c in outputs if not unicodedata.combining(lowerCAmelCase)]) if self.do_lower_case: lowercase__ = outputs.lower() return outputs def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = self.preprocess_text(lowerCAmelCase) lowercase__ = self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase) lowercase__ = [] for piece in pieces: if len(lowerCAmelCase) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): lowercase__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCAmelCase , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: lowercase__ = cur_pieces[1:] else: lowercase__ = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(lowerCAmelCase) else: new_pieces.append(lowerCAmelCase) return new_pieces def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" return self.sp_model.PieceToId(lowerCAmelCase) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" return self.sp_model.IdToPiece(lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Dict) -> Dict: """simple docstring""" lowercase__ = ''.join(lowerCAmelCase).replace(lowerCAmelCase , ' ').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self : int , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase) if token_ids_a is not None: return ([0] * len(lowerCAmelCase)) + [1] + ([0] * len(lowerCAmelCase)) + [1, 1] return ([0] * len(lowerCAmelCase)) + [1, 1] def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , lowerCAmelCase) elif not os.path.isfile(self.vocab_file): with open(lowerCAmelCase , 'wb') as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase) return (out_vocab_file,) def UpperCAmelCase ( self : Union[str, Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" lowercase__ = super()._decode(*lowerCAmelCase , **lowerCAmelCase) lowercase__ = text.replace(' ' , '').replace('\u2582' , ' ').replace('\u2583' , '\n') return text
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = ["image_processor", "tokenizer"] A : Optional[Any] = "Pix2StructImageProcessor" A : Dict = ("T5Tokenizer", "T5TokenizerFast") def __init__( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : str) -> Dict: """simple docstring""" lowercase__ = False super().__init__(lowerCAmelCase , lowerCAmelCase) def __call__( self : List[Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = 20_48 , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : Union[str, Any] , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.') # Get only text if images is None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer lowercase__ = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase__ = self.image_processor( lowerCAmelCase , return_tensors=lowerCAmelCase , max_patches=lowerCAmelCase , **lowerCAmelCase) else: # add pixel_values and bbox lowercase__ = self.image_processor( lowerCAmelCase , return_tensors=lowerCAmelCase , max_patches=lowerCAmelCase , header_text=lowerCAmelCase , **lowerCAmelCase) if text is not None and not self.image_processor.is_vqa: lowercase__ = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) if "attention_mask" in text_encoding: lowercase__ = text_encoding.pop('attention_mask') if "input_ids" in text_encoding: lowercase__ = text_encoding.pop('input_ids') else: lowercase__ = None if text_encoding is not None: encoding_image_processor.update(lowerCAmelCase) return encoding_image_processor def UpperCAmelCase ( self : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> int: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = self.tokenizer.model_input_names lowercase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Union[str, Any] = { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json" ), } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[int] = "xlm-prophetnet" A : Tuple = ["past_key_values"] A : List[str] = { "num_attention_heads": "num_encoder_attention_heads", } def __init__( self : List[Any] , lowerCAmelCase : Optional[float] = 0.1 , lowerCAmelCase : Optional[Union[str, Callable]] = "gelu" , lowerCAmelCase : Optional[int] = 3_05_22 , lowerCAmelCase : Optional[int] = 10_24 , lowerCAmelCase : Optional[int] = 40_96 , lowerCAmelCase : Optional[int] = 12 , lowerCAmelCase : Optional[int] = 16 , lowerCAmelCase : Optional[int] = 40_96 , lowerCAmelCase : Optional[int] = 12 , lowerCAmelCase : Optional[int] = 16 , lowerCAmelCase : Optional[float] = 0.1 , lowerCAmelCase : Optional[float] = 0.1 , lowerCAmelCase : Optional[int] = 5_12 , lowerCAmelCase : Optional[float] = 0.02 , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = 0 , lowerCAmelCase : Optional[int] = 2 , lowerCAmelCase : Optional[int] = 32 , lowerCAmelCase : Optional[int] = 1_28 , lowerCAmelCase : Optional[bool] = False , lowerCAmelCase : Optional[float] = 0.0 , lowerCAmelCase : Optional[bool] = True , lowerCAmelCase : Optional[int] = 0 , lowerCAmelCase : Optional[int] = 1 , lowerCAmelCase : Optional[int] = 2 , **lowerCAmelCase : str , ) -> List[Any]: """simple docstring""" lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = encoder_ffn_dim lowercase__ = num_encoder_layers lowercase__ = num_encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = num_decoder_layers lowercase__ = num_decoder_attention_heads lowercase__ = max_position_embeddings lowercase__ = init_std # Normal(0, this parameter) lowercase__ = activation_function # parameters for xlmprophetnet lowercase__ = ngram lowercase__ = num_buckets lowercase__ = relative_max_distance lowercase__ = disable_ngram_loss lowercase__ = eps # 3 Types of Dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = dropout lowercase__ = use_cache super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , add_cross_attention=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) @property def UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.')
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : str , lowerCAmelCase : str , lowerCAmelCase : int=7_68) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) lowercase__ = proj_size lowercase__ = CLIPVisionModel(lowerCAmelCase) lowercase__ = PaintByExampleMapper(lowerCAmelCase) lowercase__ = nn.LayerNorm(config.hidden_size) lowercase__ = nn.Linear(config.hidden_size , self.proj_size) # uncondition for scaling lowercase__ = nn.Parameter(torch.randn((1, 1, self.proj_size))) def UpperCAmelCase ( self : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int=False) -> Optional[int]: """simple docstring""" lowercase__ = self.model(pixel_values=lowerCAmelCase) lowercase__ = clip_output.pooler_output lowercase__ = self.mapper(latent_states[:, None]) lowercase__ = self.final_layer_norm(lowerCAmelCase) lowercase__ = self.proj_out(lowerCAmelCase) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class UpperCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : List[Any]) -> str: """simple docstring""" super().__init__() lowercase__ = (config.num_hidden_layers + 1) // 5 lowercase__ = config.hidden_size lowercase__ = 1 lowercase__ = nn.ModuleList( [ BasicTransformerBlock(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , activation_fn='gelu' , attention_bias=lowerCAmelCase) for _ in range(lowerCAmelCase) ]) def UpperCAmelCase ( self : Any , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" for block in self.blocks: lowercase__ = block(lowerCAmelCase) return hidden_states
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Dict = ProphetNetTokenizer A : Dict = False def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" super().setUp() lowercase__ = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = 'UNwant\u00E9d,running' lowercase__ = 'unwanted, running' return input_text, output_text def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = self.tokenizer_class(self.vocab_file) lowercase__ = tokenizer.tokenize('UNwant\u00E9d,running') self.assertListEqual(lowerCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing']) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [9, 6, 7, 12, 10, 11]) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz') , ['ah', '\u535A', '\u63A8', 'zz']) def UpperCAmelCase ( self : Dict) -> str: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['hello', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hällo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['h\u00E9llo']) def UpperCAmelCase ( self : str) -> Optional[Any]: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['hallo', '!', 'how', 'are', 'you', '?']) self.assertListEqual(tokenizer.tokenize('H\u00E9llo') , ['hello']) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def UpperCAmelCase ( self : Any) -> Dict: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HäLLo', '!', 'how', 'Are', 'yoU', '?']) def UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ') , ['HaLLo', '!', 'how', 'Are', 'yoU', '?']) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=['[UNK]']) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]']) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowercase__ = {} for i, token in enumerate(lowerCAmelCase): lowercase__ = i lowercase__ = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token='[UNK]') self.assertListEqual(tokenizer.tokenize('') , []) self.assertListEqual(tokenizer.tokenize('unwanted running') , ['un', '##want', '##ed', 'runn', '##ing']) self.assertListEqual(tokenizer.tokenize('unwantedX running') , ['[UNK]', 'runn', '##ing']) @require_torch def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased') lowercase__ = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowercase__ = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] lowercase__ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors='pt') self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) lowercase__ = list(batch.input_ids.numpy()[0]) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(' ')) self.assertTrue(_is_whitespace('\t')) self.assertTrue(_is_whitespace('\r')) self.assertTrue(_is_whitespace('\n')) self.assertTrue(_is_whitespace('\u00A0')) self.assertFalse(_is_whitespace('A')) self.assertFalse(_is_whitespace('-')) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" self.assertTrue(_is_control('\u0005')) self.assertFalse(_is_control('A')) self.assertFalse(_is_control(' ')) self.assertFalse(_is_control('\t')) self.assertFalse(_is_control('\r')) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" self.assertTrue(_is_punctuation('-')) self.assertTrue(_is_punctuation('$')) self.assertTrue(_is_punctuation('`')) self.assertTrue(_is_punctuation('.')) self.assertFalse(_is_punctuation('A')) self.assertFalse(_is_punctuation(' ')) @slow def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" lowercase__ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased') lowercase__ = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase) lowercase__ = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase) lowercase__ = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand a__ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( A__ ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(A__ ): return ext raise Exception( F'''Unable to determine file format from file extension {path}. ''' F'''Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}''' ) def _lowerCAmelCase ( A__ ): lowercase__ = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) lowercase__ = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format lowercase__ = PipelineDataFormat.from_str( format=A__ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(A__ , A__ ) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : Pipeline , lowerCAmelCase : PipelineDataFormat) -> List[str]: """simple docstring""" lowercase__ = nlp lowercase__ = reader @staticmethod def UpperCAmelCase ( lowerCAmelCase : ArgumentParser) -> Optional[int]: """simple docstring""" lowercase__ = parser.add_parser('run' , help='Run a pipeline through the CLI') run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run') run_parser.add_argument('--input' , type=lowerCAmelCase , help='Path to the file to use for inference') run_parser.add_argument('--output' , type=lowerCAmelCase , help='Path to the file that will be used post to write results.') run_parser.add_argument('--model' , type=lowerCAmelCase , help='Name or path to the model to instantiate.') run_parser.add_argument('--config' , type=lowerCAmelCase , help='Name or path to the model\'s config to instantiate.') run_parser.add_argument( '--tokenizer' , type=lowerCAmelCase , help='Name of the tokenizer to use. (default: same as the model name)') run_parser.add_argument( '--column' , type=lowerCAmelCase , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=lowerCAmelCase , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=lowerCAmelCase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.') run_parser.set_defaults(func=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__, lowercase__ = self._nlp, [] for entry in self._reader: lowercase__ = nlp(**lowerCAmelCase) if self._reader.is_multi_columns else nlp(lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): outputs.append(lowerCAmelCase) else: outputs += output # Saving data if self._nlp.binary_output: lowercase__ = self._reader.save_binary(lowerCAmelCase) logger.warning(f'''Current pipeline requires output to be in binary format, saving at {binary_path}''') else: self._reader.save(lowerCAmelCase)
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__ , A__ , A__=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' lowercase__ = nn.Parameter(A__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' lowercase__ = nn.Parameter(A__ ) def _lowerCAmelCase ( A__ , A__ , A__ ): # set torch weights for 1-to-1 comparison lowercase__ = np.asarray(weights[0] ) lowercase__ = np.asarray(weights[1] ) lowercase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(A__ ).transpose(1 , 2 ).contiguous().view(-1 , A__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(A__ ).transpose(1 , 2 ).contiguous().view(-1 , A__ ) , ) set_param( torch_layer.output.dense , torch.tensor(A__ ).view(-1 , A__ ).contiguous().transpose(0 , 1 ) , ) def _lowerCAmelCase ( A__ , A__ , A__ ): # set torch weights for 1-to-1 comparison lowercase__ = np.asarray(weights[0] ) lowercase__ = np.asarray(weights[1] ) lowercase__ = np.asarray(weights[2] ) lowercase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(A__ ).transpose(1 , 2 ).contiguous().view(-1 , A__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(A__ ).transpose(1 , 2 ).contiguous().view(-1 , A__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(A__ ).transpose(1 , 2 ).contiguous().view(-1 , A__ ) , ) set_param( torch_layer.output.dense , torch.tensor(A__ ).view(-1 , A__ ).contiguous().transpose(0 , 1 ) , ) def _lowerCAmelCase ( A__ , A__ , A__ ): # layernorm 1 lowercase__ = weights[0][0][0] lowercase__ = np.asarray(layer_norm_a[0] ) lowercase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(A__ ) , torch.tensor(A__ ) , ) # lsh weights + output lowercase__ = weights[0][1] if len(A__ ) < 4: set_layer_weights_in_torch_lsh(A__ , torch_block.attention , A__ ) else: set_layer_weights_in_torch_local(A__ , torch_block.attention , A__ ) # intermediate weighs lowercase__ = weights[2][0][1][2] # Chunked Feed Forward if len(A__ ) == 4: lowercase__ = intermediate_weights[2] # layernorm 2 lowercase__ = np.asarray(intermediate_weights[0][0] ) lowercase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(A__ ) , torch.tensor(A__ ) , ) # intermediate dense lowercase__ = np.asarray(intermediate_weights[1][0] ) lowercase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(A__ ).transpose(0 , 1 ).contiguous() , torch.tensor(A__ ) , ) # intermediate out lowercase__ = np.asarray(intermediate_weights[4][0] ) lowercase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(A__ ).transpose(0 , 1 ).contiguous() , torch.tensor(A__ ) , ) def _lowerCAmelCase ( A__ , A__ , A__ ): # reformer model lowercase__ = torch_model.reformer # word embeds lowercase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(A__ ) , ) if isinstance(weights[3] , A__ ): lowercase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowercase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' lowercase__ = nn.Parameter(torch.tensor(A__ ) ) lowercase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( A__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowercase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(A__ , A__ , A__ ) # output layer norm lowercase__ = np.asarray(weights[7][0] ) lowercase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(A__ ) , torch.tensor(A__ ) , ) # output embeddings lowercase__ = np.asarray(weights[9][0] ) lowercase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(A__ ).transpose(0 , 1 ).contiguous() , torch.tensor(A__ ) , ) def _lowerCAmelCase ( A__ , A__ , A__ ): # Initialise PyTorch model lowercase__ = ReformerConfig.from_json_file(A__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase__ = ReformerModelWithLMHead(A__ ) with open(A__ , 'rb' ) as f: lowercase__ = pickle.load(A__ )['weights'] set_model_weights_in_torch(A__ , A__ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a__ : Optional[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import os def _lowerCAmelCase ( ): with open(os.path.dirname(A__ ) + '/p022_names.txt' ) as file: lowercase__ = str(file.readlines()[0] ) lowercase__ = names.replace('"' , '' ).split(',' ) names.sort() lowercase__ = 0 lowercase__ = 0 for i, name in enumerate(A__ ): for letter in name: name_score += ord(A__ ) - 64 total_score += (i + 1) * name_score lowercase__ = 0 return total_score if __name__ == "__main__": print(solution())
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() a__ : Union[str, Any] = logging.get_logger("transformers.models.speecht5") a__ : Dict = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } a__ : str = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } a__ : str = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } a__ : Tuple = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } a__ : Optional[int] = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } a__ : Dict = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } a__ : List[Any] = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } a__ : str = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } a__ : str = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } a__ : List[Any] = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a__ : Dict = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } a__ : Union[str, Any] = [] a__ : Tuple = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] a__ : List[Any] = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] a__ : int = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] a__ : Dict = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): for attribute in key.split('.' ): lowercase__ = getattr(A__ , A__ ) if weight_type is not None: lowercase__ = getattr(A__ , A__ ).shape else: lowercase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value elif weight_type == "running_mean": lowercase__ = value elif weight_type == "running_var": lowercase__ = value elif weight_type == "num_batches_tracked": lowercase__ = value else: lowercase__ = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowerCAmelCase ( A__ , A__ ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowercase__, lowercase__ = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = [] if task == "s2t": lowercase__ = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ = MAPPING_S2T lowercase__ = IGNORE_KEYS_S2T elif task == "t2s": lowercase__ = None lowercase__ = MAPPING_T2S lowercase__ = IGNORE_KEYS_T2S elif task == "s2s": lowercase__ = hf_model.speechta.encoder.prenet.feature_encoder lowercase__ = MAPPING_S2S lowercase__ = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(A__ , A__ ): logger.info(F'''{name} was ignored''' ) continue lowercase__ = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: lowercase__, lowercase__ = key.split('.*.' ) if prefix in name and suffix in name: lowercase__ = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(A__ )[0].split('.' )[-2] lowercase__ = mapped_key.replace('*' , A__ ) if "weight_g" in name: lowercase__ = 'weight_g' elif "weight_v" in name: lowercase__ = 'weight_v' elif "bias" in name: lowercase__ = 'bias' elif "weight" in name: lowercase__ = 'weight' elif "running_mean" in name: lowercase__ = 'running_mean' elif "running_var" in name: lowercase__ = 'running_var' elif "num_batches_tracked" in name: lowercase__ = 'num_batches_tracked' else: lowercase__ = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): lowercase__ = full_name.split('conv_layers.' )[-1] lowercase__ = name.split('.' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A__ ) @torch.no_grad() def _lowerCAmelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None , ): if config_path is not None: lowercase__ = SpeechTaConfig.from_pretrained(A__ ) else: lowercase__ = SpeechTaConfig() if task == "s2t": lowercase__ = config.max_text_positions lowercase__ = SpeechTaForSpeechToText(A__ ) elif task == "t2s": lowercase__ = 1_876 lowercase__ = 600 lowercase__ = config.max_speech_positions lowercase__ = SpeechTaForTextToSpeech(A__ ) elif task == "s2s": lowercase__ = 1_876 lowercase__ = config.max_speech_positions lowercase__ = SpeechTaForSpeechToSpeech(A__ ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: lowercase__ = SpeechTaTokenizer(A__ , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it lowercase__ = AddedToken('<mask>' , lstrip=A__ , rstrip=A__ ) lowercase__ = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) lowercase__ = SpeechTaFeatureExtractor() lowercase__ = SpeechTaProcessor(tokenizer=A__ , feature_extractor=A__ ) processor.save_pretrained(A__ ) lowercase__ = torch.load(A__ ) recursively_load_weights(fairseq_checkpoint['model'] , A__ , A__ ) model.save_pretrained(A__ ) if repo_id: print('Pushing to the hub...' ) processor.push_to_hub(A__ ) model.push_to_hub(A__ ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) a__ : str = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class UpperCAmelCase__: '''simple docstring''' def __init__( self : int , lowerCAmelCase : Any , lowerCAmelCase : Dict=13 , lowerCAmelCase : Optional[Any]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=False , lowerCAmelCase : Dict=True , lowerCAmelCase : Dict=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : str=5 , lowerCAmelCase : str=4 , lowerCAmelCase : Tuple=37 , lowerCAmelCase : Any="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Dict=5_12 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Dict=0.02 , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Dict=4 , lowerCAmelCase : List[Any]=None , ) -> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , use_stable_embedding=lowerCAmelCase , ) def UpperCAmelCase ( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = OpenLlamaModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , ) -> List[Any]: """simple docstring""" lowercase__ = True lowercase__ = OpenLlamaModel(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , ) lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , ) lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int , ) -> List[str]: """simple docstring""" lowercase__ = OpenLlamaForCausalLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , ) -> Dict: """simple docstring""" lowercase__ = True lowercase__ = True lowercase__ = OpenLlamaForCausalLM(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() # first forward pass lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase , ) lowercase__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size) lowercase__ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and lowercase__ = torch.cat([input_ids, next_tokens] , dim=-1) lowercase__ = torch.cat([input_mask, next_mask] , dim=-1) lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['hidden_states'][0] lowercase__ = model( lowerCAmelCase , attention_mask=lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , encoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , output_hidden_states=lowerCAmelCase , )['hidden_states'][0] # select random slice lowercase__ = ids_tensor((1,) , output_from_past.shape[-1]).item() lowercase__ = output_from_no_past[:, -3:, random_slice_idx].detach() lowercase__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3)) def UpperCAmelCase ( self : int) -> int: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Dict = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A : int = (OpenLlamaForCausalLM,) if is_torch_available() else () A : List[str] = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A : str = False A : Tuple = False def UpperCAmelCase ( self : List[Any]) -> Any: """simple docstring""" lowercase__ = OpenLlamaModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ = type self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Union[str, Any]: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = input_dict['input_ids'] lowercase__ = input_ids.ne(1).to(lowerCAmelCase) lowercase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) lowercase__ = OpenLlamaForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = 'single_label_classification' lowercase__ = input_dict['input_ids'] lowercase__ = input_ids.ne(1).to(lowerCAmelCase) lowercase__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) lowercase__ = OpenLlamaForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = 3 lowercase__ = 'multi_label_classification' lowercase__ = input_dict['input_ids'] lowercase__ = input_ids.ne(1).to(lowerCAmelCase) lowercase__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) lowercase__ = OpenLlamaForSequenceClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test') def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" pass @parameterized.expand([('linear',), ('dynamic',)]) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ids_tensor([1, 10] , config.vocab_size) lowercase__ = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights lowercase__ = OpenLlamaModel(lowerCAmelCase) original_model.to(lowerCAmelCase) original_model.eval() lowercase__ = original_model(lowerCAmelCase).last_hidden_state lowercase__ = original_model(lowerCAmelCase).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights lowercase__ = {'type': scaling_type, 'factor': 10.0} lowercase__ = OpenLlamaModel(lowerCAmelCase) scaled_model.to(lowerCAmelCase) scaled_model.eval() lowercase__ = scaled_model(lowerCAmelCase).last_hidden_state lowercase__ = scaled_model(lowerCAmelCase).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) else: self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) lowercase__ = number_of_bytes // partitions lowercase__ = [] for i in range(A__ ): lowercase__ = i * bytes_per_partition + 1 lowercase__ = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F'''{start_bytes}-{end_bytes}''' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() a__ : Dict = logging.get_logger(__name__) set_seed(7_70) a__ : Optional[int] = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } a__ : Dict = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } a__ : Optional[Any] = os.path.dirname(os.path.abspath(__file__)) a__ : Dict = os.path.join(os.path.expanduser("~"), ".cache") a__ : str = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def _lowerCAmelCase ( A__ , A__=False ): lowercase__ = model_type if use_small: key += "_small" return os.path.join(A__ , REMOTE_MODEL_PATHS[key]['file_name'] ) def _lowerCAmelCase ( A__ , A__ ): os.makedirs(A__ , exist_ok=A__ ) hf_hub_download(repo_id=A__ , filename=A__ , local_dir=A__ ) def _lowerCAmelCase ( A__ , A__ , A__=False , A__="text" ): if model_type == "text": lowercase__ = BarkSemanticModel lowercase__ = BarkSemanticConfig lowercase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowercase__ = BarkCoarseModel lowercase__ = BarkCoarseConfig lowercase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowercase__ = BarkFineModel lowercase__ = BarkFineConfig lowercase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowercase__ = F'''{model_type}_small''' if use_small else model_type lowercase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(A__ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info['repo_id'] , model_info['file_name'] ) lowercase__ = torch.load(A__ , map_location=A__ ) # this is a hack lowercase__ = checkpoint['model_args'] if "input_vocab_size" not in model_args: lowercase__ = model_args['vocab_size'] lowercase__ = model_args['vocab_size'] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowercase__ = model_args.pop('n_head' ) lowercase__ = model_args.pop('n_embd' ) lowercase__ = model_args.pop('n_layer' ) lowercase__ = ConfigClass(**checkpoint['model_args'] ) lowercase__ = ModelClass(config=A__ ) lowercase__ = GenerationConfigClass() lowercase__ = model_generation_config lowercase__ = checkpoint['model'] # fixup checkpoint lowercase__ = '_orig_mod.' for k, v in list(state_dict.items() ): if k.startswith(A__ ): # replace part of the key with corresponding layer name in HF implementation lowercase__ = k[len(A__ ) :] for old_layer_name in new_layer_name_dict: lowercase__ = new_k.replace(A__ , new_layer_name_dict[old_layer_name] ) lowercase__ = state_dict.pop(A__ ) lowercase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowercase__ = {k for k in extra_keys if not k.endswith('.attn.bias' )} lowercase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowercase__ = {k for k in missing_keys if not k.endswith('.attn.bias' )} if len(A__ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(A__ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(A__ , strict=A__ ) lowercase__ = model.num_parameters(exclude_embeddings=A__ ) lowercase__ = checkpoint['best_val_loss'].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(A__ , 3 )} loss''' ) model.eval() model.to(A__ ) del checkpoint, state_dict return model def _lowerCAmelCase ( A__ , A__=False , A__="text" ): if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowercase__ = 'cpu' # do conversion on cpu lowercase__ = _get_ckpt_path(A__ , use_small=A__ ) lowercase__ = _load_model(A__ , A__ , model_type=A__ , use_small=A__ ) # load bark initial model lowercase__ = _bark_load_model(A__ , 'cpu' , model_type=A__ , use_small=A__ ) if model_type == "text": lowercase__ = bark_model['model'] if model.num_parameters(exclude_embeddings=A__ ) != bark_model.get_num_params(): raise ValueError('initial and new models don\'t have the same number of parameters' ) # check if same output as the bark model lowercase__ = 5 lowercase__ = 10 if model_type in ["text", "coarse"]: lowercase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowercase__ = bark_model(A__ )[0] lowercase__ = model(A__ ) # take last logits lowercase__ = output_new_model_total.logits[:, [-1], :] else: lowercase__ = 3 lowercase__ = 8 lowercase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowercase__ = model(A__ , A__ ) lowercase__ = bark_model(A__ , A__ ) lowercase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('initial and new outputs don\'t have the same shape' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('initial and new outputs are not equal' ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , ): lowercase__ = os.path.join(A__ , A__ ) lowercase__ = BarkSemanticConfig.from_pretrained(os.path.join(A__ , 'config.json' ) ) lowercase__ = BarkCoarseConfig.from_pretrained(os.path.join(A__ , 'config.json' ) ) lowercase__ = BarkFineConfig.from_pretrained(os.path.join(A__ , 'config.json' ) ) lowercase__ = EncodecConfig.from_pretrained('facebook/encodec_24khz' ) lowercase__ = BarkSemanticModel.from_pretrained(A__ ) lowercase__ = BarkCoarseModel.from_pretrained(A__ ) lowercase__ = BarkFineModel.from_pretrained(A__ ) lowercase__ = EncodecModel.from_pretrained('facebook/encodec_24khz' ) lowercase__ = BarkConfig.from_sub_model_configs( A__ , A__ , A__ , A__ ) lowercase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowercase__ = BarkModel(A__ ) lowercase__ = semantic lowercase__ = coarseAcoustic lowercase__ = fineAcoustic lowercase__ = codec lowercase__ = bark_generation_config Path(A__ ).mkdir(exist_ok=A__ ) bark.save_pretrained(A__ , repo_id=A__ , push_to_hub=A__ ) if __name__ == "__main__": a__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") a__ : str = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any]) -> Optional[Any]: """simple docstring""" lowercase__ = '' lowercase__ = '' lowercase__ = [] lowercase__ = 0 lowercase__ = 2_56 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 lowercase__ = 0 def UpperCAmelCase ( self : str , lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__ = copy.deepcopy(self.img) lowercase__, lowercase__, lowercase__ = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='x') lowercase__ = np.sum(lowerCAmelCase) for i in range(len(lowerCAmelCase)): lowercase__ = x[i] / self.k self.sk += prk lowercase__ = (self.L - 1) * self.sk if self.rem != 0: lowercase__ = int(last % last) lowercase__ = int(last + 1 if self.rem >= 0.5 else last) self.last_list.append(lowerCAmelCase) lowercase__ = int(np.ma.count(self.img) / self.img[1].size) lowercase__ = self.img[1].size for i in range(self.number_of_cols): for j in range(self.number_of_rows): lowercase__ = self.img[j][i] if num != self.last_list[num]: lowercase__ = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" plt.hist(self.img.ravel() , 2_56 , [0, 2_56]) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" cva.imshow('Output-Image' , self.img) cva.imshow('Input-Image' , self.original_image) cva.waitKey(50_00) cva.destroyAllWindows() if __name__ == "__main__": a__ : Dict = os.path.join(os.path.basename(__file__), "image_data/input.jpg") a__ : int = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a__ : Dict = "2.13.1" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("3.7"): raise ImportWarning( "To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition." ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( "To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n" "If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`." ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a__ : Union[str, Any] = concatenate_datasets a__ : Union[str, Any] = DownloadConfig a__ : List[Any] = DownloadManager a__ : Any = DownloadMode a__ : Tuple = DownloadConfig a__ : int = DownloadMode a__ : Optional[Any] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a__ : Optional[int] = 6_3_7_8_1_3_7.0 a__ : Union[str, Any] = 6_3_5_6_7_5_2.3_1_4_2_4_5 a__ : Optional[Any] = 6_37_81_37 def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowercase__ = atan((1 - flattening) * tan(radians(A__ ) ) ) lowercase__ = atan((1 - flattening) * tan(radians(A__ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowercase__ = haversine_distance(A__ , A__ , A__ , A__ ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowercase__ = (b_lata + b_lata) / 2 lowercase__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowercase__ = (sin(A__ ) ** 2) * (cos(A__ ) ** 2) lowercase__ = cos(sigma / 2 ) ** 2 lowercase__ = (sigma - sin(A__ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowercase__ = (cos(A__ ) ** 2) * (sin(A__ ) ** 2) lowercase__ = sin(sigma / 2 ) ** 2 lowercase__ = (sigma + sin(A__ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ : List[str] = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys a__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = ["image_processor", "tokenizer"] A : List[Any] = "AutoImageProcessor" A : Dict = "AutoTokenizer" def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" lowercase__ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase , ) lowercase__ = kwargs.pop('feature_extractor') lowercase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.image_processor lowercase__ = False def __call__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase) lowercase__ = kwargs.pop('images' , lowerCAmelCase) lowercase__ = kwargs.pop('text' , lowerCAmelCase) if len(lowerCAmelCase) > 0: lowercase__ = args[0] lowercase__ = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: lowercase__ = self.image_processor(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if text is not None: lowercase__ = self.tokenizer(lowerCAmelCase , **lowerCAmelCase) if text is None: return inputs elif images is None: return encodings else: lowercase__ = encodings['input_ids'] return inputs def UpperCAmelCase ( self : Tuple , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> str: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Dict: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @contextmanager def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.') lowercase__ = True lowercase__ = self.tokenizer yield lowercase__ = self.image_processor lowercase__ = False def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple=False , lowerCAmelCase : int=None) -> Optional[Any]: """simple docstring""" if added_vocab is None: lowercase__ = self.tokenizer.get_added_vocab() lowercase__ = {} while tokens: lowercase__ = re.search(R'<s_(.*?)>' , lowerCAmelCase , re.IGNORECASE) if start_token is None: break lowercase__ = start_token.group(1) lowercase__ = re.search(Rf'''</s_{key}>''' , lowerCAmelCase , re.IGNORECASE) lowercase__ = start_token.group() if end_token is None: lowercase__ = tokens.replace(lowerCAmelCase , '') else: lowercase__ = end_token.group() lowercase__ = re.escape(lowerCAmelCase) lowercase__ = re.escape(lowerCAmelCase) lowercase__ = re.search(f'''{start_token_escaped}(.*?){end_token_escaped}''' , lowerCAmelCase , re.IGNORECASE) if content is not None: lowercase__ = content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowercase__ = self.tokenajson(lowerCAmelCase , is_inner_value=lowerCAmelCase , added_vocab=lowerCAmelCase) if value: if len(lowerCAmelCase) == 1: lowercase__ = value[0] lowercase__ = value else: # leaf nodes lowercase__ = [] for leaf in content.split(R'<sep/>'): lowercase__ = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowercase__ = leaf[1:-2] # for categorical special tokens output[key].append(lowerCAmelCase) if len(output[key]) == 1: lowercase__ = output[key][0] lowercase__ = tokens[tokens.find(lowerCAmelCase) + len(lowerCAmelCase) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=lowerCAmelCase , added_vocab=lowerCAmelCase) if len(lowerCAmelCase): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase , ) return self.image_processor
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() a__ : Tuple = logging.get_logger(__name__) a__ : int = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } a__ : List[Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): for attribute in key.split('.' ): lowercase__ = getattr(A__ , A__ ) if weight_type is not None: lowercase__ = getattr(A__ , A__ ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowerCAmelCase ( A__ , A__ ): lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase__ = None for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == 'group' , ) lowercase__ = True elif name.split('.' )[0] == "proj": lowercase__ = fairseq_model.proj lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(A__ )[0].split('.' )[-2] lowercase__ = mapped_key.replace('*' , A__ ) if "weight_g" in name: lowercase__ = 'weight_g' elif "weight_v" in name: lowercase__ = 'weight_v' elif "bias" in name: lowercase__ = 'bias' elif "weight" in name: lowercase__ = 'weight' else: lowercase__ = None set_recursively(A__ , A__ , A__ , A__ , A__ ) continue if not is_used: unused_weights.append(A__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ ): lowercase__ = full_name.split('conv_layers.' )[-1] lowercase__ = name.split('.' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A__ ) def _lowerCAmelCase ( A__ ): lowercase__, lowercase__ = emb.weight.shape lowercase__ = nn.Linear(A__ , A__ , bias=A__ ) lowercase__ = emb.weight.data return lin_layer def _lowerCAmelCase ( A__ ): with open(A__ , 'r' , encoding='utf-8' ) as f: lowercase__ = f.readlines() lowercase__ = [line.split(' ' )[0] for line in lines] lowercase__ = len(A__ ) lowercase__ = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(A__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): lowercase__ = WavaVecaConfig.from_pretrained(A__ ) lowercase__ = SpeechaTextaConfig.from_pretrained( A__ , vocab_size=A__ , decoder_layers=A__ , do_stable_layer_norm=A__ ) lowercase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , ) lowercase__, lowercase__, lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase__ = model[0].eval() # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(A__ ) lowercase__ = recursively_load_weights_wavaveca(model.encoder , A__ ) lowercase__ = SpeechaTextaForCausalLM(A__ ) lowercase__, lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A__ ) # set output linear layer unexpected_keys.remove('embed_out' ) lowercase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase__ = SpeechEncoderDecoderModel(encoder=A__ , decoder=A__ ) lowercase__ = False # add projection layer lowercase__ = nn.Parameter(projection_layer.weight ) lowercase__ = nn.Parameter(projection_layer.bias ) lowercase__ = create_vocab_dict(A__ ) with open(os.path.join(A__ , 'vocab.json' ) , 'w' ) as fp: json.dump(A__ , A__ ) lowercase__ = SpeechaTextaTokenizer(os.path.join(A__ , 'vocab.json' ) ) tokenizer.save_pretrained(A__ ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = 'speech_to_text_2' lowercase__ = 'wav2vec2' lowercase__ = SpeechEncoderDecoderConfig.from_dict(A__ ) hf_wavavec.save_pretrained(A__ ) feature_extractor.save_pretrained(A__ ) if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-large-lv60", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/s2t-small-mustc-en-fr-st", type=str, help="Path to hf decoder s2t checkpoint config", ) parser.add_argument("--vocab_size", default=1_02_24, type=int, help="Vocab size of decoder") parser.add_argument("--num_decoder_layers", default=7, type=int, help="Number of decoder layers") a__ : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int) -> List[str]: """simple docstring""" lowercase__ = jnp.ones((batch_size, length)) / length return scores def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" lowercase__ = None lowercase__ = 20 lowercase__ = self._get_uniform_logits(batch_size=2 , length=lowerCAmelCase) # tweak scores to not be uniform anymore lowercase__ = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch lowercase__ = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax lowercase__ = jax.nn.softmax(lowerCAmelCase , axis=-1) lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5) lowercase__ = FlaxTemperatureLogitsWarper(temperature=1.3) lowercase__ = jax.nn.softmax(temp_dist_warper_sharper(lowerCAmelCase , scores.copy() , cur_len=lowerCAmelCase) , axis=-1) lowercase__ = jax.nn.softmax(temp_dist_warper_smoother(lowerCAmelCase , scores.copy() , cur_len=lowerCAmelCase) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create ramp distribution lowercase__ = np.broadcast_to(np.arange(lowerCAmelCase)[None, :] , (batch_size, vocab_size)).copy() lowercase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase__ = FlaxTopKLogitsWarper(3) lowercase__ = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case lowercase__ = 5 lowercase__ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) lowercase__ = np.broadcast_to(np.arange(lowerCAmelCase)[None, :] , (batch_size, length)).copy() lowercase__ = top_k_warp_safety_check(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" lowercase__ = None lowercase__ = 10 lowercase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) lowercase__ = FlaxTopPLogitsWarper(0.8) lowercase__ = np.exp(top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3)) # check edge cases with negative and extreme logits lowercase__ = np.broadcast_to(np.arange(lowerCAmelCase)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase__ = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept lowercase__ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) lowercase__ = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase) # check that min length is applied at length 5 lowercase__ = ids_tensor((batch_size, 20) , vocab_size=20) lowercase__ = 5 lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = min_dist_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('inf')]) # check that min length is not applied anymore at length 15 lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = 15 lowercase__ = min_dist_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) self.assertFalse(jnp.isinf(lowerCAmelCase).any()) def UpperCAmelCase ( self : List[str]) -> int: """simple docstring""" lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase) # check that all scores are -inf except the bos_token_id score lowercase__ = ids_tensor((batch_size, 1) , vocab_size=20) lowercase__ = 1 lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase__ = 3 lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) self.assertFalse(jnp.isinf(lowerCAmelCase).any()) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = 20 lowercase__ = 4 lowercase__ = 0 lowercase__ = 5 lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase__ = ids_tensor((batch_size, 4) , vocab_size=20) lowercase__ = 4 lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase__ = 3 lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = logits_processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) self.assertFalse(jnp.isinf(lowerCAmelCase).any()) def UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length) , lowerCAmelCase) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5) lowercase__ = FlaxTopKLogitsWarper(3) lowercase__ = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase) lowercase__ = 10 # no processor list lowercase__ = temp_dist_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = min_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = bos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = eos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) # with processor list lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) lowercase__ = processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = 4 lowercase__ = 10 lowercase__ = 15 lowercase__ = 2 lowercase__ = 1 lowercase__ = 15 # dummy input_ids and scores lowercase__ = ids_tensor((batch_size, sequence_length) , lowerCAmelCase) lowercase__ = input_ids.copy() lowercase__ = self._get_uniform_logits(lowerCAmelCase , lowerCAmelCase) lowercase__ = scores.copy() # instantiate all dist processors lowercase__ = FlaxTemperatureLogitsWarper(temperature=0.5) lowercase__ = FlaxTopKLogitsWarper(3) lowercase__ = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors lowercase__ = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowerCAmelCase) lowercase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowerCAmelCase) lowercase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=lowerCAmelCase , eos_token_id=lowerCAmelCase) lowercase__ = 10 # no processor list def run_no_processor_list(lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : List[str]): lowercase__ = temp_dist_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = top_k_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = top_p_warp(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = min_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = bos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) lowercase__ = eos_dist_proc(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) return scores # with processor list def run_processor_list(lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any]): lowercase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) lowercase__ = processor(lowerCAmelCase , lowerCAmelCase , cur_len=lowerCAmelCase) return scores lowercase__ = jax.jit(lowerCAmelCase) lowercase__ = jax.jit(lowerCAmelCase) lowercase__ = jitted_run_no_processor_list(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = jitted_run_processor_list(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # scores should be equal self.assertTrue(jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup a__ : Dict = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def _lowerCAmelCase ( A__ = "dhaka" , A__ = 5 ): lowercase__ = min(A__ , 50 ) # Prevent abuse! lowercase__ = { 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } lowercase__ = requests.get('https://www.google.com/search' , params=A__ , headers=A__ ) lowercase__ = BeautifulSoup(html.text , 'html.parser' ) lowercase__ = ''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) lowercase__ = json.dumps(A__ ) lowercase__ = json.loads(A__ ) lowercase__ = re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , A__ , ) if not matched_google_image_data: return 0 lowercase__ = re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(A__ ) , ) lowercase__ = re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , A__ , ) for index, fixed_full_res_image in enumerate(A__ ): if index >= max_images: return index lowercase__ = bytes(A__ , 'ascii' ).decode( 'unicode-escape' ) lowercase__ = bytes(A__ , 'ascii' ).decode( 'unicode-escape' ) lowercase__ = urllib.request.build_opener() lowercase__ = [ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(A__ ) lowercase__ = F'''query_{query.replace(' ' , '_' )}''' if not os.path.exists(A__ ): os.makedirs(A__ ) urllib.request.urlretrieve( # noqa: S310 A__ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: a__ : List[str] = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print("Please provide a search term.") raise
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
import argparse import struct import unittest class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : bytes) -> None: """simple docstring""" lowercase__ = data # Initialize hash values lowercase__ = [ 0X6_A_0_9_E_6_6_7, 0XB_B_6_7_A_E_8_5, 0X3_C_6_E_F_3_7_2, 0XA_5_4_F_F_5_3_A, 0X5_1_0_E_5_2_7_F, 0X9_B_0_5_6_8_8_C, 0X1_F_8_3_D_9_A_B, 0X5_B_E_0_C_D_1_9, ] # Initialize round constants lowercase__ = [ 0X4_2_8_A_2_F_9_8, 0X7_1_3_7_4_4_9_1, 0XB_5_C_0_F_B_C_F, 0XE_9_B_5_D_B_A_5, 0X3_9_5_6_C_2_5_B, 0X5_9_F_1_1_1_F_1, 0X9_2_3_F_8_2_A_4, 0XA_B_1_C_5_E_D_5, 0XD_8_0_7_A_A_9_8, 0X1_2_8_3_5_B_0_1, 0X2_4_3_1_8_5_B_E, 0X5_5_0_C_7_D_C_3, 0X7_2_B_E_5_D_7_4, 0X8_0_D_E_B_1_F_E, 0X9_B_D_C_0_6_A_7, 0XC_1_9_B_F_1_7_4, 0XE_4_9_B_6_9_C_1, 0XE_F_B_E_4_7_8_6, 0X0_F_C_1_9_D_C_6, 0X2_4_0_C_A_1_C_C, 0X2_D_E_9_2_C_6_F, 0X4_A_7_4_8_4_A_A, 0X5_C_B_0_A_9_D_C, 0X7_6_F_9_8_8_D_A, 0X9_8_3_E_5_1_5_2, 0XA_8_3_1_C_6_6_D, 0XB_0_0_3_2_7_C_8, 0XB_F_5_9_7_F_C_7, 0XC_6_E_0_0_B_F_3, 0XD_5_A_7_9_1_4_7, 0X0_6_C_A_6_3_5_1, 0X1_4_2_9_2_9_6_7, 0X2_7_B_7_0_A_8_5, 0X2_E_1_B_2_1_3_8, 0X4_D_2_C_6_D_F_C, 0X5_3_3_8_0_D_1_3, 0X6_5_0_A_7_3_5_4, 0X7_6_6_A_0_A_B_B, 0X8_1_C_2_C_9_2_E, 0X9_2_7_2_2_C_8_5, 0XA_2_B_F_E_8_A_1, 0XA_8_1_A_6_6_4_B, 0XC_2_4_B_8_B_7_0, 0XC_7_6_C_5_1_A_3, 0XD_1_9_2_E_8_1_9, 0XD_6_9_9_0_6_2_4, 0XF_4_0_E_3_5_8_5, 0X1_0_6_A_A_0_7_0, 0X1_9_A_4_C_1_1_6, 0X1_E_3_7_6_C_0_8, 0X2_7_4_8_7_7_4_C, 0X3_4_B_0_B_C_B_5, 0X3_9_1_C_0_C_B_3, 0X4_E_D_8_A_A_4_A, 0X5_B_9_C_C_A_4_F, 0X6_8_2_E_6_F_F_3, 0X7_4_8_F_8_2_E_E, 0X7_8_A_5_6_3_6_F, 0X8_4_C_8_7_8_1_4, 0X8_C_C_7_0_2_0_8, 0X9_0_B_E_F_F_F_A, 0XA_4_5_0_6_C_E_B, 0XB_E_F_9_A_3_F_7, 0XC_6_7_1_7_8_F_2, ] lowercase__ = self.preprocessing(self.data) self.final_hash() @staticmethod def UpperCAmelCase ( lowerCAmelCase : bytes) -> bytes: """simple docstring""" lowercase__ = B'\x80' + (B'\x00' * (63 - (len(lowerCAmelCase) + 8) % 64)) lowercase__ = struct.pack('>Q' , (len(lowerCAmelCase) * 8)) return data + padding + big_endian_integer def UpperCAmelCase ( self : Any) -> None: """simple docstring""" lowercase__ = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) # add 48 0-ed integers words += [0] * 48 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array lowercase__ = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) lowercase__ = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) lowercase__ = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X1_0_0_0_0_0_0_0_0 # Compression lowercase__ = self.ror(lowerCAmelCase , 6) ^ self.ror(lowerCAmelCase , 11) ^ self.ror(lowerCAmelCase , 25) lowercase__ = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g) lowercase__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X1_0_0_0_0_0_0_0_0 lowercase__ = self.ror(lowerCAmelCase , 2) ^ self.ror(lowerCAmelCase , 13) ^ self.ror(lowerCAmelCase , 22) lowercase__ = (a & b) ^ (a & c) ^ (b & c) lowercase__ = (sa + maj) % 0X1_0_0_0_0_0_0_0_0 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( g, f, e, ((d + tempa) % 0X1_0_0_0_0_0_0_0_0), c, b, a, ((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0), ) lowercase__ = [a, b, c, d, e, f, g, h] # Modify final values lowercase__ = [ ((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0) for index, element in enumerate(self.hashes) ] lowercase__ = ''.join([hex(lowerCAmelCase)[2:].zfill(8) for value in self.hashes]) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int) -> int: """simple docstring""" return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations) class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple) -> None: """simple docstring""" import hashlib lowercase__ = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(lowerCAmelCase).hash , hashlib.shaaaa(lowerCAmelCase).hexdigest()) def _lowerCAmelCase ( ): import doctest doctest.testmod() lowercase__ = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaaa(A__ ).hash ) if __name__ == "__main__": main()
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" lowercase__ = { 'task_specific_params': { 'summarization': {'length_penalty': 1.0, 'max_length': 1_28, 'min_length': 12, 'num_beams': 4}, 'summarization_cnn': {'length_penalty': 2.0, 'max_length': 1_42, 'min_length': 56, 'num_beams': 4}, 'summarization_xsum': {'length_penalty': 1.0, 'max_length': 62, 'min_length': 11, 'num_beams': 6}, } } lowercase__ = { 'task_specific_params.summarization.length_penalty': 1.0, 'task_specific_params.summarization.max_length': 1_28, 'task_specific_params.summarization.min_length': 12, 'task_specific_params.summarization.num_beams': 4, 'task_specific_params.summarization_cnn.length_penalty': 2.0, 'task_specific_params.summarization_cnn.max_length': 1_42, 'task_specific_params.summarization_cnn.min_length': 56, 'task_specific_params.summarization_cnn.num_beams': 4, 'task_specific_params.summarization_xsum.length_penalty': 1.0, 'task_specific_params.summarization_xsum.max_length': 62, 'task_specific_params.summarization_xsum.min_length': 11, 'task_specific_params.summarization_xsum.num_beams': 6, } self.assertEqual(flatten_dict(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(lowerCAmelCase) , x.transpose())) lowercase__ = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(transpose(lowerCAmelCase) , transpose(lowerCAmelCase).numpy())) lowercase__ = np.random.randn(3 , 4 , 5) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0)) , transpose(lowerCAmelCase , axes=(1, 2, 0)).numpy())) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(transpose(lowerCAmelCase) , transpose(lowerCAmelCase).numpy())) lowercase__ = np.random.randn(3 , 4 , 5) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0)) , transpose(lowerCAmelCase , axes=(1, 2, 0)).numpy())) @require_flax def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(transpose(lowerCAmelCase) , np.asarray(transpose(lowerCAmelCase)))) lowercase__ = np.random.randn(3 , 4 , 5) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(transpose(lowerCAmelCase , axes=(1, 2, 0)) , np.asarray(transpose(lowerCAmelCase , axes=(1, 2, 0))))) def UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" lowercase__ = np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3)) , np.reshape(lowerCAmelCase , (4, 3)))) lowercase__ = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5)) , np.reshape(lowerCAmelCase , (12, 5)))) @require_torch def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3)) , reshape(lowerCAmelCase , (4, 3)).numpy())) lowercase__ = np.random.randn(3 , 4 , 5) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5)) , reshape(lowerCAmelCase , (12, 5)).numpy())) @require_tf def UpperCAmelCase ( self : Tuple) -> List[str]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3)) , reshape(lowerCAmelCase , (4, 3)).numpy())) lowercase__ = np.random.randn(3 , 4 , 5) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5)) , reshape(lowerCAmelCase , (12, 5)).numpy())) @require_flax def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (4, 3)) , np.asarray(reshape(lowerCAmelCase , (4, 3))))) lowercase__ = np.random.randn(3 , 4 , 5) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(reshape(lowerCAmelCase , (12, 5)) , np.asarray(reshape(lowerCAmelCase , (12, 5))))) def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(lowerCAmelCase) , np.squeeze(lowerCAmelCase))) lowercase__ = np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2) , np.squeeze(lowerCAmelCase , axis=2))) @require_torch def UpperCAmelCase ( self : List[str]) -> List[Any]: """simple docstring""" lowercase__ = np.random.randn(1 , 3 , 4) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(squeeze(lowerCAmelCase) , squeeze(lowerCAmelCase).numpy())) lowercase__ = np.random.randn(1 , 4 , 1 , 5) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2) , squeeze(lowerCAmelCase , axis=2).numpy())) @require_tf def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = np.random.randn(1 , 3 , 4) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(squeeze(lowerCAmelCase) , squeeze(lowerCAmelCase).numpy())) lowercase__ = np.random.randn(1 , 4 , 1 , 5) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2) , squeeze(lowerCAmelCase , axis=2).numpy())) @require_flax def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = np.random.randn(1 , 3 , 4) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(squeeze(lowerCAmelCase) , np.asarray(squeeze(lowerCAmelCase)))) lowercase__ = np.random.randn(1 , 4 , 1 , 5) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(squeeze(lowerCAmelCase , axis=2) , np.asarray(squeeze(lowerCAmelCase , axis=2)))) def UpperCAmelCase ( self : List[str]) -> Dict: """simple docstring""" lowercase__ = np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1) , np.expand_dims(lowerCAmelCase , axis=1))) @require_torch def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = torch.tensor(lowerCAmelCase) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1) , expand_dims(lowerCAmelCase , axis=1).numpy())) @require_tf def UpperCAmelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = tf.constant(lowerCAmelCase) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1) , expand_dims(lowerCAmelCase , axis=1).numpy())) @require_flax def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = np.random.randn(3 , 4) lowercase__ = jnp.array(lowerCAmelCase) self.assertTrue(np.allclose(expand_dims(lowerCAmelCase , axis=1) , np.asarray(expand_dims(lowerCAmelCase , axis=1))))
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class UpperCAmelCase__: '''simple docstring''' @property def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" return self.get_dummy_input() @property def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''') def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Any=True , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : str=False , ) -> Any: """simple docstring""" lowercase__ = 4 lowercase__ = 32 lowercase__ = (32, 32) lowercase__ = torch.manual_seed(0) lowercase__ = torch.device(lowerCAmelCase) lowercase__ = (batch_size, num_channels) + sizes lowercase__ = randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase) lowercase__ = {'hidden_states': hidden_states} if include_temb: lowercase__ = 1_28 lowercase__ = randn_tensor((batch_size, temb_channels) , generator=lowerCAmelCase , device=lowerCAmelCase) if include_res_hidden_states_tuple: lowercase__ = torch.manual_seed(1) lowercase__ = (randn_tensor(lowerCAmelCase , generator=lowerCAmelCase , device=lowerCAmelCase),) if include_encoder_hidden_states: lowercase__ = floats_tensor((batch_size, 32, 32)).to(lowerCAmelCase) if include_skip_sample: lowercase__ = randn_tensor(((batch_size, 3) + sizes) , generator=lowerCAmelCase , device=lowerCAmelCase) return dummy_input def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = { 'in_channels': 32, 'out_channels': 32, 'temb_channels': 1_28, } if self.block_type == "up": lowercase__ = 32 if self.block_type == "mid": init_dict.pop('out_channels') lowercase__ = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" lowercase__, lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.block_class(**lowerCAmelCase) unet_block.to(lowerCAmelCase) unet_block.eval() with torch.no_grad(): lowercase__ = unet_block(**lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = output[0] self.assertEqual(output.shape , self.output_shape) lowercase__ = output[0, -1, -3:, -3:] lowercase__ = torch.tensor(lowerCAmelCase).to(lowerCAmelCase) assert torch_all_close(output_slice.flatten() , lowerCAmelCase , atol=5E-3) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps') def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__, lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.block_class(**lowerCAmelCase) model.to(lowerCAmelCase) model.train() lowercase__ = model(**lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = output[0] lowercase__ = torch.device(lowerCAmelCase) lowercase__ = randn_tensor(output.shape , device=lowerCAmelCase) lowercase__ = torch.nn.functional.mse_loss(lowerCAmelCase , lowerCAmelCase) loss.backward()
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : List[str] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys a__ : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
from pathlib import Path import fire def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = Path(A__ ) lowercase__ = Path(A__ ) dest_dir.mkdir(exist_ok=A__ ) for path in src_dir.iterdir(): lowercase__ = [x.rstrip() for x in list(path.open().readlines() )][:n] lowercase__ = dest_dir.joinpath(path.name ) print(A__ ) dest_path.open('w' ).write('\n'.join(A__ ) ) if __name__ == "__main__": fire.Fire(minify)
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = StableDiffusionSAGPipeline A : str = TEXT_TO_IMAGE_PARAMS A : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS A : Any = TEXT_TO_IMAGE_IMAGE_PARAMS A : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS A : Any = False def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" torch.manual_seed(0) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) lowercase__ = CLIPTextModel(lowerCAmelCase) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') lowercase__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Dict=0) -> Optional[int]: """simple docstring""" if str(lowerCAmelCase).startswith('mps'): lowercase__ = torch.manual_seed(lowerCAmelCase) else: lowercase__ = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) lowercase__ = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') lowercase__ = sag_pipe.to(lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = '.' lowercase__ = torch.manual_seed(0) lowercase__ = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') lowercase__ = sag_pipe.to(lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = '.' lowercase__ = torch.manual_seed(0) lowercase__ = sag_pipe( [prompt] , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) lowercase__ = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-2 def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') lowercase__ = sag_pipe.to(lowerCAmelCase) sag_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = '.' lowercase__ = torch.manual_seed(0) lowercase__ = sag_pipe( [prompt] , width=7_68 , height=5_12 , generator=lowerCAmelCase , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) lowercase__ = output.images assert image.shape == (1, 5_12, 7_68, 3)
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__ , A__ , A__ ): # Initialise PyTorch model lowercase__ = TaConfig.from_json_file(A__ ) print(F'''Building PyTorch model from configuration: {config}''' ) lowercase__ = TaForConditionalGeneration(A__ ) # Load weights from tf checkpoint load_tf_weights_in_ta(A__ , A__ , A__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A__ ) if __name__ == "__main__": a__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a__ : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
import numpy # List of input, output pairs a__ : int = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) a__ : Optional[Any] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) a__ : Optional[int] = [2, 4, 1, 5] a__ : str = len(train_data) a__ : Optional[int] = 0.0_0_9 def _lowerCAmelCase ( A__ , A__="train" ): return calculate_hypothesis_value(A__ , A__ ) - output( A__ , A__ ) def _lowerCAmelCase ( A__ ): lowercase__ = 0 for i in range(len(A__ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def _lowerCAmelCase ( A__ , A__ ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def _lowerCAmelCase ( A__ , A__ ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def _lowerCAmelCase ( A__ , A__=m ): lowercase__ = 0 for i in range(A__ ): if index == -1: summation_value += _error(A__ ) else: summation_value += _error(A__ ) * train_data[i][0][index] return summation_value def _lowerCAmelCase ( A__ ): lowercase__ = summation_of_cost_derivative(A__ , A__ ) / m return cost_derivative_value def _lowerCAmelCase ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase__ = 0.00_00_02 lowercase__ = 0 lowercase__ = 0 while True: j += 1 lowercase__ = [0, 0, 0, 0] for i in range(0 , len(A__ ) ): lowercase__ = get_cost_derivative(i - 1 ) lowercase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( A__ , A__ , atol=A__ , rtol=A__ , ): break lowercase__ = temp_parameter_vector print(('Number of iterations:', j) ) def _lowerCAmelCase ( ): for i in range(len(A__ ) ): print(('Actual output value:', output(A__ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(A__ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : torch.FloatTensor A : Optional[torch.FloatTensor] = None def _lowerCAmelCase ( A__ , A__=0.9_99 , A__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(A__ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(A__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) lowercase__ = [] for i in range(A__ ): lowercase__ = i / num_diffusion_timesteps lowercase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) ) return torch.tensor(A__ , dtype=torch.floataa ) class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' @register_to_config def __init__( self : List[str] , lowerCAmelCase : int = 10_00 , lowerCAmelCase : str = "fixed_small_log" , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[float] = 1.0 , lowerCAmelCase : str = "epsilon" , lowerCAmelCase : str = "squaredcos_cap_v2" , ) -> List[str]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError('UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'') lowercase__ = betas_for_alpha_bar(lowerCAmelCase) lowercase__ = 1.0 - self.betas lowercase__ = torch.cumprod(self.alphas , dim=0) lowercase__ = torch.tensor(1.0) # standard deviation of the initial noise distribution lowercase__ = 1.0 # setable values lowercase__ = None lowercase__ = torch.from_numpy(np.arange(0 , lowerCAmelCase)[::-1].copy()) lowercase__ = variance_type def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[int] = None) -> torch.FloatTensor: """simple docstring""" return sample def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : Union[str, torch.device] = None) -> Optional[int]: """simple docstring""" lowercase__ = num_inference_steps lowercase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ = (np.arange(0 , lowerCAmelCase) * step_ratio).round()[::-1].copy().astype(np.intaa) lowercase__ = torch.from_numpy(lowerCAmelCase).to(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : str=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Dict=None) -> Tuple: """simple docstring""" if prev_timestep is None: lowercase__ = t - 1 lowercase__ = self.alphas_cumprod[t] lowercase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ = self.betas[t] else: lowercase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ = torch.log(torch.clamp(lowerCAmelCase , min=1E-2_0)) lowercase__ = torch.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ = variance.log() lowercase__ = beta.log() lowercase__ = (predicted_variance + 1) / 2 lowercase__ = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase ( self : List[str] , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : int , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str=None , lowerCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" lowercase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__, lowercase__ = torch.split(lowerCAmelCase , sample.shape[1] , dim=1) else: lowercase__ = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ = t - 1 lowercase__ = self.alphas_cumprod[t] lowercase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ = self.betas[t] lowercase__ = self.alphas[t] else: lowercase__ = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ = model_output else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`''' ' for the UnCLIPScheduler.') # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ = torch.clamp( lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ = 0 if t > 0: lowercase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase , device=model_output.device) lowercase__ = self._get_variance( lowerCAmelCase , predicted_variance=lowerCAmelCase , prev_timestep=lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowercase__ = variance elif self.variance_type == "learned_range": lowercase__ = (0.5 * variance).exp() else: raise ValueError( f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`''' ' for the UnCLIPScheduler.') lowercase__ = variance * variance_noise lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowerCAmelCase , pred_original_sample=lowerCAmelCase) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.FloatTensor , lowerCAmelCase : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" lowercase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype) lowercase__ = timesteps.to(original_samples.device) lowercase__ = alphas_cumprod[timesteps] ** 0.5 lowercase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): lowercase__ = sqrt_alpha_prod.unsqueeze(-1) lowercase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): lowercase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1) lowercase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Tuple = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL a__ : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__=False , ): output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def _lowerCAmelCase ( A__ , A__ , A__ , A__ = False ): lowercase__ = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase__ = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: lowercase__ = 'cpu' lowercase__ = Path(A__ ) # VAE DECODER lowercase__ = AutoencoderKL.from_pretrained(model_path + '/vae' ) lowercase__ = vae_decoder.config.latent_channels # forward only through the decoder part lowercase__ = vae_decoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , 25 , 25 ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=A__ , ) del vae_decoder if __name__ == "__main__": a__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") a__ : Any = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a__ : Any = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys a__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
def _lowerCAmelCase ( A__ ): lowercase__ = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase__ = True for i in range(0 , len(A__ ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase__, lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False for i in range(1 , len(A__ ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase__, lowercase__ = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase__ = False return input_list if __name__ == "__main__": print("Enter list to be sorted") a__ : int = [int(x) for x in input().split()] # inputing elements of the list in one line a__ : Any = odd_even_sort(input_list) print("The sorted list is") print(sorted_list)
642
# Imports import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Any , lowerCAmelCase : Dict=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : List[str]=None) -> Dict: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : Dict=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : str=None , lowerCAmelCase : str=None) -> int: """simple docstring""" if red is not None: lowercase__ = red if green is not None: lowercase__ = green if blue is not None: lowercase__ = blue if red_edge is not None: lowercase__ = red_edge if nir is not None: lowercase__ = nir return True def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Union[str, Any]="" , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Dict=None) -> Union[str, Any]: """simple docstring""" self.set_matricies(red=lowerCAmelCase , green=lowerCAmelCase , blue=lowerCAmelCase , red_edge=lowerCAmelCase , nir=lowerCAmelCase) lowercase__ = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!') return False def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCAmelCase ( self : str) -> Optional[int]: """simple docstring""" return self.nir * (self.red / (self.green**2)) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCAmelCase ( self : Optional[Any]) -> Dict: """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[Any]=0.08 , lowerCAmelCase : Optional[int]=1.22 , lowerCAmelCase : int=0.03) -> List[Any]: """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return (self.nir / self.green) - 1 def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return (self.nir / self.redEdge) - 1 def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" return (self.red - self.blue) / self.red def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5))) * (abs(ndvi + 0.5) ** (1 / 2)) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" return self.nir - self.green def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCAmelCase ( self : Any) -> Union[str, Any]: """simple docstring""" lowercase__ = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.1_25) / (1 - self.red) def UpperCAmelCase ( self : int , lowerCAmelCase : int=0.16) -> Dict: """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def UpperCAmelCase ( self : str , lowerCAmelCase : Optional[int]=0.5) -> Union[str, Any]: """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCAmelCase ( self : str) -> int: """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None) -> Tuple: """simple docstring""" return (self.nir - b) / (a * self.red) def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def UpperCAmelCase ( self : int) -> str: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" return self.green / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" return self.nir / (self.nir + self.red + self.green) def UpperCAmelCase ( self : List[Any]) -> Dict: """simple docstring""" return self.red / (self.nir + self.red + self.green) def UpperCAmelCase ( self : Optional[Any]) -> Any: """simple docstring""" return (self.green - self.red) / (self.green + self.red) def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" return (self.red - self.green) / (self.red + self.green) def UpperCAmelCase ( self : str) -> int: """simple docstring""" lowercase__ = np.max([np.max(self.red), np.max(self.green), np.max(self.blue)]) lowercase__ = np.min([np.min(self.red), np.min(self.green), np.min(self.blue)]) return (max_value - min_value) / max_value def UpperCAmelCase ( self : Optional[int]) -> Tuple: """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" return self.nir / self.red def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
642
1
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
1
import functools def _lowerCAmelCase ( A__ , A__ ): lowercase__ = len(A__ ) lowercase__ = len(A__ ) @functools.cache def min_distance(A__ , A__ ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase__ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A__ ) , 1 + min_distance(A__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
642
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCAmelCase__: '''simple docstring''' def UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" torch.manual_seed(0) lowercase__ = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) lowercase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) lowercase__ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) lowercase__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase ( self : int) -> str: """simple docstring""" torch.manual_seed(0) lowercase__ = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) lowercase__ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) lowercase__ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) lowercase__ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**lowerCAmelCase) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs(lowerCAmelCase) lowercase__ = inputs['prompt'] lowercase__ = inputs['generator'] lowercase__ = inputs['num_inference_steps'] lowercase__ = inputs['output_type'] if "image" in inputs: lowercase__ = inputs['image'] else: lowercase__ = None if "mask_image" in inputs: lowercase__ = inputs['mask_image'] else: lowercase__ = None if "original_image" in inputs: lowercase__ = inputs['original_image'] else: lowercase__ = None lowercase__, lowercase__ = pipe.encode_prompt(lowerCAmelCase) # inputs with prompt converted to embeddings lowercase__ = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase__ = image if mask_image is not None: lowercase__ = mask_image if original_image is not None: lowercase__ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) lowercase__ = pipe(**lowerCAmelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase) lowercase__ = self.pipeline_class.from_pretrained(lowerCAmelCase) pipe_loaded.to(lowerCAmelCase) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase , lowerCAmelCase) is None , f'''`{optional_component}` did not stay set to None after loading.''' , ) lowercase__ = self.get_dummy_inputs(lowerCAmelCase) lowercase__ = inputs['generator'] lowercase__ = inputs['num_inference_steps'] lowercase__ = inputs['output_type'] # inputs with prompt converted to embeddings lowercase__ = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowercase__ = image if mask_image is not None: lowercase__ = mask_image if original_image is not None: lowercase__ = original_image lowercase__ = pipe_loaded(**lowerCAmelCase)[0] lowercase__ = np.abs(to_np(lowerCAmelCase) - to_np(lowerCAmelCase)).max() self.assertLess(lowerCAmelCase , 1E-4) def UpperCAmelCase ( self : Dict) -> str: """simple docstring""" lowercase__ = self.get_dummy_components() lowercase__ = self.pipeline_class(**lowerCAmelCase) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs(lowerCAmelCase) lowercase__ = pipe(**lowerCAmelCase)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase) lowercase__ = self.pipeline_class.from_pretrained(lowerCAmelCase) pipe_loaded.to(lowerCAmelCase) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests lowercase__ = self.get_dummy_inputs(lowerCAmelCase) lowercase__ = pipe_loaded(**lowerCAmelCase)[0] lowercase__ = np.abs(to_np(lowerCAmelCase) - to_np(lowerCAmelCase)).max() self.assertLess(lowerCAmelCase , 1E-4)
642
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCAmelCase ( A__ ): lowercase__ = prime_factors(A__ ) if is_square_free(A__ ): return -1 if len(A__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
642
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCAmelCase__( unittest.TestCase , lowerCamelCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" lowercase__ = load_tool('text-classification') self.tool.setup() lowercase__ = load_tool('text-classification' , remote=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Tuple: """simple docstring""" lowercase__ = self.tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__ = self.remote_tool('That\'s quite cool' , ['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive') def UpperCAmelCase ( self : Any) -> Any: """simple docstring""" lowercase__ = self.remote_tool(text='That\'s quite cool' , labels=['positive', 'negative']) self.assertEqual(lowerCAmelCase , 'positive')
642
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ : List[str] = logging.get_logger(__name__) a__ : List[Any] = { "microsoft/focalnet-tiny": "https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json", } class UpperCAmelCase__( lowerCamelCase , lowerCamelCase ): '''simple docstring''' A : List[str] = "focalnet" def __init__( self : Dict , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : int=3 , lowerCAmelCase : Union[str, Any]=96 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int=[1_92, 3_84, 7_68, 7_68] , lowerCAmelCase : str=[2, 2, 6, 2] , lowerCAmelCase : Tuple=[2, 2, 2, 2] , lowerCAmelCase : Optional[Any]=[3, 3, 3, 3] , lowerCAmelCase : int="gelu" , lowerCAmelCase : Any=4.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=False , lowerCAmelCase : Tuple=1E-4 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : List[str]=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Union[str, Any]=None , **lowerCAmelCase : str , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = use_conv_embed lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = focal_levels lowercase__ = focal_windows lowercase__ = hidden_act lowercase__ = mlp_ratio lowercase__ = hidden_dropout_prob lowercase__ = drop_path_rate lowercase__ = use_layerscale lowercase__ = layerscale_value lowercase__ = use_post_layernorm lowercase__ = use_post_layernorm_in_modulation lowercase__ = normalize_modulator lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = encoder_stride lowercase__ = ['stem'] + [f'''stage{idx}''' for idx in range(1 , len(self.depths) + 1)] lowercase__, lowercase__ = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
642
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a__ : Optional[int] = logging.get_logger(__name__) a__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } a__ : Any = {"facebook/blenderbot_small-90M": 5_12} def _lowerCAmelCase ( A__ ): lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char lowercase__ = set(A__ ) return pairs class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[str] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : int="__start__" , lowerCAmelCase : Dict="__end__" , lowerCAmelCase : Any="__unk__" , lowerCAmelCase : str="__null__" , **lowerCAmelCase : Optional[Any] , ) -> List[str]: """simple docstring""" super().__init__(unk_token=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , pad_token=lowerCAmelCase , **lowerCAmelCase) with open(lowerCAmelCase , encoding='utf-8') as vocab_handle: lowercase__ = json.load(lowerCAmelCase) lowercase__ = {v: k for k, v in self.encoder.items()} with open(lowerCAmelCase , encoding='utf-8') as merges_handle: lowercase__ = merges_handle.read().split('\n')[1:-1] lowercase__ = [tuple(merge.split()) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = {} @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return len(self.encoder) def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self : str , lowerCAmelCase : str) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowercase__ = re.sub('([.,!?()])' , R' \1' , lowerCAmelCase) lowercase__ = re.sub('(\')' , R' \1 ' , lowerCAmelCase) lowercase__ = re.sub(R'\s{2,}' , ' ' , lowerCAmelCase) if "\n" in token: lowercase__ = token.replace('\n' , ' __newln__') lowercase__ = token.split(' ') lowercase__ = [] for token in tokens: if not len(lowerCAmelCase): continue lowercase__ = token.lower() lowercase__ = tuple(lowerCAmelCase) lowercase__ = tuple(list(word[:-1]) + [word[-1] + '</w>']) lowercase__ = get_pairs(lowerCAmelCase) if not pairs: words.append(lowerCAmelCase) continue while True: lowercase__ = min(lowerCAmelCase , key=lambda lowerCAmelCase: self.bpe_ranks.get(lowerCAmelCase , float('inf'))) if bigram not in self.bpe_ranks: break lowercase__, lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase): try: lowercase__ = word.index(lowerCAmelCase , lowerCAmelCase) new_word.extend(word[i:j]) lowercase__ = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCAmelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 lowercase__ = tuple(lowerCAmelCase) lowercase__ = new_word if len(lowerCAmelCase) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase) lowercase__ = '@@ '.join(lowerCAmelCase) lowercase__ = word[:-4] lowercase__ = word words.append(lowerCAmelCase) return " ".join(lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str) -> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = re.findall(R'\S+\n?' , lowerCAmelCase) for token in words: split_tokens.extend(list(self.bpe(lowerCAmelCase).split(' '))) return split_tokens def UpperCAmelCase ( self : int , lowerCAmelCase : str) -> int: """simple docstring""" lowercase__ = token.lower() return self.encoder.get(lowerCAmelCase , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" return self.decoder.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" lowercase__ = ' '.join(lowerCAmelCase).replace('@@ ' , '').strip() return out_string def UpperCAmelCase ( self : str , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join( lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(lowerCAmelCase , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase , ensure_ascii=lowerCAmelCase) + '\n') lowercase__ = 0 with open(lowerCAmelCase , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase: kv[1]): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!') lowercase__ = token_index writer.write(' '.join(lowerCAmelCase) + '\n') index += 1 return vocab_file, merge_file
642
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = { "google/mobilenet_v2_1.4_224": "https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json", "google/mobilenet_v2_1.0_224": "https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json", "google/mobilenet_v2_0.75_160": "https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json", "google/mobilenet_v2_0.35_96": "https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = "mobilenet_v2" def __init__( self : Dict , lowerCAmelCase : Optional[int]=3 , lowerCAmelCase : Union[str, Any]=2_24 , lowerCAmelCase : Optional[Any]=1.0 , lowerCAmelCase : Optional[int]=8 , lowerCAmelCase : Dict=8 , lowerCAmelCase : int=6 , lowerCAmelCase : Union[str, Any]=32 , lowerCAmelCase : int=True , lowerCAmelCase : int=True , lowerCAmelCase : int="relu6" , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=0.8 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : str=0.0_01 , lowerCAmelCase : List[Any]=2_55 , **lowerCAmelCase : List[str] , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.') lowercase__ = num_channels lowercase__ = image_size lowercase__ = depth_multiplier lowercase__ = depth_divisible_by lowercase__ = min_depth lowercase__ = expand_ratio lowercase__ = output_stride lowercase__ = first_layer_is_expansion lowercase__ = finegrained_output lowercase__ = hidden_act lowercase__ = tf_padding lowercase__ = classifier_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = semantic_loss_ignore_index class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = version.parse("1.11" ) @property def UpperCAmelCase ( self : Tuple) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})]) @property def UpperCAmelCase ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})]) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})]) @property def UpperCAmelCase ( self : Any) -> float: """simple docstring""" return 1E-4
642
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[int] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
642
1
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
642
import heapq import sys import numpy as np a__ : Dict = tuple[int, int] class UpperCAmelCase__: '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" lowercase__ = [] lowercase__ = set() def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float('inf') def UpperCAmelCase ( self : int) -> str: """simple docstring""" return len(self.elements) == 0 def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str]) -> List[str]: """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(lowerCAmelCase) else: # update # print("update", item) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int) -> Tuple: """simple docstring""" if item in self.set: self.set.remove(lowerCAmelCase) lowercase__ = [] ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def UpperCAmelCase ( self : Dict) -> List[Any]: """simple docstring""" return self.elements[0][1] def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" ((lowercase__), (lowercase__)) = heapq.heappop(self.elements) self.set.remove(lowerCAmelCase) return (priority, item) def _lowerCAmelCase ( A__ , A__ ): # euclidean distance lowercase__ = np.array(A__ ) lowercase__ = np.array(A__ ) return np.linalg.norm(a - b ) def _lowerCAmelCase ( A__ , A__ ): # integer division by time variable return consistent_heuristic(A__ , A__ ) // t def _lowerCAmelCase ( A__ , A__ ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = g_function[start] + Wa * heuristics[i](A__ , A__ ) return ans def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = np.chararray((n, n) ) for i in range(A__ ): for j in range(A__ ): lowercase__ = '*' for i in range(A__ ): for j in range(A__ ): if (j, (n - 1) - i) in blocks: lowercase__ = '#' lowercase__ = '-' lowercase__ = back_pointer[goal] while x != start: ((lowercase__), (lowercase__)) = x # print(x) lowercase__ = '-' lowercase__ = back_pointer[x] lowercase__ = '-' for i in range(A__ ): for j in range(A__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=' ' ) print('<-- End position' , end=' ' ) else: print(grid[i][j] , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) print('PATH TAKEN BY THE ALGORITHM IS:-' ) lowercase__ = back_pointer[goal] while x != start: print(A__ , end=' ' ) lowercase__ = back_pointer[x] print(A__ ) sys.exit() def _lowerCAmelCase ( A__ ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ): for itera in range(A__ ): open_list[itera].remove_element(A__ ) # print("s", s) # print("j", j) ((lowercase__), (lowercase__)) = s lowercase__ = (x - 1, y) lowercase__ = (x + 1, y) lowercase__ = (x, y + 1) lowercase__ = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(A__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(A__ ) lowercase__ = -1 lowercase__ = float('inf' ) if valid(A__ ) and g_function[neighbours] > g_function[s] + 1: lowercase__ = g_function[s] + 1 lowercase__ = s if neighbours not in close_list_anchor: open_list[0].put(A__ , key(A__ , 0 , A__ , A__ ) ) if neighbours not in close_list_inad: for var in range(1 , A__ ): if key(A__ , A__ , A__ , A__ ) <= Wa * key( A__ , 0 , A__ , A__ ): open_list[j].put( A__ , key(A__ , A__ , A__ , A__ ) ) def _lowerCAmelCase ( ): lowercase__ = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a__ : str = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a__ : Any = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a__ : Any = make_common_ground() a__ : Union[str, Any] = blocks_blk # hyper parameters a__ : List[Any] = 1 a__ : List[str] = 1 a__ : Optional[int] = 20 a__ : Optional[Any] = 3 # one consistent and two other inconsistent # start and end destination a__ : Tuple = (0, 0) a__ : str = (n - 1, n - 1) a__ : Optional[Any] = 1 def _lowerCAmelCase ( A__ , A__ , A__ ): lowercase__ = {start: 0, goal: float('inf' )} lowercase__ = {start: -1, goal: -1} lowercase__ = [] lowercase__ = set() for i in range(A__ ): open_list.append(PriorityQueue() ) open_list[i].put(A__ , key(A__ , A__ , A__ , A__ ) ) lowercase__ = [] lowercase__ = [] while open_list[0].minkey() < float('inf' ): for i in range(1 , A__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__, lowercase__ = open_list[i].top_show() visited.add(A__ ) expand_state( A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_inad.append(A__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('inf' ): do_something(A__ , A__ , A__ ) else: lowercase__ = open_list[0].top_show() visited.add(A__ ) expand_state( A__ , 0 , A__ , A__ , A__ , A__ , A__ , A__ , ) close_list_anchor.append(A__ ) print('No path found to goal' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(A__ ): if (j, i) in blocks: print('#' , end=' ' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('*' , end=' ' ) else: print('-' , end=' ' ) else: print('*' , end=' ' ) if (j, i) == (n - 1, n - 1): print('<-- End position' , end=' ' ) print() print('^' ) print('Start position' ) print() print('# is an obstacle' ) print('- is the path taken by algorithm' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
642
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow a__ : Optional[int] = False class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : Optional[Any]=32) -> str: """simple docstring""" set_seed(0) lowercase__ = UNetaDModel(sample_size=lowerCAmelCase , in_channels=3 , out_channels=3) lowercase__ = torch.optim.SGD(model.parameters() , lr=0.00_01) return model, optimizer @slow def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" lowercase__ = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowercase__ = DDPMScheduler( num_train_timesteps=10_00 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=lowerCAmelCase , ) lowercase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=lowerCAmelCase , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0) lowercase__ = [torch.randn((4, 3, 32, 32)).clip(-1 , 1).to(lowerCAmelCase) for _ in range(4)] lowercase__ = [torch.randn((4, 3, 32, 32)).to(lowerCAmelCase) for _ in range(4)] lowercase__ = [torch.randint(0 , 10_00 , (4,)).long().to(lowerCAmelCase) for _ in range(4)] # train with a DDPM scheduler lowercase__, lowercase__ = self.get_model_optimizer(resolution=32) model.train().to(lowerCAmelCase) for i in range(4): optimizer.zero_grad() lowercase__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) lowercase__ = model(lowerCAmelCase , timesteps[i]).sample lowercase__ = torch.nn.functional.mse_loss(lowerCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowercase__, lowercase__ = self.get_model_optimizer(resolution=32) model.train().to(lowerCAmelCase) for i in range(4): optimizer.zero_grad() lowercase__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i]) lowercase__ = model(lowerCAmelCase , timesteps[i]).sample lowercase__ = torch.nn.functional.mse_loss(lowerCAmelCase , noise[i]) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5)) self.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-5))
642
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
1
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = "" A : List[str] = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Optional[int] , lowerCAmelCase : Optional[DatasetInfo] = None , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : Any , ) -> str: """simple docstring""" super().__init__(self , **lowerCAmelCase) lowercase__ = repo_info lowercase__ = token lowercase__ = None def UpperCAmelCase ( self : Any) -> int: """simple docstring""" if self.dir_cache is None: lowercase__ = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowercase__ = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(lowerCAmelCase): {'name': str(lowerCAmelCase), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename).parents)[:-1] }) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : str = "rb" , **lowerCAmelCase : Tuple , ) -> Any: """simple docstring""" if not isinstance(self.repo_info , lowerCAmelCase): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''') lowercase__ = hf_hub_url(self.repo_info.id , lowerCAmelCase , revision=self.repo_info.sha) return fsspec.open( lowerCAmelCase , mode=lowerCAmelCase , headers=get_authentication_headers_for_url(lowerCAmelCase , use_auth_token=self.token) , client_kwargs={'trust_env': True} , ).open() def UpperCAmelCase ( self : Optional[int] , lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Dict: """simple docstring""" self._get_dirs() lowercase__ = self._strip_protocol(lowerCAmelCase) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : int , lowerCAmelCase : Optional[int]=False , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" self._get_dirs() lowercase__ = PurePosixPath(path.strip('/')) lowercase__ = {} for p, f in self.dir_cache.items(): lowercase__ = PurePosixPath(p.strip('/')) lowercase__ = p.parent if root == path: lowercase__ = f lowercase__ = list(paths.values()) if detail: return out else: return sorted(f['name'] for f in out)
642
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging a__ : int = logging.get_logger(__name__) a__ : Tuple = {"vocab_file": "vocab.txt"} a__ : int = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } a__ : Dict = { "facebook/esm2_t6_8M_UR50D": 10_24, "facebook/esm2_t12_35M_UR50D": 10_24, } def _lowerCAmelCase ( A__ ): with open(A__ , 'r' ) as f: lowercase__ = f.read().splitlines() return [l.strip() for l in lines] class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : str = PRETRAINED_VOCAB_FILES_MAP A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Dict="<cls>" , lowerCAmelCase : List[str]="<pad>" , lowerCAmelCase : Union[str, Any]="<mask>" , lowerCAmelCase : Optional[Any]="<eos>" , **lowerCAmelCase : Any , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) lowercase__ = load_vocab_file(lowerCAmelCase) lowercase__ = dict(enumerate(self.all_tokens)) lowercase__ = {tok: ind for ind, tok in enumerate(self.all_tokens)} lowercase__ = unk_token lowercase__ = cls_token lowercase__ = pad_token lowercase__ = mask_token lowercase__ = eos_token lowercase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" return text.split() def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any=False) -> Union[str, Any]: """simple docstring""" return len(self._id_to_token) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens)} def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : str) -> int: """simple docstring""" return self._token_to_id.get(lowerCAmelCase , self._token_to_id.get(self.unk_token)) def UpperCAmelCase ( self : Dict , lowerCAmelCase : int) -> str: """simple docstring""" return self._id_to_token.get(lowerCAmelCase , self.unk_token) def UpperCAmelCase ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.cls_token_id] lowercase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!') return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List , lowerCAmelCase : Optional[List] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase__ = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: mask += [0] * len(lowerCAmelCase) + [1] return mask def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = os.path.join(lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt') with open(lowerCAmelCase , 'w') as f: f.write('\n'.join(self.all_tokens)) return (vocab_file,) @property def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : Union[List[str], List[AddedToken]] , lowerCAmelCase : bool = False) -> int: """simple docstring""" return super()._add_tokens(lowerCAmelCase , special_tokens=lowerCAmelCase)
642
1
from itertools import product def _lowerCAmelCase ( A__ , A__ ): lowercase__ = sides_number lowercase__ = max_face_number * dice_number lowercase__ = [0] * (max_total + 1) lowercase__ = 1 lowercase__ = range(A__ , max_face_number + 1 ) for dice_numbers in product(A__ , repeat=A__ ): lowercase__ = sum(A__ ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCAmelCase ( ): lowercase__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowercase__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowercase__ = 0 lowercase__ = 9 lowercase__ = 4 * 9 lowercase__ = 6 for peter_total in range(A__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowercase__ = (4**9) * (6**6) lowercase__ = peter_wins_count / total_games_number lowercase__ = round(A__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
642
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo a__ : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" a__ : Optional[Any] = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" a__ : Tuple = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCAmelCase ( self : List[Any]) -> MetricInfo: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token') , id='sequence'), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token') , id='sequence') , id='references'), }) , ) def UpperCAmelCase ( self : int , lowerCAmelCase : List[List[List[str]]] , lowerCAmelCase : List[List[str]] , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 4 , ) -> Dict[str, float]: """simple docstring""" return { "google_bleu": gleu_score.corpus_gleu( list_of_references=lowerCAmelCase , hypotheses=lowerCAmelCase , min_len=lowerCAmelCase , max_len=lowerCAmelCase) }
642
1
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar a__ : List[str] = TypeVar("T") def _lowerCAmelCase ( A__ ): return (position - 1) // 2 def _lowerCAmelCase ( A__ ): return (2 * position) + 1 def _lowerCAmelCase ( A__ ): return (2 * position) + 2 class UpperCAmelCase__( Generic[T] ): '''simple docstring''' def __init__( self : List[Any]) -> None: """simple docstring""" lowercase__ = [] lowercase__ = {} lowercase__ = 0 def __len__( self : str) -> int: """simple docstring""" return self.elements def __repr__( self : int) -> str: """simple docstring""" return str(self.heap) def UpperCAmelCase ( self : Union[str, Any]) -> bool: """simple docstring""" return self.elements == 0 def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : T , lowerCAmelCase : int) -> None: """simple docstring""" self.heap.append((elem, weight)) lowercase__ = self.elements self.elements += 1 self._bubble_up(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> T: """simple docstring""" if self.elements > 1: self._swap_nodes(0 , self.elements - 1) lowercase__, lowercase__ = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase__, lowercase__ = self.heap[0] self._bubble_down(lowerCAmelCase) return elem def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : T , lowerCAmelCase : int) -> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__ = (elem, weight) if position > 0: lowercase__ = get_parent_position(lowerCAmelCase) lowercase__, lowercase__ = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowerCAmelCase) else: self._bubble_down(lowerCAmelCase) else: self._bubble_down(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : T) -> None: """simple docstring""" lowercase__ = self.position_map[elem] if curr_pos == 0: return None lowercase__ = get_parent_position(lowerCAmelCase) lowercase__, lowercase__ = self.heap[curr_pos] lowercase__, lowercase__ = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase) return self._bubble_up(lowerCAmelCase) return None def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : T) -> None: """simple docstring""" lowercase__ = self.position_map[elem] lowercase__, lowercase__ = self.heap[curr_pos] lowercase__ = get_child_left_position(lowerCAmelCase) lowercase__ = get_child_right_position(lowerCAmelCase) if child_left_position < self.elements and child_right_position < self.elements: lowercase__, lowercase__ = self.heap[child_left_position] lowercase__, lowercase__ = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase) return self._bubble_down(lowerCAmelCase) if child_left_position < self.elements: lowercase__, lowercase__ = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase) return self._bubble_down(lowerCAmelCase) else: return None if child_right_position < self.elements: lowercase__, lowercase__ = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowerCAmelCase , lowerCAmelCase) return self._bubble_down(lowerCAmelCase) return None def UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase : int , lowerCAmelCase : int) -> None: """simple docstring""" lowercase__ = self.heap[nodea_pos][0] lowercase__ = self.heap[nodea_pos][0] lowercase__, lowercase__ = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase__ = nodea_pos lowercase__ = nodea_pos class UpperCAmelCase__( Generic[T] ): '''simple docstring''' def __init__( self : Dict) -> None: """simple docstring""" lowercase__ = {} lowercase__ = 0 def __repr__( self : Optional[int]) -> str: """simple docstring""" return str(self.connections) def __len__( self : Tuple) -> int: """simple docstring""" return self.nodes def UpperCAmelCase ( self : str , lowerCAmelCase : T) -> None: """simple docstring""" if node not in self.connections: lowercase__ = {} self.nodes += 1 def UpperCAmelCase ( self : List[str] , lowerCAmelCase : T , lowerCAmelCase : T , lowerCAmelCase : int) -> None: """simple docstring""" self.add_node(lowerCAmelCase) self.add_node(lowerCAmelCase) lowercase__ = weight lowercase__ = weight def _lowerCAmelCase ( A__ , ): lowercase__ = {node: maxsize for node in graph.connections} lowercase__ = {node: None for node in graph.connections} lowercase__ = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(A__ , A__ ) if priority_queue.is_empty(): return dist, parent # initialization lowercase__ = priority_queue.extract_min() lowercase__ = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A__ , dist[neighbour] ) lowercase__ = node # running prim's algorithm while not priority_queue.is_empty(): lowercase__ = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase__ = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A__ , dist[neighbour] ) lowercase__ = node return dist, parent
642
from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class UpperCAmelCase__: '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : Dict=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : str=True , lowerCAmelCase : int=True , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : List[Any]=[1, 1, 2] , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : int=32 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Tuple=8 , lowerCAmelCase : int=37 , lowerCAmelCase : Any="gelu_new" , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Dict=0.0 , lowerCAmelCase : str=5_12 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=0.02 , lowerCAmelCase : Union[str, Any]=3 , lowerCAmelCase : Any=4 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[int]=False , ) -> List[Any]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = block_sizes lowercase__ = num_decoder_layers lowercase__ = d_model lowercase__ = n_head lowercase__ = d_head lowercase__ = d_inner lowercase__ = hidden_act lowercase__ = hidden_dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = 2 lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = initializer_std # Used in the tests to check the size of the first attention layer lowercase__ = n_head # Used in the tests to check the size of the first hidden state lowercase__ = self.d_model # Used in the tests to check the number of output hidden states/attentions lowercase__ = sum(self.block_sizes) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: lowercase__ = self.num_hidden_layers + 2 def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length]) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase__ = ids_tensor([self.batch_size] , self.num_choices) lowercase__ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def UpperCAmelCase ( self : Dict , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) lowercase__ = False lowercase__ = TFFunnelModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) lowercase__ = [input_ids, input_mask] lowercase__ = model(lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model)) lowercase__ = False lowercase__ = TFFunnelBaseModel(config=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model)) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , ) -> str: """simple docstring""" lowercase__ = TFFunnelForPreTraining(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForMaskedLM(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , ) -> Optional[int]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForSequenceClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , ) -> Optional[Any]: """simple docstring""" lowercase__ = self.num_choices lowercase__ = TFFunnelForMultipleChoice(config=lowerCAmelCase) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) lowercase__ = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFFunnelForTokenClassification(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self : int , lowerCAmelCase : List[str] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , ) -> Optional[int]: """simple docstring""" lowercase__ = TFFunnelForQuestionAnswering(config=lowerCAmelCase) lowercase__ = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase__ = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ( lowercase__ ), ) = config_and_inputs lowercase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) A : Dict = ( { "feature-extraction": (TFFunnelBaseModel, TFFunnelModel), "fill-mask": TFFunnelForMaskedLM, "question-answering": TFFunnelForQuestionAnswering, "text-classification": TFFunnelForSequenceClassification, "token-classification": TFFunnelForTokenClassification, "zero-shot": TFFunnelForSequenceClassification, } if is_tf_available() else {} ) A : Optional[int] = False A : Optional[int] = False def UpperCAmelCase ( self : Tuple) -> str: """simple docstring""" lowercase__ = TFFunnelModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase) def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase) @require_tf class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Tuple = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) A : List[str] = False A : int = False def UpperCAmelCase ( self : Any) -> List[Any]: """simple docstring""" lowercase__ = TFFunnelModelTester(self , base=lowerCAmelCase) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowerCAmelCase) def UpperCAmelCase ( self : int) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase)
642
1
from __future__ import annotations a__ : Tuple = [True] * 1_00_00_01 a__ : Tuple = 2 while i * i <= 1_00_00_00: if seive[i]: for j in range(i * i, 1_00_00_01, i): a__ : Optional[int] = False i += 1 def _lowerCAmelCase ( A__ ): return seive[n] def _lowerCAmelCase ( A__ ): return any(digit in '02468' for digit in str(A__ ) ) def _lowerCAmelCase ( A__ = 1_000_000 ): lowercase__ = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(A__ ) and not contains_an_even_digit(A__ ): lowercase__ = str(A__ ) lowercase__ = [int(str_num[j:] + str_num[:j] ) for j in range(len(A__ ) )] if all(is_prime(A__ ) for i in list_nums ): result.append(A__ ) return result def _lowerCAmelCase ( ): return len(find_circular_primes() ) if __name__ == "__main__": print(F'''{len(find_circular_primes()) = }''')
642
def _lowerCAmelCase ( A__ , A__ , A__ ): if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowercase__ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowercase__ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
642
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig a__ : List[Any] = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } a__ : List[Any] = logging.get_logger(__name__) class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Any = "maskformer" A : str = {"hidden_size": "mask_feature_size"} A : Optional[int] = ["resnet", "swin"] A : Dict = ["detr"] def __init__( self : Tuple , lowerCAmelCase : int = 2_56 , lowerCAmelCase : int = 2_56 , lowerCAmelCase : float = 0.1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[Dict] = None , lowerCAmelCase : Optional[Dict] = None , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 1.0 , lowerCAmelCase : float = 20.0 , lowerCAmelCase : Optional[bool] = None , **lowerCAmelCase : List[Any] , ) -> Tuple: """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase__ = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = backbone_config.pop('model_type') lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(lowerCAmelCase) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported)}''') if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase__ = DetrConfig() else: # verify that the decoder is supported lowercase__ = ( decoder_config.pop('model_type') if isinstance(lowerCAmelCase , lowerCAmelCase) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported)}''') if isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = CONFIG_MAPPING[decoder_type] lowercase__ = config_class.from_dict(lowerCAmelCase) lowercase__ = backbone_config lowercase__ = decoder_config # main feature dimension for the model lowercase__ = fpn_feature_size lowercase__ = mask_feature_size # initializer lowercase__ = init_std lowercase__ = init_xavier_std # Hungarian matcher && loss lowercase__ = cross_entropy_weight lowercase__ = dice_weight lowercase__ = mask_weight lowercase__ = use_auxiliary_loss lowercase__ = no_object_weight lowercase__ = output_auxiliary_logits lowercase__ = self.decoder_config.encoder_attention_heads lowercase__ = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase) @classmethod def UpperCAmelCase ( cls : Optional[Any] , lowerCAmelCase : PretrainedConfig , lowerCAmelCase : PretrainedConfig , **lowerCAmelCase : List[Any]) -> Dict: """simple docstring""" return cls( backbone_config=lowerCAmelCase , decoder_config=lowerCAmelCase , **lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Dict[str, any]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__) lowercase__ = self.backbone_config.to_dict() lowercase__ = self.decoder_config.to_dict() lowercase__ = self.__class__.model_type return output
642
from __future__ import annotations def _lowerCAmelCase ( A__ , A__ ): if b == 0: return (1, 0) ((lowercase__), (lowercase__)) = extended_euclid(A__ , a % b ) lowercase__ = a // b return (y, x - k * y) def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def _lowerCAmelCase ( A__ , A__ ): ((lowercase__), (lowercase__)) = extended_euclid(A__ , A__ ) if b < 0: lowercase__ = (b % n + n) % n return b def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__, lowercase__ = invert_modulo(A__ , A__ ), invert_modulo(A__ , A__ ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
642
1
import math import sys def _lowerCAmelCase ( A__ ): lowercase__ = '' try: with open(A__ , 'rb' ) as binary_file: lowercase__ = binary_file.read() for dat in data: lowercase__ = F'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = {'0': '0', '1': '1'} lowercase__, lowercase__ = '', '' lowercase__ = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue lowercase__ = lexicon[curr_string] result += last_match_id lowercase__ = last_match_id + '0' if math.loga(A__ ).is_integer(): lowercase__ = {} for curr_key in list(A__ ): lowercase__ = lexicon.pop(A__ ) lowercase__ = new_lex lowercase__ = last_match_id + '1' index += 1 lowercase__ = '' return result def _lowerCAmelCase ( A__ , A__ ): lowercase__ = 8 try: with open(A__ , 'wb' ) as opened_file: lowercase__ = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def _lowerCAmelCase ( A__ ): lowercase__ = 0 for letter in data_bits: if letter == "1": break counter += 1 lowercase__ = data_bits[counter:] lowercase__ = data_bits[counter + 1 :] return data_bits def _lowerCAmelCase ( A__ , A__ ): lowercase__ = read_file_binary(A__ ) lowercase__ = remove_prefix(A__ ) lowercase__ = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
642
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) a__ : Optional[Any] = { "google/umt5-small": "https://huggingface.co/google/umt5-small/resolve/main/config.json", # See all umt5 models at https://huggingface.co/models?filter=umt5 } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Union[str, Any] = "umt5" A : List[str] = ["past_key_values"] def __init__( self : List[Any] , lowerCAmelCase : Optional[int]=25_01_12 , lowerCAmelCase : str=5_12 , lowerCAmelCase : List[Any]=64 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Union[str, Any]=8 , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[Any]=6 , lowerCAmelCase : int=32 , lowerCAmelCase : int=1_28 , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : List[str]=1E-6 , lowerCAmelCase : Optional[int]=1.0 , lowerCAmelCase : Optional[Any]="gated-gelu" , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : List[Any]="T5Tokenizer" , lowerCAmelCase : str=True , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Tuple=1 , lowerCAmelCase : Any=0 , **lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( is_encoder_decoder=lowerCAmelCase , tokenizer_class=lowerCAmelCase , tie_word_embeddings=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = vocab_size lowercase__ = d_model lowercase__ = d_kv lowercase__ = d_ff lowercase__ = num_layers lowercase__ = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowercase__ = num_heads lowercase__ = relative_attention_num_buckets lowercase__ = relative_attention_max_distance lowercase__ = dropout_rate lowercase__ = layer_norm_epsilon lowercase__ = initializer_factor lowercase__ = feed_forward_proj lowercase__ = use_cache lowercase__ = self.feed_forward_proj.split('-') lowercase__ = act_info[-1] lowercase__ = act_info[0] == 'gated' if len(lowerCAmelCase) > 1 and act_info[0] != "gated" or len(lowerCAmelCase) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') if feed_forward_proj == "gated-gelu": lowercase__ = 'gelu_new' @property def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" return self.d_model @property def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.num_heads @property def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" return self.num_layers class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase ( self : Optional[int]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowercase__ = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowercase__ = 'past_encoder_sequence + sequence' lowercase__ = {0: 'batch'} lowercase__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowercase__ = {0: 'batch', 1: 'decoder_sequence'} lowercase__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction='inputs') return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase ( self : int) -> int: """simple docstring""" return 13 @property def UpperCAmelCase ( self : Optional[Any]) -> float: """simple docstring""" return 5E-4
642
1
import heapq def _lowerCAmelCase ( A__ ): lowercase__ = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(A__ , [-1 * len(A__ ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase__ = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase__ = heapq.heappop(A__ )[1][0] chosen_vertices.add(A__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase__ = elem[1][1].index(A__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(A__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() a__ : List[str] = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
642
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ : Any = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : str = XGLMTokenizer A : List[Any] = XGLMTokenizerFast A : int = True A : Optional[Any] = True def UpperCAmelCase ( self : Optional[int]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" lowercase__ = '<pad>' lowercase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[str]: """simple docstring""" lowercase__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(len(lowerCAmelCase) , 10_08) def UpperCAmelCase ( self : List[str]) -> str: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_08) def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = XGLMTokenizer(lowerCAmelCase , keep_accents=lowerCAmelCase) lowercase__ = tokenizer.tokenize('This is a test') self.assertListEqual(lowerCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowercase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) lowercase__ = tokenizer.convert_tokens_to_ids(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowercase__ = tokenizer.convert_ids_to_tokens(lowerCAmelCase) self.assertListEqual( lowerCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : int) -> Dict: """simple docstring""" return XGLMTokenizer.from_pretrained('facebook/xglm-564M') def UpperCAmelCase ( self : Optional[int]) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCAmelCase , f.name) lowercase__ = XGLMTokenizer(f.name , keep_accents=lowerCAmelCase) lowercase__ = pickle.dumps(lowerCAmelCase) pickle.loads(lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> str: """simple docstring""" if not self.test_rust_tokenizer: return lowercase__ = self.get_tokenizer() lowercase__ = self.get_rust_tokenizer() lowercase__ = 'I was born in 92000, and this is falsé.' lowercase__ = tokenizer.tokenize(lowerCAmelCase) lowercase__ = rust_tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = self.get_rust_tokenizer() lowercase__ = tokenizer.encode(lowerCAmelCase) lowercase__ = rust_tokenizer.encode(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @slow def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" lowercase__ = 'Hello World!' lowercase__ = [2, 3_12_27, 44_47, 35] self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" lowercase__ = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth' ) # fmt: off lowercase__ = [2, 10_18, 67, 11, 19_88, 26_17, 56_31, 2_78, 11, 34_07, 48, 7_16_30, 2_80_85, 4, 32_34, 1_57, 13, 6, 5, 6, 4, 35_26, 7_68, 15, 6_59, 57, 2_98, 39_83, 8_64, 1_29, 21, 6, 5, 1_36_75, 3_77, 6_52, 75_80, 1_03_41, 1_55, 28_17, 4_22, 16_66, 7, 16_74, 53, 1_13, 20_22_77, 1_78_92, 33, 60, 87, 4, 32_34, 1_57, 61, 26_67, 5_23_76, 19, 88, 23, 7_35] # fmt: on self.assertListEqual(lowerCAmelCase , self.big_tokenizer.encode(lowerCAmelCase)) @slow def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = { 'input_ids': [[2, 10_88_25, 11_63, 15, 8_80_10, 4_73, 1_58_98, 1_57, 1_36_72, 18_57, 3_12, 8, 23_80_21, 11_63, 53, 1_36_72, 18_57, 3_12, 8, 5_32_83, 18_23_96, 8, 1_85_66, 16, 3_67_33, 41_01, 8, 2_30, 24_40_17, 12_25_53, 7, 15, 13_25_97, 4, 2_93, 1_25_11, 76_10, 4, 34_14, 13_25_97, 9, 4, 3_23_61, 3_62, 4, 7_34, 2_85_12, 3_25_69, 18, 4, 3_23_61, 2_60_96, 1_49_82, 73, 1_87_15, 2_14_33, 23_52_61, 15, 4_92, 1_24_27, 16, 53, 1_87_15, 2_14_33, 6_54_54, 15, 2_36_59, 5_63, 16, 2_78, 5_97, 28_43, 5_95, 79_31, 18_23_96, 6_41_86, 22, 8_86, 5_95, 13_29_81, 53, 2_55_40, 34_49, 4_39_82, 3_99_01, 59_51, 8_78, 3_30, 4, 2_76_94, 8_02_69, 3_12, 53, 65_17, 1_17_80, 6_11, 2_04_08, 5], [2, 6, 13_25_97, 67, 4_28_97, 33, 5_92, 8, 16_37_29, 2_55_40, 3_61, 13_69_97, 10_95_14, 17_32_30, 7, 5_01, 60, 10_29_13, 1_96, 56_31, 2_35, 6_32_43, 4_73, 6, 23_17_57, 74, 52_77, 79_05, 53, 30_95, 3_73_17, 22, 4_54, 18_38_74, 5], [2, 2_68, 3_12_98, 4_65_30, 6, 13_29_35, 4_38_31, 7, 5_97, 32, 24, 36_88, 98_65, 5]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name='facebook/xglm-564M' , padding=lowerCAmelCase , )
642
1
from __future__ import annotations from math import gcd def _lowerCAmelCase ( A__ , A__ = 2 , A__ = 1 , A__ = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(A__ , A__ , A__ ) -> int: return (pow(A__ , 2 ) + step) % modulus for _ in range(A__ ): # These track the position within the cycle detection logic. lowercase__ = seed lowercase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowercase__ = rand_fn(A__ , A__ , A__ ) lowercase__ = rand_fn(A__ , A__ , A__ ) lowercase__ = rand_fn(A__ , A__ , A__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowercase__ = gcd(hare - tortoise , A__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowercase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse a__ : Any = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) a__ : Union[str, Any] = parser.parse_args() a__ : Union[str, Any] = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F'''{args.num} is probably prime''') else: a__ : Any = args.num // divisor print(F'''{args.num} = {divisor} * {quotient}''')
642
import argparse import hashlib # hashlib is only used inside the Test class import struct class UpperCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" lowercase__ = data lowercase__ = [0X6_7_4_5_2_3_0_1, 0XE_F_C_D_A_B_8_9, 0X9_8_B_A_D_C_F_E, 0X1_0_3_2_5_4_7_6, 0XC_3_D_2_E_1_F_0] @staticmethod def UpperCAmelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XF_F_F_F_F_F_F_F def UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" lowercase__ = B'\x80' + B'\x00' * (63 - (len(self.data) + 8) % 64) lowercase__ = self.data + padding + struct.pack('>Q' , 8 * len(self.data)) return padded_data def UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data) , 64) ] def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> List[Any]: """simple docstring""" lowercase__ = list(struct.unpack('>16L' , lowerCAmelCase)) + [0] * 64 for i in range(16 , 80): lowercase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1) return w def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.padding() lowercase__ = self.split_blocks() for block in self.blocks: lowercase__ = self.expand_block(lowerCAmelCase) lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.h for i in range(0 , 80): if 0 <= i < 20: lowercase__ = (b & c) | ((~b) & d) lowercase__ = 0X5_A_8_2_7_9_9_9 elif 20 <= i < 40: lowercase__ = b ^ c ^ d lowercase__ = 0X6_E_D_9_E_B_A_1 elif 40 <= i < 60: lowercase__ = (b & c) | (b & d) | (c & d) lowercase__ = 0X8_F_1_B_B_C_D_C elif 60 <= i < 80: lowercase__ = b ^ c ^ d lowercase__ = 0XC_A_6_2_C_1_D_6 lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = ( self.rotate(lowerCAmelCase , 5) + f + e + k + expanded_block[i] & 0XF_F_F_F_F_F_F_F, a, self.rotate(lowerCAmelCase , 30), c, d, ) lowercase__ = ( self.h[0] + a & 0XF_F_F_F_F_F_F_F, self.h[1] + b & 0XF_F_F_F_F_F_F_F, self.h[2] + c & 0XF_F_F_F_F_F_F_F, self.h[3] + d & 0XF_F_F_F_F_F_F_F, self.h[4] + e & 0XF_F_F_F_F_F_F_F, ) return ("{:08x}" * 5).format(*self.h) def _lowerCAmelCase ( ): lowercase__ = B'Test String' assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324 def _lowerCAmelCase ( ): lowercase__ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) lowercase__ = parser.parse_args() lowercase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: lowercase__ = f.read() else: lowercase__ = bytes(A__ , 'utf-8' ) print(SHAaHash(A__ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
642
1
import socket def _lowerCAmelCase ( ): lowercase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowercase__ = socket.gethostname() lowercase__ = 12_312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: lowercase__ = sock.recv(1_024 ) if not data: break out_file.write(A__ ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
642
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a__ : List[Any] = logging.get_logger(__name__) a__ : Optional[int] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a__ : List[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a__ : int = { "facebook/bart-base": 10_24, "facebook/bart-large": 10_24, "facebook/bart-large-mnli": 10_24, "facebook/bart-large-cnn": 10_24, "facebook/bart-large-xsum": 10_24, "yjernite/bart_eli5": 10_24, } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[Any] = VOCAB_FILES_NAMES A : Dict = PRETRAINED_VOCAB_FILES_MAP A : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : int = ["input_ids", "attention_mask"] A : Any = BartTokenizer def __init__( self : List[Any] , lowerCAmelCase : Any=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str="replace" , lowerCAmelCase : str="<s>" , lowerCAmelCase : int="</s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : str="<unk>" , lowerCAmelCase : int="<pad>" , lowerCAmelCase : int="<mask>" , lowerCAmelCase : Dict=False , lowerCAmelCase : List[Any]=True , **lowerCAmelCase : Optional[Any] , ) -> Optional[Any]: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = getattr(lowerCAmelCase , pre_tok_state.pop('type')) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**lowerCAmelCase) lowercase__ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase__ = 'post_processor' lowercase__ = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['sep']) if "cls" in state: lowercase__ = tuple(state['cls']) lowercase__ = False if state.get('add_prefix_space' , lowerCAmelCase) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('trim_offsets' , lowerCAmelCase) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(lowerCAmelCase , state.pop('type')) lowercase__ = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def UpperCAmelCase ( self : Tuple , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" lowercase__ = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value lowercase__ = value def UpperCAmelCase ( self : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('is_split_into_words' , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCAmelCase ( self : Dict , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[int]=None) -> Tuple: """simple docstring""" lowercase__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
642
1
def _lowerCAmelCase ( A__ ): lowercase__ = [[0 for _ in range(A__ )] for _ in range(m + 1 )] for i in range(m + 1 ): lowercase__ = 1 for n in range(m + 1 ): for k in range(1 , A__ ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: a__ : str = int(input("Enter a number: ").strip()) print(partition(n)) except ValueError: print("Please enter a number.") else: try: a__ : List[str] = int(sys.argv[1]) print(partition(n)) except ValueError: print("Please pass a number.")
642
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : str = (DDIMParallelScheduler,) A : Any = (("eta", 0.0), ("num_inference_steps", 50)) def UpperCAmelCase ( self : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> Dict: """simple docstring""" lowercase__ = { 'num_train_timesteps': 10_00, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**lowerCAmelCase) return config def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Union[str, Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(**lowerCAmelCase) lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase) for t in scheduler.timesteps: lowercase__ = model(lowerCAmelCase , lowerCAmelCase) lowercase__ = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase).prev_sample return sample def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" for timesteps in [1_00, 5_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCAmelCase) lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config(steps_offset=1) lowercase__ = scheduler_class(**lowerCAmelCase) scheduler.set_timesteps(5) assert torch.equal(scheduler.timesteps , torch.LongTensor([8_01, 6_01, 4_01, 2_01, 1])) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2]): self.check_over_configs(beta_start=lowerCAmelCase , beta_end=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> str: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> List[str]: """simple docstring""" for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCAmelCase) def UpperCAmelCase ( self : List[str]) -> Optional[int]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , ) def UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> int: """simple docstring""" for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 5_00]): self.check_over_forward(time_step=lowerCAmelCase , num_inference_steps=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0]): self.check_over_forward(time_step=lowerCAmelCase , eta=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_20 , 4_00) - 0.1_47_71)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_80 , 9_60) - 0.3_24_60)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0) - 0.0)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 , 4_86) - 0.0_09_79)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 , 9_98) - 0.02)) < 1E-5 def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" lowercase__ = self.scheduler_classes[0] lowercase__ = self.get_scheduler_config() lowercase__ = scheduler_class(**lowerCAmelCase) lowercase__, lowercase__ = 10, 0.0 scheduler.set_timesteps(lowerCAmelCase) lowercase__ = self.dummy_model() lowercase__ = self.dummy_sample_deter lowercase__ = self.dummy_sample_deter + 0.1 lowercase__ = self.dummy_sample_deter - 0.1 lowercase__ = samplea.shape[0] lowercase__ = torch.stack([samplea, samplea, samplea] , dim=0) lowercase__ = torch.arange(lowerCAmelCase)[0:3, None].repeat(1 , lowerCAmelCase) lowercase__ = model(samples.flatten(0 , 1) , timesteps.flatten(0 , 1)) lowercase__ = scheduler.batch_step_no_noise(lowerCAmelCase , timesteps.flatten(0 , 1) , samples.flatten(0 , 1) , lowerCAmelCase) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 11_47.79_04) < 1E-2 assert abs(result_mean.item() - 0.49_82) < 1E-3 def UpperCAmelCase ( self : Any) -> int: """simple docstring""" lowercase__ = self.full_loop() lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_72.00_67) < 1E-2 assert abs(result_mean.item() - 0.22_39_67) < 1E-3 def UpperCAmelCase ( self : int) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(prediction_type='v_prediction') lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 52.53_02) < 1E-2 assert abs(result_mean.item() - 0.06_84) < 1E-3 def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.82_95) < 1E-2 assert abs(result_mean.item() - 0.19_51) < 1E-3 def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = self.full_loop(set_alpha_to_one=lowerCAmelCase , beta_start=0.01) lowercase__ = torch.sum(torch.abs(lowerCAmelCase)) lowercase__ = torch.mean(torch.abs(lowerCAmelCase)) assert abs(result_sum.item() - 1_49.07_84) < 1E-2 assert abs(result_mean.item() - 0.19_41) < 1E-3
642
1
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCAmelCase__: '''simple docstring''' def __init__( self : str , lowerCAmelCase : Any , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : int=False , lowerCAmelCase : Optional[int]=10 , lowerCAmelCase : str=3 , lowerCAmelCase : List[Any]=32 * 4 , lowerCAmelCase : int=32 * 6 , lowerCAmelCase : int=4 , lowerCAmelCase : Tuple=32 , ) -> int: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = is_training lowercase__ = use_auxiliary_loss lowercase__ = num_queries lowercase__ = num_channels lowercase__ = min_size lowercase__ = max_size lowercase__ = num_labels lowercase__ = mask_feature_size def UpperCAmelCase ( self : List[Any]) -> List[str]: """simple docstring""" lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( lowerCAmelCase) lowercase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase) lowercase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase) > 0.5 ).float() lowercase__ = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase) > 0.5).long() lowercase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_28 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.prepare_config_and_inputs() lowercase__ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" lowercase__ = output.encoder_hidden_states lowercase__ = output.pixel_decoder_hidden_states lowercase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCAmelCase) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowerCAmelCase) , len(config.backbone_config.depths)) self.parent.assertTrue(len(lowerCAmelCase) , config.decoder_config.decoder_layers) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : str=False) -> str: """simple docstring""" with torch.no_grad(): lowercase__ = MaskFormerModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() lowercase__ = model(pixel_values=lowerCAmelCase , pixel_mask=lowerCAmelCase) lowercase__ = model(lowerCAmelCase , output_hidden_states=lowerCAmelCase) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" lowercase__ = MaskFormerForInstanceSegmentation(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() def comm_check_on_output(lowerCAmelCase : List[Any]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): lowercase__ = model(pixel_values=lowerCAmelCase , pixel_mask=lowerCAmelCase) lowercase__ = model(lowerCAmelCase) comm_check_on_output(lowerCAmelCase) lowercase__ = model( pixel_values=lowerCAmelCase , pixel_mask=lowerCAmelCase , mask_labels=lowerCAmelCase , class_labels=lowerCAmelCase) comm_check_on_output(lowerCAmelCase) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Dict = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () A : Dict = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) A : Any = False A : Tuple = False A : Union[str, Any] = False A : List[str] = False def UpperCAmelCase ( self : Tuple) -> Dict: """simple docstring""" lowercase__ = MaskFormerModelTester(self) lowercase__ = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase) def UpperCAmelCase ( self : Tuple) -> int: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCAmelCase , **lowerCAmelCase , output_hidden_states=lowerCAmelCase) def UpperCAmelCase ( self : str) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCAmelCase) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def UpperCAmelCase ( self : str) -> int: """simple docstring""" pass @unittest.skip(reason='MaskFormer is not a generative model') def UpperCAmelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" pass @unittest.skip(reason='MaskFormer does not use token embeddings') def UpperCAmelCase ( self : str) -> Any: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCAmelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase ( self : str) -> Dict: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase) lowercase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase) @slow def UpperCAmelCase ( self : str) -> Optional[Any]: """simple docstring""" for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase__ = MaskFormerModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" lowercase__ = (self.model_tester.min_size,) * 2 lowercase__ = { 'pixel_values': torch.randn((2, 3, *size) , device=lowerCAmelCase), 'mask_labels': torch.randn((2, 10, *size) , device=lowerCAmelCase), 'class_labels': torch.zeros(2 , 10 , device=lowerCAmelCase).long(), } lowercase__ = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(lowerCAmelCase) lowercase__ = model(**lowerCAmelCase) self.assertTrue(outputs.loss is not None) def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowerCAmelCase , **lowerCAmelCase , output_hidden_states=lowerCAmelCase) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCAmelCase).to(lowerCAmelCase) lowercase__ = model(**lowerCAmelCase , output_attentions=lowerCAmelCase) self.assertTrue(outputs.attentions is not None) def UpperCAmelCase ( self : Union[str, Any]) -> Tuple: """simple docstring""" if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase__ = self.all_model_classes[1] lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.train() lowercase__ = model(lowerCAmelCase , mask_labels=lowerCAmelCase , class_labels=lowerCAmelCase).loss loss.backward() def UpperCAmelCase ( self : int) -> List[str]: """simple docstring""" lowercase__ = self.all_model_classes[1] lowercase__, lowercase__, lowercase__, lowercase__, lowercase__ = self.model_tester.prepare_config_and_inputs() lowercase__ = True lowercase__ = True lowercase__ = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.train() lowercase__ = model(lowerCAmelCase , mask_labels=lowerCAmelCase , class_labels=lowerCAmelCase) lowercase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCAmelCase) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) a__ : Any = 1E-4 def _lowerCAmelCase ( ): lowercase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : int) -> Any: """simple docstring""" return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" lowercase__ = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(lowerCAmelCase) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(lowerCAmelCase , return_tensors='pt').to(lowerCAmelCase) lowercase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowerCAmelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): lowercase__ = model(**lowerCAmelCase) lowercase__ = torch.tensor( [[-0.04_82, 0.92_28, 0.49_51], [-0.25_47, 0.80_17, 0.85_27], [-0.00_69, 0.33_85, -0.00_89]]).to(lowerCAmelCase) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) lowercase__ = torch.tensor( [[-0.84_22, -0.84_34, -0.97_18], [-1.01_44, -0.55_65, -0.41_95], [-1.00_38, -0.44_84, -0.19_61]]).to(lowerCAmelCase) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) lowercase__ = torch.tensor( [[0.28_52, -0.01_59, 0.97_35], [0.62_54, 0.18_58, 0.85_29], [-0.06_80, -0.41_16, 1.84_13]]).to(lowerCAmelCase) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) def UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" lowercase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(lowerCAmelCase) .eval() ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(lowerCAmelCase , return_tensors='pt').to(lowerCAmelCase) lowercase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowerCAmelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): lowercase__ = model(**lowerCAmelCase) # masks_queries_logits lowercase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase__ = [ [-1.3_73_71_24, -1.7_72_49_37, -1.9_36_42_33], [-1.5_97_72_81, -1.9_86_79_39, -2.1_52_36_95], [-1.5_79_53_98, -1.9_26_98_32, -2.09_39_42], ] lowercase__ = torch.tensor(lowerCAmelCase).to(lowerCAmelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) # class_queries_logits lowercase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) lowercase__ = torch.tensor( [ [1.6_5_1_2E0_0, -5.2_5_7_2E0_0, -3.3_5_1_9E0_0], [3.6_1_6_9E-0_2, -5.9_0_2_5E0_0, -2.9_3_1_3E0_0], [1.0_7_6_6E-0_4, -7.7_6_3_0E0_0, -5.1_2_6_3E0_0], ]).to(lowerCAmelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) def UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" lowercase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(lowerCAmelCase) .eval() ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(lowerCAmelCase , return_tensors='pt').to(lowerCAmelCase) lowercase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(lowerCAmelCase , (1, 3, 8_00, 10_88)) with torch.no_grad(): lowercase__ = model(**lowerCAmelCase) # masks_queries_logits lowercase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase__ = [[-0.90_46, -2.63_66, -4.60_62], [-3.41_79, -5.78_90, -8.80_57], [-4.91_79, -7.65_60, -10.77_11]] lowercase__ = torch.tensor(lowerCAmelCase).to(lowerCAmelCase) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) # class_queries_logits lowercase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) lowercase__ = torch.tensor( [[4.71_88, -3.25_85, -2.88_57], [6.68_71, -2.91_81, -1.24_87], [7.24_49, -2.27_64, -2.18_74]]).to(lowerCAmelCase) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase , atol=lowerCAmelCase)) def UpperCAmelCase ( self : Dict) -> Optional[int]: """simple docstring""" lowercase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(lowerCAmelCase) .eval() ) lowercase__ = self.default_image_processor lowercase__ = image_processor( [np.zeros((3, 8_00, 13_33)), np.zeros((3, 8_00, 13_33))] , segmentation_maps=[np.zeros((3_84, 3_84)).astype(np.floataa), np.zeros((3_84, 3_84)).astype(np.floataa)] , return_tensors='pt' , ) lowercase__ = inputs['pixel_values'].to(lowerCAmelCase) lowercase__ = [el.to(lowerCAmelCase) for el in inputs['mask_labels']] lowercase__ = [el.to(lowerCAmelCase) for el in inputs['class_labels']] with torch.no_grad(): lowercase__ = model(**lowerCAmelCase) self.assertTrue(outputs.loss is not None)
642
import cva import numpy as np class UpperCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : float , lowerCAmelCase : int) -> Dict: """simple docstring""" if k in (0.04, 0.06): lowercase__ = k lowercase__ = window_size else: raise ValueError('invalid k value') def __str__( self : Tuple) -> str: """simple docstring""" return str(self.k) def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : str) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" lowercase__ = cva.imread(lowerCAmelCase , 0) lowercase__, lowercase__ = img.shape lowercase__ = [] lowercase__ = img.copy() lowercase__ = cva.cvtColor(lowerCAmelCase , cva.COLOR_GRAY2RGB) lowercase__, lowercase__ = np.gradient(lowerCAmelCase) lowercase__ = dx**2 lowercase__ = dy**2 lowercase__ = dx * dy lowercase__ = 0.04 lowercase__ = self.window_size // 2 for y in range(lowerCAmelCase , h - offset): for x in range(lowerCAmelCase , w - offset): lowercase__ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowercase__ = (wxx * wyy) - (wxy**2) lowercase__ = wxx + wyy lowercase__ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r]) color_img.itemset((y, x, 0) , 0) color_img.itemset((y, x, 1) , 0) color_img.itemset((y, x, 2) , 2_55) return color_img, corner_list if __name__ == "__main__": a__ : Dict = HarrisCorner(0.0_4, 3) a__ , a__ : Dict = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
642
1
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowercase__ = ksize + 1 lowercase__ = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(A__ ): for x in range(A__ ): # distance from center lowercase__ = x - ksize // 2 lowercase__ = y - ksize // 2 # degree to radiant lowercase__ = theta / 180 * np.pi lowercase__ = np.cos(_theta ) lowercase__ = np.sin(_theta ) # get kernel x lowercase__ = cos_theta * px + sin_theta * py # get kernel y lowercase__ = -sin_theta * px + cos_theta * py # fill kernel lowercase__ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image a__ : Any = imread("../image_data/lena.jpg") # turn image in gray scale value a__ : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges a__ : List[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: a__ : Optional[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) a__ : List[Any] = out / out.max() * 2_55 a__ : str = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
642
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Dict = logging.get_logger(__name__) a__ : List[Any] = { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : int = "speech_to_text" A : Optional[Any] = ["past_key_values"] A : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Optional[int] , lowerCAmelCase : Tuple=1_00_00 , lowerCAmelCase : int=12 , lowerCAmelCase : int=20_48 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : str=6 , lowerCAmelCase : Dict=20_48 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Dict="relu" , lowerCAmelCase : Tuple=2_56 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Any=0.02 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Tuple=1 , lowerCAmelCase : List[str]=0 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : Any=60_00 , lowerCAmelCase : Optional[int]=10_24 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : Optional[Any]=(5, 5) , lowerCAmelCase : Union[str, Any]=10_24 , lowerCAmelCase : List[Any]=80 , lowerCAmelCase : List[str]=1 , **lowerCAmelCase : List[str] , ) -> Dict: """simple docstring""" lowercase__ = vocab_size lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = encoder_layerdrop lowercase__ = decoder_layerdrop lowercase__ = use_cache lowercase__ = encoder_layers lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = max_source_positions lowercase__ = max_target_positions lowercase__ = num_conv_layers lowercase__ = list(lowerCAmelCase) lowercase__ = conv_channels lowercase__ = input_feat_per_channel lowercase__ = input_channels if len(self.conv_kernel_sizes) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes)}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''') super().__init__( pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , is_encoder_decoder=lowerCAmelCase , decoder_start_token_id=lowerCAmelCase , **lowerCAmelCase , )
642
1