code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : List[Any] = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' debug_launcher(test_script.main ) def _lowerCamelCase ( self : int ): '''simple docstring''' debug_launcher(test_ops.main )
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = torch.load(snake_case_ , map_location='''cpu''' ) if "model" in sd.keys(): UpperCAmelCase_ : Dict = torch.load(snake_case_ , map_location='''cpu''' )["""model"""] # pop unnecessary weights UpperCAmelCase_ : int = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(snake_case_ ) UpperCAmelCase_ : str = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: UpperCAmelCase_ : Dict = sd.pop(snake_case_ ) UpperCAmelCase_ : List[str] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: UpperCAmelCase_ : Tuple = sd[key] # We split QKV in separate Q,K,V UpperCAmelCase_ : Optional[Any] = key.replace('''.qkv_proj.''' , '''.q_proj.''' ) UpperCAmelCase_ : Tuple = key.replace('''.qkv_proj.''' , '''.k_proj.''' ) UpperCAmelCase_ : List[str] = key.replace('''.qkv_proj.''' , '''.v_proj.''' ) UpperCAmelCase_ : Dict = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 UpperCAmelCase_ : List[str] = torch.split(snake_case_ , depth // 3 , dim=0 ) UpperCAmelCase_ : str = q UpperCAmelCase_ : int = k UpperCAmelCase_ : List[str] = v del sd[key] return sd @torch.no_grad() def snake_case_ ( __lowercase , __lowercase , __lowercase=None ): UpperCAmelCase_ : Any = load_checkpoint(snake_case_ ) if config is not None: UpperCAmelCase_ : Union[str, Any] = OPTConfig.from_pretrained(snake_case_ ) else: UpperCAmelCase_ : str = OPTConfig() UpperCAmelCase_ : Optional[Any] = OPTModel(snake_case_ ).half().eval() model.load_state_dict(snake_case_ ) # Check results Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') __UpperCamelCase : int = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self : Any , __snake_case : Optional[Any] , __snake_case : List[Any]=2 , __snake_case : Optional[int]=3 , __snake_case : int=4 , __snake_case : Union[str, Any]=2 , __snake_case : Tuple=7 , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Dict=True , __snake_case : List[Any]=True , __snake_case : List[str]=99 , __snake_case : int=36 , __snake_case : Dict=3 , __snake_case : Tuple=4 , __snake_case : Dict=37 , __snake_case : str="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Any=512 , __snake_case : str=16 , __snake_case : Union[str, Any]=2 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=6 , __snake_case : Union[str, Any]=6 , __snake_case : Optional[Any]=3 , __snake_case : int=4 , __snake_case : Tuple=None , __snake_case : str=1_000 , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : List[Any] = text_seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : Optional[int] = use_input_mask UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : int = max_position_embeddings UpperCAmelCase_ : Optional[Any] = type_vocab_size UpperCAmelCase_ : Tuple = type_sequence_label_size UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Dict = coordinate_size UpperCAmelCase_ : Optional[Any] = shape_size UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : Dict = num_choices UpperCAmelCase_ : Any = scope UpperCAmelCase_ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase_ : Any = text_seq_length UpperCAmelCase_ : Optional[Any] = (image_size // patch_size) ** 2 + 1 UpperCAmelCase_ : List[Any] = self.text_seq_length + self.image_seq_length def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : Tuple = bbox[i, j, 3] UpperCAmelCase_ : Optional[int] = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : str = bbox[i, j, 2] UpperCAmelCase_ : List[Any] = bbox[i, j, 0] UpperCAmelCase_ : List[Any] = t UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Any = None if self.use_input_mask: UpperCAmelCase_ : int = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase_ : str = None if self.use_token_type_ids: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase_ : Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCamelCase ( self : Any , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image UpperCAmelCase_ : List[str] = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCAmelCase_ : Union[str, Any] = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase_ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase_ : Tuple = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[str] , __snake_case : int , __snake_case : List[Any] , __snake_case : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : List[Any] = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Any = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Any , __snake_case : str , __snake_case : str , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.num_labels UpperCAmelCase_ : str = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : List[str] = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : int , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Dict , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Dict = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : List[Any] = config_and_inputs UpperCAmelCase_ : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): '''simple docstring''' A_ : Dict = False A_ : List[str] = False A_ : Dict = False A_ : Dict = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A_ : int = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = LayoutLMvaModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowerCamelCase ( self : Any , __snake_case : List[str] , __snake_case : List[str] , __snake_case : List[Any]=False ): '''simple docstring''' UpperCAmelCase_ : str = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): UpperCAmelCase_ : Optional[Any] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): UpperCAmelCase_ : List[Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): UpperCAmelCase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: UpperCAmelCase_ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: UpperCAmelCase_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Optional[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def snake_case_ ( ): UpperCAmelCase_ : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(UpperCamelCase__ ) UpperCAmelCase_ : Any = self.default_image_processor UpperCAmelCase_ : Dict = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values.to(UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = torch.tensor([[1, 2]] ) UpperCAmelCase_ : Optional[Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase_ : Dict = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) UpperCAmelCase_ : Tuple = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1E-4 ) )
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
def snake_case_ ( __lowercase ) -> List[str]: UpperCAmelCase_ : List[str] = [int(lowerCamelCase_ ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(lowerCamelCase_ ) == 4 and all(0 <= int(lowerCamelCase_ ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": __UpperCamelCase : str = input().strip() __UpperCamelCase : Optional[Any] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'{ip} is a {valid_or_invalid} IP v4 address.')
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase : Dict = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase : str = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase : Tuple = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) __UpperCamelCase : Tuple = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions __UpperCamelCase : Tuple = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) __UpperCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase : Tuple = np.expand_dims(test_image, axis=0) __UpperCamelCase : Optional[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase : Dict = "Normal" if result[0][0] == 1: __UpperCamelCase : Tuple = "Abnormality detected"
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case_ ( __lowercase ): return (data["data"], data["target"]) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : str = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(a__ , a__ ) # Predict target for test data UpperCAmelCase_ : Any = xgb.predict(a__ ) UpperCAmelCase_ : List[str] = predictions.reshape(len(a__ ) , 1 ) return predictions def snake_case_ ( ): UpperCAmelCase_ : Optional[int] = fetch_california_housing() UpperCAmelCase_ , UpperCAmelCase_ : Tuple = data_handling(a__ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = train_test_split( a__ , a__ , test_size=0.2_5 , random_state=1 ) UpperCAmelCase_ : Union[str, Any] = xgboost(a__ , a__ , a__ ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(a__ , a__ )}''' ) print(F'''Mean Square Error : {mean_squared_error(a__ , a__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase__( UpperCamelCase__ ): '''simple docstring''' A_ : List[Any] = ['image_processor', 'tokenizer'] A_ : Union[str, Any] = 'CLIPImageProcessor' A_ : Tuple = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self : Optional[int] , __snake_case : Dict=None , __snake_case : str=None , **__snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __A , ) UpperCAmelCase_ : Any = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__A , __A ) def __call__( self : Any , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : int=None , **__snake_case : int ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: UpperCAmelCase_ : Any = self.tokenizer(__A , return_tensors=__A , **__A ) if images is not None: UpperCAmelCase_ : str = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: UpperCAmelCase_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : List[Any] , **__snake_case : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*__A , **__A ) def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Dict , **__snake_case : Tuple ): '''simple docstring''' return self.tokenizer.decode(*__A , **__A ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.tokenizer.model_input_names UpperCAmelCase_ : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case_ ( __lowercase ): for param in module.parameters(): UpperCAmelCase_ : Tuple = False def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase_ : Union[str, Any] = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = plt.imshow(_UpperCAmelCase ) fig.axes.get_xaxis().set_visible(_UpperCAmelCase ) fig.axes.get_yaxis().set_visible(_UpperCAmelCase ) plt.show() def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = datetime.now() UpperCAmelCase_ : str = current_time.strftime('''%H:%M:%S''' ) return timestamp
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' A_ : Any = VQModel A_ : Optional[Any] = 'sample' @property def _lowerCamelCase ( self : List[str] , __snake_case : List[Any]=(32, 32) ): '''simple docstring''' UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : str = floats_tensor((batch_size, num_channels) + sizes ).to(__a ) return {"sample": image} @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return (3, 32, 32) @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return (3, 32, 32) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } UpperCAmelCase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=__a ) self.assertIsNotNone(__a ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__a ) UpperCAmelCase_ : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(__a ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase_ : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase_ : Optional[int] = image.to(__a ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__a ).sample UpperCAmelCase_ : int = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase_ : int = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) )
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = tempfile.mkdtemp() # fmt: off UpperCAmelCase_ : List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase_ : str = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } UpperCAmelCase_ : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__A , __A ) def _lowerCamelCase ( self : List[Any] , **__snake_case : Any ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : int , **__snake_case : List[str] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_ : Optional[int] = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = self.get_tokenizer() UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : List[str] = VisionTextDualEncoderProcessor(tokenizer=__A , image_processor=__A ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Dict = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase_ : int = self.get_image_processor(do_normalize=__A , padding_value=1.0 ) UpperCAmelCase_ : Tuple = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=__A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__A , image_processor=__A ) UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : Union[str, Any] = image_processor(__A , return_tensors='''np''' ) UpperCAmelCase_ : List[str] = processor(images=__A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = VisionTextDualEncoderProcessor(tokenizer=__A , image_processor=__A ) UpperCAmelCase_ : Any = '''lower newer''' UpperCAmelCase_ : Optional[int] = processor(text=__A ) UpperCAmelCase_ : Optional[Any] = tokenizer(__A ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=__A , image_processor=__A ) UpperCAmelCase_ : Dict = '''lower newer''' UpperCAmelCase_ : Any = self.prepare_image_inputs() UpperCAmelCase_ : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(__A ): processor() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = VisionTextDualEncoderProcessor(tokenizer=__A , image_processor=__A ) UpperCAmelCase_ : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : str = processor.batch_decode(__A ) UpperCAmelCase_ : Tuple = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.get_image_processor() UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Dict = VisionTextDualEncoderProcessor(tokenizer=__A , image_processor=__A ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : Dict = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
from itertools import product def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Dict = sides_number UpperCAmelCase_ : Optional[Any] = max_face_number * dice_number UpperCAmelCase_ : str = [0] * (max_total + 1) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : List[Any] = range(_lowerCamelCase , max_face_number + 1 ) for dice_numbers in product(_lowerCamelCase , repeat=_lowerCamelCase ): UpperCAmelCase_ : List[Any] = sum(_lowerCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) UpperCAmelCase_ : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 9 UpperCAmelCase_ : Union[str, Any] = 4 * 9 UpperCAmelCase_ : Optional[Any] = 6 for peter_total in range(_lowerCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) UpperCAmelCase_ : Union[str, Any] = (4**9) * (6**6) UpperCAmelCase_ : List[str] = peter_wins_count / total_games_number UpperCAmelCase_ : Dict = round(_lowerCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : int = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['GLPNFeatureExtractor'] __UpperCamelCase : List[str] = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
import re def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' ) if match := re.search(lowerCAmelCase__ , lowerCAmelCase__ ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('+918827897895'))
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = tempfile.mkdtemp() UpperCAmelCase_ : Optional[Any] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase_ : Optional[int] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], } UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase ( self : Dict , **__snake_case : Any ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : str ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCamelCase ( self : List[str] , **__snake_case : Tuple ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def _lowerCamelCase ( self : int ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = self.get_tokenizer() UpperCAmelCase_ : Any = self.get_rust_tokenizer() UpperCAmelCase_ : Any = self.get_image_processor() UpperCAmelCase_ : Optional[int] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Any = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCAmelCase_ : str = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) UpperCAmelCase_ : Dict = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Dict = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCAmelCase_ : List[str] = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = image_processor(UpperCamelCase__ , return_tensors='''np''' ) UpperCAmelCase_ : Tuple = processor(images=UpperCamelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Dict = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCAmelCase_ : List[Any] = '''lower newer''' UpperCAmelCase_ : Tuple = processor(text=UpperCamelCase__ ) UpperCAmelCase_ : Optional[int] = tokenizer(UpperCamelCase__ , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self.get_image_processor() UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCAmelCase_ : int = '''lower newer''' UpperCAmelCase_ : str = self.prepare_image_inputs() UpperCAmelCase_ : Tuple = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : List[Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCAmelCase_ : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : str = processor.batch_decode(UpperCamelCase__ ) UpperCAmelCase_ : List[str] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = AlignProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) UpperCAmelCase_ : str = '''lower newer''' UpperCAmelCase_ : str = self.prepare_image_inputs() UpperCAmelCase_ : Optional[Any] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar __UpperCamelCase : Dict = TypeVar('T') class lowerCAmelCase__( Generic[T] ): '''simple docstring''' def __init__( self : Tuple , __snake_case : List[Any] = True ): '''simple docstring''' UpperCAmelCase_ : List[str] = {} # dictionary of lists UpperCAmelCase_ : Tuple = directed def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any ): '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) self.adj_list[destination_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) UpperCAmelCase_ : Tuple = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__snake_case ) UpperCAmelCase_ : int = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: UpperCAmelCase_ : List[Any] = [destination_vertex] UpperCAmelCase_ : int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__snake_case ) UpperCAmelCase_ : Any = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: UpperCAmelCase_ : Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: UpperCAmelCase_ : int = [destination_vertex] UpperCAmelCase_ : Tuple = [] return self def __repr__( self : List[Any] ): '''simple docstring''' return pformat(self.adj_list )
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
import numpy as np def snake_case_ ( __lowercase ): return 1 / (1 + np.exp(-vector )) def snake_case_ ( __lowercase ): return vector * sigmoid(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod()
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = ['input_features', 'attention_mask'] def __init__( self : Optional[Any] , __snake_case : Union[str, Any]=80 , __snake_case : List[Any]=16_000 , __snake_case : Union[str, Any]=0.0 , __snake_case : int=10 , __snake_case : Any=25 , __snake_case : str="hamming_window" , __snake_case : str=32_768.0 , __snake_case : Any=0.97 , __snake_case : Union[str, Any]=1.0 , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : int=False , **__snake_case : Dict , ): '''simple docstring''' super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) UpperCAmelCase_ : Optional[Any] = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : int = padding_value UpperCAmelCase_ : Optional[Any] = hop_length UpperCAmelCase_ : Any = win_length UpperCAmelCase_ : List[str] = frame_signal_scale UpperCAmelCase_ : Union[str, Any] = preemphasis_coeff UpperCAmelCase_ : Tuple = mel_floor UpperCAmelCase_ : List[str] = normalize_means UpperCAmelCase_ : int = normalize_vars UpperCAmelCase_ : List[Any] = win_function UpperCAmelCase_ : int = return_attention_mask UpperCAmelCase_ : int = win_length * sampling_rate // 1_000 UpperCAmelCase_ : Tuple = hop_length * sampling_rate // 1_000 UpperCAmelCase_ : Tuple = optimal_fft_length(self.sample_size ) UpperCAmelCase_ : Any = (self.n_fft // 2) + 1 def _lowerCamelCase ( self : Optional[Any] , __snake_case : np.array ): '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase_ : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__snake_case ) else: UpperCAmelCase_ : Tuple = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase_ : Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase_ : Any = spectrogram( one_waveform * self.frame_signal_scale , window=__snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__snake_case , preemphasis=self.preemphasis_coeff , mel_filters=__snake_case , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' if self.normalize_means: UpperCAmelCase_ : Dict = x[:input_length].mean(axis=0 ) UpperCAmelCase_ : List[Any] = np.subtract(__snake_case , __snake_case ) if self.normalize_vars: UpperCAmelCase_ : Union[str, Any] = x[:input_length].std(axis=0 ) UpperCAmelCase_ : Any = np.divide(__snake_case , __snake_case ) if input_length < x.shape[0]: UpperCAmelCase_ : List[str] = padding_value # make sure array is in float32 UpperCAmelCase_ : Optional[int] = x.astype(np.floataa ) return x def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[np.ndarray] , __snake_case : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__snake_case , __snake_case , self.padding_value ) for x, n in zip(__snake_case , __snake_case )] def __call__( self : Union[str, Any] , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , **__snake_case : str , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase_ : int = isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase_ : int = is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : str = [np.asarray(__snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): UpperCAmelCase_ : Dict = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : str = [raw_speech] # extract fbank features UpperCAmelCase_ : Dict = [self._extract_mfsc_features(__snake_case ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase_ : List[str] = BatchFeature({'''input_features''': features} ) UpperCAmelCase_ : Optional[Any] = self.pad( __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) # make sure list is in array format UpperCAmelCase_ : List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __snake_case ): UpperCAmelCase_ : Optional[Any] = [np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] UpperCAmelCase_ : Optional[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase_ : List[Any] = [np.asarray(__snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase_ : str = ( np.array(__snake_case , dtype=np.intaa ) if self._get_padding_strategies(__snake_case , max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase_ : Tuple = self.normalize( padded_inputs['''input_features'''] , attention_mask=__snake_case ) if return_tensors is not None: UpperCAmelCase_ : List[str] = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self : Any , __snake_case : int , __snake_case : Tuple=13 , __snake_case : Any=30 , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=3 , __snake_case : Any=True , __snake_case : Union[str, Any]=True , __snake_case : Optional[int]=32 , __snake_case : Optional[Any]=2 , __snake_case : List[Any]=4 , __snake_case : List[str]=37 , __snake_case : Tuple="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[Any]=10 , __snake_case : str=0.02 , __snake_case : Dict=3 , __snake_case : int=None , __snake_case : Union[str, Any]=2 , ): '''simple docstring''' UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = type_sequence_label_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[int] = scope UpperCAmelCase_ : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase_ : Tuple = (image_size // patch_size) ** 2 UpperCAmelCase_ : Union[str, Any] = num_patches + 2 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Dict ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowerCamelCase ( self : List[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = TFDeiTModel(config=__snake_case ) UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFDeiTForMaskedImageModeling(config=__snake_case ) UpperCAmelCase_ : str = model(__snake_case ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase_ : str = 1 UpperCAmelCase_ : str = TFDeiTForMaskedImageModeling(__snake_case ) UpperCAmelCase_ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowerCamelCase ( self : Dict , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.type_sequence_label_size UpperCAmelCase_ : Dict = TFDeiTForImageClassification(__snake_case ) UpperCAmelCase_ : Tuple = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Union[str, Any] = TFDeiTForImageClassification(__snake_case ) UpperCAmelCase_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Any = config_and_inputs UpperCAmelCase_ : Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__( __A , __A , unittest.TestCase ): '''simple docstring''' A_ : Tuple = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) A_ : Tuple = ( { 'feature-extraction': TFDeiTModel, 'image-classification': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) A_ : str = False A_ : List[Any] = False A_ : int = False A_ : Union[str, Any] = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = TFDeiTModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''DeiT does not use inputs_embeds''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Union[str, Any] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase_ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , tf.keras.layers.Dense ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(__snake_case ) UpperCAmelCase_ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : List[Any] = [*signature.parameters.keys()] UpperCAmelCase_ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Tuple , __snake_case : Dict , __snake_case : List[Any]=False ): '''simple docstring''' UpperCAmelCase_ : List[str] = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = TFDeiTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ): UpperCAmelCase_ : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : int ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = TFDeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=__snake_case , return_tensors='''tf''' ) # forward pass UpperCAmelCase_ : Optional[Any] = model(**__snake_case ) # verify the logits UpperCAmelCase_ : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ : Tuple = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __UpperCamelCase : str = pytest.mark.integration @pytest.mark.parametrize('''path''' , ['''paws''', '''csv'''] ) def snake_case_ ( __lowercase , __lowercase ): inspect_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Optional[int] = path + '''.py''' assert script_name in os.listdir(lowerCAmelCase__ ) assert "__pycache__" not in os.listdir(lowerCAmelCase__ ) @pytest.mark.filterwarnings('''ignore:inspect_metric is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.parametrize('''path''' , ['''accuracy'''] ) def snake_case_ ( __lowercase , __lowercase ): inspect_metric(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase_ : Optional[Any] = path + '''.py''' assert script_name in os.listdir(lowerCAmelCase__ ) assert "__pycache__" not in os.listdir(lowerCAmelCase__ ) @pytest.mark.parametrize( '''path, config_name, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = get_dataset_config_info(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): with pytest.raises(lowerCAmelCase__ ): get_dataset_config_info(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) @pytest.mark.parametrize( '''path, expected''' , [ ('''squad''', '''plain_text'''), ('''acronym_identification''', '''default'''), ('''lhoestq/squad''', '''plain_text'''), ('''lhoestq/test''', '''default'''), ('''lhoestq/demo1''', '''lhoestq--demo1'''), ('''dalle-mini/wit''', '''dalle-mini--wit'''), ] , ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Dict = get_dataset_config_names(lowerCAmelCase__ ) assert expected in config_names @pytest.mark.parametrize( '''path, expected_configs, expected_splits_in_first_config''' , [ ('''squad''', ['''plain_text'''], ['''train''', '''validation''']), ('''dalle-mini/wit''', ['''dalle-mini--wit'''], ['''train''']), ('''paws''', ['''labeled_final''', '''labeled_swap''', '''unlabeled_final'''], ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = get_dataset_infos(lowerCAmelCase__ ) assert list(infos.keys() ) == expected_configs UpperCAmelCase_ : Any = expected_configs[0] assert expected_config in infos UpperCAmelCase_ : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( '''path, expected_config, expected_splits''' , [ ('''squad''', '''plain_text''', ['''train''', '''validation''']), ('''dalle-mini/wit''', '''dalle-mini--wit''', ['''train''']), ('''paws''', '''labeled_final''', ['''train''', '''test''', '''validation''']), ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = get_dataset_infos(lowerCAmelCase__ ) assert expected_config in infos UpperCAmelCase_ : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( '''path, config_name, expected_exception''' , [ ('''paws''', None, ValueError), ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): with pytest.raises(lowerCAmelCase__ ): get_dataset_split_names(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
def snake_case_ ( __lowercase = 1_0 , __lowercase = 1_0_0_0 , __lowercase = True ): assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def snake_case_ ( __lowercase , __lowercase ): return int((number_a + number_a) / 2 ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(__lowercase ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) UpperCAmelCase_ : Optional[int] = lower UpperCAmelCase_ : Tuple = higher UpperCAmelCase_ : Union[str, Any] = [] while True: UpperCAmelCase_ : Optional[int] = get_avg(lowerCAmelCase_ , lowerCAmelCase_ ) last_numbers.append(lowerCAmelCase_ ) if answer(lowerCAmelCase_ ) == "low": UpperCAmelCase_ : Any = number elif answer(lowerCAmelCase_ ) == "high": UpperCAmelCase_ : Optional[int] = number else: break print(F'''guess the number : {last_numbers[-1]}''' ) print(F'''details : {last_numbers!s}''' ) def snake_case_ ( ): UpperCAmelCase_ : Optional[int] = int(input('''Enter lower value : ''' ).strip() ) UpperCAmelCase_ : List[str] = int(input('''Enter high value : ''' ).strip() ) UpperCAmelCase_ : List[str] = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __UpperCamelCase : Optional[Any] = 'Create a default config file for Accelerate with only a few flags set.' def snake_case_ ( __lowercase="no" , __lowercase = default_json_config_file , __lowercase = False ): UpperCAmelCase_ : Tuple = Path(_snake_case ) path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False UpperCAmelCase_ : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) UpperCAmelCase_ : Tuple = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): UpperCAmelCase_ : Union[str, Any] = torch.cuda.device_count() UpperCAmelCase_ : Tuple = num_gpus UpperCAmelCase_ : int = False if num_gpus > 1: UpperCAmelCase_ : List[str] = '''MULTI_GPU''' else: UpperCAmelCase_ : str = '''NO''' elif is_xpu_available() and use_xpu: UpperCAmelCase_ : Optional[Any] = torch.xpu.device_count() UpperCAmelCase_ : List[Any] = num_xpus UpperCAmelCase_ : int = False if num_xpus > 1: UpperCAmelCase_ : Any = '''MULTI_XPU''' else: UpperCAmelCase_ : Union[str, Any] = '''NO''' elif is_npu_available(): UpperCAmelCase_ : Union[str, Any] = torch.npu.device_count() UpperCAmelCase_ : Dict = num_npus UpperCAmelCase_ : int = False if num_npus > 1: UpperCAmelCase_ : List[Any] = '''MULTI_NPU''' else: UpperCAmelCase_ : Dict = '''NO''' else: UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : int = True UpperCAmelCase_ : str = 1 UpperCAmelCase_ : List[str] = '''NO''' UpperCAmelCase_ : Optional[int] = ClusterConfig(**_snake_case ) config.to_json_file(_snake_case ) return path def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = parser.add_parser('''default''' , parents=_snake_case , help=_snake_case , formatter_class=_snake_case ) parser.add_argument( '''--config_file''' , default=_snake_case , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_snake_case , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_snake_case ) return parser def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” __UpperCamelCase : int = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __UpperCamelCase : List[str] = 0 __UpperCamelCase : Tuple = 0xe000 __UpperCamelCase : str = 0xe001 __UpperCamelCase : Dict = 0xe002 __UpperCamelCase : str = 0xe003 __UpperCamelCase : str = 0xe004 # Maps special codepoints to human-readable names. __UpperCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __UpperCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase__( lowerCAmelCase__ ): '''simple docstring''' A_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __snake_case : Tuple=chr(_SCREAMING_SNAKE_CASE ) , __snake_case : Dict=chr(_SCREAMING_SNAKE_CASE ) , __snake_case : List[Any]=chr(_SCREAMING_SNAKE_CASE ) , __snake_case : Optional[int]=chr(_SCREAMING_SNAKE_CASE ) , __snake_case : Any=chr(_SCREAMING_SNAKE_CASE ) , __snake_case : Dict=chr(_SCREAMING_SNAKE_CASE ) , __snake_case : Dict=False , __snake_case : List[str]=2_048 , **__snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else bos_token UpperCAmelCase_ : int = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else eos_token UpperCAmelCase_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else sep_token UpperCAmelCase_ : int = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else cls_token UpperCAmelCase_ : Optional[Any] = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken(_SCREAMING_SNAKE_CASE , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else mask_token super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , add_prefix_space=_SCREAMING_SNAKE_CASE , model_max_length=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase_ : List[str] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase_ : Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase_ : Any = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase_ : Any = UNICODE_VOCAB_SIZE UpperCAmelCase_ : Optional[Any] = len(self._special_codepoints ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self._unicode_vocab_size def _lowerCamelCase ( self : Tuple , __snake_case : List[Any] ): '''simple docstring''' return list(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self : int , __snake_case : Dict ): '''simple docstring''' try: return ord(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _lowerCamelCase ( self : List[Any] , __snake_case : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(_SCREAMING_SNAKE_CASE ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _lowerCamelCase ( self : List[str] , __snake_case : Dict ): '''simple docstring''' return "".join(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Any , __snake_case : List[Any] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] UpperCAmelCase_ : Dict = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _lowerCamelCase ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] = None , __snake_case : Optional[Any] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: result += ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return result def _lowerCamelCase ( self : Dict , __snake_case : List[Any] , __snake_case : Tuple = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : str = [self.cls_token_id] UpperCAmelCase_ : List[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _lowerCamelCase ( self : Tuple , __snake_case : Optional[int] , __snake_case : Optional[Any] = None ): '''simple docstring''' return ()
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __UpperCamelCase : str = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = {} state_dict.pop('''pixel_mean''' , A_ ) state_dict.pop('''pixel_std''' , A_ ) UpperCAmelCase_ : Tuple = R'''.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*''' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ : Tuple = key.replace(A_ , A_ ) if re.match(A_ , A_ ): UpperCAmelCase_ : List[str] = int(re.match(A_ , A_ ).group(2 ) ) if layer_nb == 0: UpperCAmelCase_ : Union[str, Any] = key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: UpperCAmelCase_ : Union[str, Any] = key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: UpperCAmelCase_ : Optional[int] = key.replace('''layers.2''' , '''proj_out''' ) UpperCAmelCase_ : int = value UpperCAmelCase_ : Dict = model_state_dict[ '''prompt_encoder.shared_embedding.positional_embedding''' ] return model_state_dict def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase="ybelkada/segment-anything" ): UpperCAmelCase_ : int = hf_hub_download(A_ , F'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: UpperCAmelCase_ : Optional[Any] = SamConfig() elif "sam_vit_l" in model_name: UpperCAmelCase_ : Optional[Any] = SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) UpperCAmelCase_ : str = SamConfig( vision_config=A_ , ) elif "sam_vit_h" in model_name: UpperCAmelCase_ : str = SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) UpperCAmelCase_ : Union[str, Any] = SamConfig( vision_config=A_ , ) UpperCAmelCase_ : Optional[Any] = torch.load(A_ , map_location='''cpu''' ) UpperCAmelCase_ : Dict = replace_keys(A_ ) UpperCAmelCase_ : Optional[int] = SamImageProcessor() UpperCAmelCase_ : List[str] = SamProcessor(image_processor=A_ ) UpperCAmelCase_ : Dict = SamModel(A_ ) hf_model.load_state_dict(A_ ) UpperCAmelCase_ : Union[str, Any] = hf_model.to('''cuda''' ) UpperCAmelCase_ : str = '''https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png''' UpperCAmelCase_ : int = Image.open(requests.get(A_ , stream=A_ ).raw ).convert('''RGB''' ) UpperCAmelCase_ : str = [[[4_0_0, 6_5_0]]] UpperCAmelCase_ : List[str] = [[1]] UpperCAmelCase_ : Union[str, Any] = processor(images=np.array(A_ ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = hf_model(**A_ ) UpperCAmelCase_ : List[str] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 UpperCAmelCase_ : Any = processor( images=np.array(A_ ) , input_points=A_ , input_labels=A_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): UpperCAmelCase_ : Tuple = hf_model(**A_ ) UpperCAmelCase_ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 UpperCAmelCase_ : Optional[int] = ((7_5, 2_7_5, 1_7_2_5, 8_5_0),) UpperCAmelCase_ : Union[str, Any] = processor(images=np.array(A_ ) , input_boxes=A_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = hf_model(**A_ ) UpperCAmelCase_ : Tuple = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. UpperCAmelCase_ : Optional[int] = [[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] UpperCAmelCase_ : str = [[1, 1]] UpperCAmelCase_ : str = processor( images=np.array(A_ ) , input_points=A_ , input_labels=A_ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): UpperCAmelCase_ : List[str] = hf_model(**A_ ) UpperCAmelCase_ : List[Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) __UpperCamelCase : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCAmelCase_ : List[Any] = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(__lowercase ): os.makedirs(__lowercase ) UpperCAmelCase_ : Union[str, Any] = model.state_dict() def to_tf_var_name(__lowercase ): for patt, repl in iter(__lowercase ): UpperCAmelCase_ : Optional[Any] = name.replace(__lowercase , __lowercase ) return F'''bert/{name}''' def create_tf_var(__lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = tf.dtypes.as_dtype(tensor.dtype ) UpperCAmelCase_ : List[Any] = tf.get_variable(dtype=__lowercase , shape=tensor.shape , name=__lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCAmelCase_ : Optional[Any] = to_tf_var_name(__lowercase ) UpperCAmelCase_ : List[Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCAmelCase_ : Any = torch_tensor.T UpperCAmelCase_ : int = create_tf_var(tensor=__lowercase , name=__lowercase , session=__lowercase ) tf.keras.backend.set_value(__lowercase , __lowercase ) UpperCAmelCase_ : List[Any] = session.run(__lowercase ) print(F'''Successfully created {tf_name}: {np.allclose(__lowercase , __lowercase )}''' ) UpperCAmelCase_ : Optional[int] = tf.train.Saver(tf.trainable_variables() ) saver.save(__lowercase , os.path.join(__lowercase , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def snake_case_ ( __lowercase=None ): UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__lowercase , required=__lowercase , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__lowercase , default=__lowercase , required=__lowercase , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__lowercase , required=__lowercase , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__lowercase , required=__lowercase , help='''Directory in which to save tensorflow model''' ) UpperCAmelCase_ : Tuple = parser.parse_args(__lowercase ) UpperCAmelCase_ : Optional[int] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = '▁' __UpperCamelCase : List[str] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } __UpperCamelCase : Dict = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } __UpperCamelCase : str = { 'facebook/s2t-small-librispeech-asr': 1024, } __UpperCamelCase : Tuple = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] __UpperCamelCase : Union[str, Any] = {'mustc': MUSTC_LANGS} class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Tuple = MAX_MODEL_INPUT_SIZES A_ : Union[str, Any] = ['input_ids', 'attention_mask'] A_ : List[str] = [] def __init__( self : int , __snake_case : int , __snake_case : int , __snake_case : Optional[Any]="<s>" , __snake_case : str="</s>" , __snake_case : Optional[Any]="<pad>" , __snake_case : Any="<unk>" , __snake_case : str=False , __snake_case : List[Any]=False , __snake_case : Optional[int]=None , __snake_case : Optional[int]=None , __snake_case : int = None , **__snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , pad_token=__a , do_upper_case=__a , do_lower_case=__a , tgt_lang=__a , lang_codes=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) UpperCAmelCase_ : Optional[Any] = do_upper_case UpperCAmelCase_ : int = do_lower_case UpperCAmelCase_ : int = load_json(__a ) UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Dict = spm_file UpperCAmelCase_ : Tuple = load_spm(__a , self.sp_model_kwargs ) if lang_codes is not None: UpperCAmelCase_ : str = lang_codes UpperCAmelCase_ : int = LANGUAGES[lang_codes] UpperCAmelCase_ : Optional[Any] = [f'''<lang:{lang}>''' for lang in self.langs] UpperCAmelCase_ : int = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs} UpperCAmelCase_ : int = self.lang_tokens UpperCAmelCase_ : Dict = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCAmelCase_ : Optional[Any] = {} @property def _lowerCamelCase ( self : str ): '''simple docstring''' return len(self.encoder ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def _lowerCamelCase ( self : int , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = new_tgt_lang self.set_tgt_lang_special_tokens(__a ) def _lowerCamelCase ( self : Dict , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ : List[Any] = [lang_code_id] def _lowerCamelCase ( self : List[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' return self.sp_model.encode(__a , out_type=__a ) def _lowerCamelCase ( self : Tuple , __snake_case : Optional[int] ): '''simple docstring''' return self.encoder.get(__a , self.encoder[self.unk_token] ) def _lowerCamelCase ( self : Tuple , __snake_case : int ): '''simple docstring''' return self.decoder.get(__a , self.unk_token ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase_ : Any = self.sp_model.decode(__a ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase_ : str = [] else: current_sub_tokens.append(__a ) UpperCAmelCase_ : List[str] = self.sp_model.decode(__a ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _lowerCamelCase ( self : int , __snake_case : List[Any] , __snake_case : Tuple=None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : Tuple , __snake_case : Optional[int] , __snake_case : str = None , __snake_case : Union[str, Any] = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) UpperCAmelCase_ : Tuple = [1] * len(self.prefix_tokens ) UpperCAmelCase_ : List[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.__dict__.copy() UpperCAmelCase_ : Dict = None return state def __setstate__( self : Optional[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def _lowerCamelCase ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = Path(__a ) assert save_dir.is_dir(), f'''{save_directory} should be a directory''' UpperCAmelCase_ : int = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) UpperCAmelCase_ : Optional[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , '''wb''' ) as fi: UpperCAmelCase_ : int = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def snake_case_ ( __lowercase , __lowercase ) -> sentencepiece.SentencePieceProcessor: UpperCAmelCase_ : Optional[Any] = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def snake_case_ ( __lowercase ) -> Union[Dict, List]: with open(__snake_case , '''r''' ) as f: return json.load(__snake_case ) def snake_case_ ( __lowercase , __lowercase ) -> None: with open(__snake_case , '''w''' ) as f: json.dump(__snake_case , __snake_case , indent=2 )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __UpperCamelCase : str = get_logger(__name__) class lowerCAmelCase__( enum.Enum ): '''simple docstring''' A_ : Optional[int] = 'all_checks' A_ : str = 'basic_checks' A_ : Optional[Any] = 'no_checks' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' def snake_case_ ( __lowercase , __lowercase , __lowercase=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) ) if len(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) ) UpperCAmelCase_ : List[str] = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase_ : int = """ for """ + verification_name if verification_name is not None else """""" if len(lowerCamelCase_ ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class lowerCAmelCase__( lowercase_ ): '''simple docstring''' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' class lowerCAmelCase__( lowercase_ ): '''simple docstring''' def snake_case_ ( __lowercase , __lowercase ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) > 0: raise ExpectedMoreSplits(str(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) ) if len(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) > 0: raise UnexpectedSplits(str(set(lowerCamelCase_ ) - set(lowerCamelCase_ ) ) ) UpperCAmelCase_ : List[Any] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowerCamelCase_ ) > 0: raise NonMatchingSplitsSizesError(str(lowerCamelCase_ ) ) logger.info('''All the splits matched successfully.''' ) def snake_case_ ( __lowercase , __lowercase = True ): if record_checksum: UpperCAmelCase_ : Union[str, Any] = shaaaa() with open(lowerCamelCase_ , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B'''''' ): m.update(lowerCamelCase_ ) UpperCAmelCase_ : List[Any] = m.hexdigest() else: UpperCAmelCase_ : Any = None return {"num_bytes": os.path.getsize(lowerCamelCase_ ), "checksum": checksum} def snake_case_ ( __lowercase ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Any = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class lowerCAmelCase__( _UpperCamelCase ): '''simple docstring''' A_ : Optional[int] = 'xmod' def __init__( self : List[str] , __snake_case : List[str]=30_522 , __snake_case : Union[str, Any]=768 , __snake_case : Tuple=12 , __snake_case : List[Any]=12 , __snake_case : Optional[int]=3_072 , __snake_case : Dict="gelu" , __snake_case : str=0.1 , __snake_case : Dict=0.1 , __snake_case : Optional[Any]=512 , __snake_case : Dict=2 , __snake_case : List[str]=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : Dict=1 , __snake_case : Optional[Any]=0 , __snake_case : List[Any]=2 , __snake_case : Any="absolute" , __snake_case : Union[str, Any]=True , __snake_case : List[str]=None , __snake_case : Optional[Any]=False , __snake_case : Optional[Any]=2 , __snake_case : Any=False , __snake_case : Union[str, Any]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=("en_XX",) , __snake_case : Any=None , **__snake_case : Any , ): '''simple docstring''' super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : int = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : int = type_vocab_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : int = position_embedding_type UpperCAmelCase_ : List[str] = use_cache UpperCAmelCase_ : Union[str, Any] = classifier_dropout UpperCAmelCase_ : Tuple = pre_norm UpperCAmelCase_ : str = adapter_reduction_factor UpperCAmelCase_ : int = adapter_layer_norm UpperCAmelCase_ : Any = adapter_reuse_layer_norm UpperCAmelCase_ : List[str] = ln_before_adapter UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : Optional[int] = default_language class lowerCAmelCase__( _UpperCamelCase ): '''simple docstring''' @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import re import string import numpy as np import datasets __UpperCamelCase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' __UpperCamelCase : Tuple = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n' __UpperCamelCase : str = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , reference_urls=[] , ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Dict=None , __snake_case : Optional[Any]=False , __snake_case : Any=False , __snake_case : List[str]=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: UpperCAmelCase_ : Tuple = np.array([re.sub(lowercase_ , '''''' , lowercase_ ) for x in predictions] ) UpperCAmelCase_ : int = np.array([re.sub(lowercase_ , '''''' , lowercase_ ) for x in references] ) else: UpperCAmelCase_ : Optional[int] = np.asarray(lowercase_ ) UpperCAmelCase_ : int = np.asarray(lowercase_ ) if ignore_case: UpperCAmelCase_ : Any = np.char.lower(lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.char.lower(lowercase_ ) if ignore_punctuation: UpperCAmelCase_ : Optional[Any] = string.punctuation.maketrans('''''' , '''''' , string.punctuation ) UpperCAmelCase_ : str = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase_ : Optional[Any] = np.char.translate(lowercase_ , table=lowercase_ ) if ignore_numbers: UpperCAmelCase_ : List[str] = string.digits.maketrans('''''' , '''''' , string.digits ) UpperCAmelCase_ : Any = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase_ : List[Any] = np.char.translate(lowercase_ , table=lowercase_ ) UpperCAmelCase_ : Any = predictions == references return {"exact_match": np.mean(lowercase_ ) * 100}
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Any = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase__( __lowerCAmelCase ): '''simple docstring''' A_ : Optional[int] = '''donut-swin''' A_ : str = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Tuple , __snake_case : Union[str, Any]=224 , __snake_case : str=4 , __snake_case : Union[str, Any]=3 , __snake_case : Optional[int]=96 , __snake_case : Tuple=[2, 2, 6, 2] , __snake_case : Tuple=[3, 6, 12, 24] , __snake_case : str=7 , __snake_case : List[Any]=4.0 , __snake_case : List[str]=True , __snake_case : Tuple=0.0 , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[Any]="gelu" , __snake_case : int=False , __snake_case : str=0.02 , __snake_case : List[str]=1E-5 , **__snake_case : Union[str, Any] , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : Any = patch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : Optional[Any] = len(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = num_heads UpperCAmelCase_ : Optional[int] = window_size UpperCAmelCase_ : List[str] = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = drop_path_rate UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Union[str, Any] = use_absolute_embeddings UpperCAmelCase_ : str = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : Any = int(embed_dim * 2 ** (len(lowerCAmelCase_ ) - 1) )
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
__UpperCamelCase : List[str] = 0 # The first color of the flag. __UpperCamelCase : Any = 1 # The second color of the flag. __UpperCamelCase : Union[str, Any] = 2 # The third color of the flag. __UpperCamelCase : Union[str, Any] = (red, white, blue) def snake_case_ ( __lowercase : List[str] ): if not sequence: return [] if len(__lowercase ) == 1: return list(__lowercase ) UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Any = len(__lowercase ) - 1 UpperCAmelCase_ : str = 0 while mid <= high: if sequence[mid] == colors[0]: UpperCAmelCase_ : Optional[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: UpperCAmelCase_ : List[str] = sequence[high], sequence[mid] high -= 1 else: UpperCAmelCase_ : int = F'''The elements inside the sequence must contains only {colors} values''' raise ValueError(__lowercase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Union[str, Any] = input('Enter numbers separated by commas:\n').strip() __UpperCamelCase : Optional[Any] = [int(item.strip()) for item in user_input.split(',')] print(F'{dutch_national_flag_sort(unsorted)}')
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( __lowercase , __lowercase ): assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = tmp_path / "cache" UpperCAmelCase_ : Any = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Union[str, Any] = TextDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = tmp_path / "cache" UpperCAmelCase_ : Optional[Any] = {"text": "string"} UpperCAmelCase_ : int = features.copy() if features else default_expected_features UpperCAmelCase_ : List[str] = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : str = TextDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = tmp_path / "cache" UpperCAmelCase_ : Tuple = {"text": "string"} UpperCAmelCase_ : List[Any] = TextDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if issubclass(__lowercase , __lowercase ): UpperCAmelCase_ : Tuple = text_path elif issubclass(__lowercase , __lowercase ): UpperCAmelCase_ : Union[str, Any] = [text_path] UpperCAmelCase_ : List[Any] = tmp_path / "cache" UpperCAmelCase_ : str = {"text": "string"} UpperCAmelCase_ : Dict = TextDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) def snake_case_ ( __lowercase , __lowercase , __lowercase=("train",) ): assert isinstance(__lowercase , __lowercase ) for split in splits: UpperCAmelCase_ : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = tmp_path / "cache" UpperCAmelCase_ : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Tuple = TextDatasetReader({'''train''': text_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase_ : Optional[int] = {"text": "string"} UpperCAmelCase_ : List[str] = features.copy() if features else default_expected_features UpperCAmelCase_ : str = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Union[str, Any] = TextDatasetReader({'''train''': text_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if split: UpperCAmelCase_ : int = {split: text_path} else: UpperCAmelCase_ : str = "train" UpperCAmelCase_ : int = {"train": text_path, "test": text_path} UpperCAmelCase_ : Any = tmp_path / "cache" UpperCAmelCase_ : Optional[Any] = {"text": "string"} UpperCAmelCase_ : List[Any] = TextDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCAmelCase_ : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase_ : str = '''''' else: UpperCAmelCase_ : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ : Optional[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-config.hidden_size :] def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__a , __a ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = dct.pop(__a ) UpperCAmelCase_ : str = val def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = ViTConfig() UpperCAmelCase_ : int = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[str] = int(vit_name[-1_2:-1_0] ) UpperCAmelCase_ : str = int(vit_name[-9:-6] ) else: UpperCAmelCase_ : Any = 1_0_0_0 UpperCAmelCase_ : Optional[int] = '''huggingface/label-files''' UpperCAmelCase_ : Dict = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : Optional[Any] = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : List[Any] = {int(__a ): v for k, v in idalabel.items()} UpperCAmelCase_ : int = idalabel UpperCAmelCase_ : Union[str, Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = int(vit_name[-6:-4] ) UpperCAmelCase_ : Dict = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): UpperCAmelCase_ : Optional[Any] = 1_9_2 UpperCAmelCase_ : Dict = 7_6_8 UpperCAmelCase_ : List[Any] = 1_2 UpperCAmelCase_ : Optional[Any] = 3 elif vit_name[9:].startswith('''small''' ): UpperCAmelCase_ : Union[str, Any] = 3_8_4 UpperCAmelCase_ : Optional[int] = 1_5_3_6 UpperCAmelCase_ : Union[str, Any] = 1_2 UpperCAmelCase_ : Tuple = 6 else: pass else: if vit_name[4:].startswith('''small''' ): UpperCAmelCase_ : Any = 7_6_8 UpperCAmelCase_ : str = 2_3_0_4 UpperCAmelCase_ : Optional[int] = 8 UpperCAmelCase_ : List[Any] = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): UpperCAmelCase_ : Tuple = 1_0_2_4 UpperCAmelCase_ : Optional[Any] = 4_0_9_6 UpperCAmelCase_ : Optional[Any] = 2_4 UpperCAmelCase_ : Union[str, Any] = 1_6 elif vit_name[4:].startswith('''huge''' ): UpperCAmelCase_ : Tuple = 1_2_8_0 UpperCAmelCase_ : Union[str, Any] = 5_1_2_0 UpperCAmelCase_ : Optional[Any] = 3_2 UpperCAmelCase_ : List[str] = 1_6 # load original model from timm UpperCAmelCase_ : str = timm.create_model(__a , pretrained=__a ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Tuple = timm_model.state_dict() if base_model: remove_classification_head_(__a ) UpperCAmelCase_ : List[str] = create_rename_keys(__a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if vit_name[-5:] == "in21k": UpperCAmelCase_ : Optional[Any] = ViTModel(__a ).eval() else: UpperCAmelCase_ : Optional[Any] = ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: UpperCAmelCase_ : str = DeiTImageProcessor(size=config.image_size ) else: UpperCAmelCase_ : Union[str, Any] = ViTImageProcessor(size=config.image_size ) UpperCAmelCase_ : Optional[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = encoding['''pixel_values'''] UpperCAmelCase_ : Dict = model(__a ) if base_model: UpperCAmelCase_ : Tuple = timm_model.forward_features(__a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__a , outputs.pooler_output , atol=1e-3 ) else: UpperCAmelCase_ : int = timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) Path(__a ).mkdir(exist_ok=__a ) print(F'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCamelCase : Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__( datasets.BuilderConfig ): '''simple docstring''' A_ : Optional[datasets.Features] = None A_ : str = "utf-8" A_ : Optional[str] = None A_ : Optional[str] = None A_ : bool = True # deprecated A_ : Optional[int] = None # deprecated A_ : int = 1_0 << 2_0 # 10MB A_ : Optional[bool] = None class lowerCAmelCase__( datasets.ArrowBasedBuilder ): '''simple docstring''' A_ : int = JsonConfig def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) UpperCAmelCase_ : List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self : Dict , __snake_case : str ): '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCAmelCase_ : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): UpperCAmelCase_ : List[Any] = data_files if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Dict = [files] UpperCAmelCase_ : str = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase_ : List[str] = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : int = [files] UpperCAmelCase_ : Optional[int] = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={'''files''': files} ) ) return splits def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ : Optional[int] = self.config.features.arrow_schema.field(snake_case_ ).type UpperCAmelCase_ : Union[str, Any] = pa_table.append_column(snake_case_ , pa.array([None] * len(snake_case_ ) , type=snake_case_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ : Tuple = table_cast(snake_case_ , self.config.features.arrow_schema ) return pa_table def _lowerCamelCase ( self : Union[str, Any] , __snake_case : int ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(snake_case_ ) # We keep only the field we are interested in UpperCAmelCase_ : List[str] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case_ , (list, tuple) ): UpperCAmelCase_ : Any = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : str = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} else: UpperCAmelCase_ : List[str] = dataset UpperCAmelCase_ : Tuple = pa.Table.from_pydict(snake_case_ ) yield file_idx, self._cast_table(snake_case_ ) # If the file has one json object per line else: with open(snake_case_ , '''rb''' ) as f: UpperCAmelCase_ : Union[str, Any] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ : Optional[Any] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ : Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else "strict" ) while True: UpperCAmelCase_ : int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ : Optional[int] = batch.decode(self.config.encoding , errors=snake_case_ ).encode('''utf-8''' ) try: while True: try: UpperCAmelCase_ : List[Any] = paj.read_json( io.BytesIO(snake_case_ ) , read_options=paj.ReadOptions(block_size=snake_case_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case_ , pa.ArrowInvalid ) and "straddling" not in str(snake_case_ ) or block_size > len(snake_case_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(snake_case_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : Optional[Any] = json.load(snake_case_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case_ , snake_case_ ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : Union[str, Any] = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} UpperCAmelCase_ : Union[str, Any] = pa.Table.from_pydict(snake_case_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(snake_case_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) batch_idx += 1
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , __snake_case : int , __snake_case : int=13 , __snake_case : int=3 , __snake_case : str=224 , __snake_case : str=30 , __snake_case : Dict=400 , __snake_case : Any=True , __snake_case : Dict=None , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=[0.5, 0.5, 0.5] , __snake_case : Optional[int]=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : Optional[int] = min_resolution UpperCAmelCase_ : str = max_resolution UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : Optional[int] = image_mean UpperCAmelCase_ : Union[str, Any] = image_std def _lowerCamelCase ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase__( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ViTImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Any = EfficientFormerImageProcessorTester(self ) @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase__ , '''size''' ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Tuple = image_processor(UpperCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel __UpperCamelCase : int = logging.getLogger(__name__) def snake_case_ ( __lowercase , __lowercase ): # save results if os.path.exists(_lowerCAmelCase ): if os.path.exists(os.path.join(_lowerCAmelCase , '''config.json''' ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , '''config.json''' ) ): os.remove(os.path.join(_lowerCAmelCase , '''config.json''' ) ) if os.path.exists(os.path.join(_lowerCAmelCase , '''pytorch_model.bin''' ) ) and os.path.isfile( os.path.join(_lowerCAmelCase , '''pytorch_model.bin''' ) ): os.remove(os.path.join(_lowerCAmelCase , '''pytorch_model.bin''' ) ) else: os.makedirs(_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[Any] = 2 if unlogit: UpperCAmelCase_ : Optional[int] = torch.pow(_lowerCAmelCase , _lowerCAmelCase ) UpperCAmelCase_ : List[str] = p * torch.log(_lowerCAmelCase ) UpperCAmelCase_ : Tuple = 0 return -plogp.sum(dim=-1 ) def snake_case_ ( __lowercase ): logger.info('''lv, h >\t''' + '''\t'''.join(F'''{x + 1}''' for x in range(len(_lowerCAmelCase ) ) ) ) for row in range(len(_lowerCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + '''\t'''.join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=True , __lowercase=True , __lowercase=None , __lowercase=False ): UpperCAmelCase_ , UpperCAmelCase_ : int = model.config.num_hidden_layers, model.config.num_attention_heads UpperCAmelCase_ : int = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) UpperCAmelCase_ : Tuple = torch.zeros(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) if head_mask is None: UpperCAmelCase_ : str = torch.ones(_lowerCAmelCase , _lowerCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_lowerCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[int] = 0.0 UpperCAmelCase_ : str = 0.0 for step, inputs in enumerate(tqdm(_lowerCAmelCase , desc='''Iteration''' , disable=args.local_rank not in [-1, 0] ) ): UpperCAmelCase_ : int = tuple(t.to(args.device ) for t in inputs ) ((UpperCAmelCase_ ) , ) : List[str] = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) UpperCAmelCase_ : Dict = model(_lowerCAmelCase , labels=_lowerCAmelCase , head_mask=_lowerCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_lowerCAmelCase ): UpperCAmelCase_ : Any = entropy(attn.detach() , _lowerCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_lowerCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : List[str] = torch.pow(torch.pow(_lowerCAmelCase , _lowerCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20 if not args.dont_normalize_global_importance: UpperCAmelCase_ : Optional[Any] = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('''Attention entropies''' ) print_ad_tensor(_lowerCAmelCase ) if compute_importance: logger.info('''Head importance scores''' ) print_ad_tensor(_lowerCAmelCase ) logger.info('''Head ranked by importance scores''' ) UpperCAmelCase_ : List[str] = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) UpperCAmelCase_ : int = torch.arange( head_importance.numel() , device=args.device ) UpperCAmelCase_ : Dict = head_ranks.view_as(_lowerCAmelCase ) print_ad_tensor(_lowerCAmelCase ) return attn_entropy, head_importance, total_loss def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = 1 / loss # instead of downsteam score use the LM loss logger.info('''Pruning: original score: %f, threshold: %f''' , _lowerCAmelCase , original_score * args.masking_threshold ) UpperCAmelCase_ : Dict = torch.ones_like(_lowerCAmelCase ) UpperCAmelCase_ : List[str] = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) UpperCAmelCase_ : Any = original_score while current_score >= original_score * args.masking_threshold: UpperCAmelCase_ : Any = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads UpperCAmelCase_ : Optional[int] = float('''Inf''' ) UpperCAmelCase_ : str = head_importance.view(-1 ).sort()[1] if len(_lowerCAmelCase ) <= num_to_mask: print('''BREAK BY num_to_mask''' ) break # mask heads UpperCAmelCase_ : Any = current_heads_to_mask[:num_to_mask] logger.info('''Heads to mask: %s''' , str(current_heads_to_mask.tolist() ) ) UpperCAmelCase_ : List[Any] = new_head_mask.view(-1 ) UpperCAmelCase_ : Union[str, Any] = 0.0 UpperCAmelCase_ : Any = new_head_mask.view_as(_lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = new_head_mask.clone().detach() print_ad_tensor(_lowerCAmelCase ) # Compute metric and head importance again UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , head_mask=_lowerCAmelCase ) UpperCAmelCase_ : int = 1 / loss logger.info( '''Masking: current score: %f, remaining heads %d (%.1f percents)''' , _lowerCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_0_0 , ) logger.info('''Final head mask''' ) print_ad_tensor(_lowerCAmelCase ) np.save(os.path.join(args.output_dir , '''head_mask.npy''' ) , head_mask.detach().cpu().numpy() ) return head_mask def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = datetime.now() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = 1 / loss UpperCAmelCase_ : Optional[int] = datetime.now() - before_time UpperCAmelCase_ : str = sum(p.numel() for p in model.parameters() ) UpperCAmelCase_ : List[Any] = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_lowerCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): UpperCAmelCase_ : Tuple = [ v, ] assert sum(len(_lowerCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_lowerCAmelCase ) UpperCAmelCase_ : Any = sum(p.numel() for p in model.parameters() ) UpperCAmelCase_ : Tuple = datetime.now() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = compute_heads_importance( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , compute_entropy=_lowerCAmelCase , compute_importance=_lowerCAmelCase , head_mask=_lowerCAmelCase , actually_pruned=_lowerCAmelCase , ) UpperCAmelCase_ : List[Any] = 1 / loss UpperCAmelCase_ : int = datetime.now() - before_time logger.info( '''Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)''' , _lowerCAmelCase , _lowerCAmelCase , pruned_num_params / original_num_params * 1_0_0 , ) logger.info('''Pruning: score with masking: %f score with pruning: %f''' , _lowerCAmelCase , _lowerCAmelCase ) logger.info('''Pruning: speed ratio (original timing / new timing): %f percents''' , original_time / new_time * 1_0_0 ) save_model(_lowerCAmelCase , args.output_dir ) def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--data_dir''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The input data dir. Should contain the .tsv files (or other data files) for the task.''' , ) parser.add_argument( '''--model_name_or_path''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--output_dir''' , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help='''The output directory where the model predictions and checkpoints will be written.''' , ) # Other parameters parser.add_argument( '''--config_name''' , default='''''' , type=_lowerCAmelCase , help='''Pretrained config name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--tokenizer_name''' , default='''''' , type=_lowerCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name_or_path''' , ) parser.add_argument( '''--cache_dir''' , default=_lowerCAmelCase , type=_lowerCAmelCase , help='''Where do you want to store the pre-trained models downloaded from s3''' , ) parser.add_argument( '''--data_subset''' , type=_lowerCAmelCase , default=-1 , help='''If > 0: limit the data to a subset of data_subset instances.''' ) parser.add_argument( '''--overwrite_output_dir''' , action='''store_true''' , help='''Whether to overwrite data in output directory''' ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) parser.add_argument( '''--dont_normalize_importance_by_layer''' , action='''store_true''' , help='''Don\'t normalize importance score by layers''' ) parser.add_argument( '''--dont_normalize_global_importance''' , action='''store_true''' , help='''Don\'t normalize all importance scores between 0 and 1''' , ) parser.add_argument( '''--try_masking''' , action='''store_true''' , help='''Whether to try to mask head until a threshold of accuracy.''' ) parser.add_argument( '''--masking_threshold''' , default=0.9 , type=_lowerCAmelCase , help='''masking threshold in term of metrics (stop masking when metric < threshold * original metric value).''' , ) parser.add_argument( '''--masking_amount''' , default=0.1 , type=_lowerCAmelCase , help='''Amount to heads to masking at each masking step.''' ) parser.add_argument('''--metric_name''' , default='''acc''' , type=_lowerCAmelCase , help='''Metric to use for head masking.''' ) parser.add_argument( '''--max_seq_length''' , default=1_2_8 , type=_lowerCAmelCase , help=( '''The maximum total input sequence length after WordPiece tokenization. \n''' '''Sequences longer than this will be truncated, sequences shorter padded.''' ) , ) parser.add_argument('''--batch_size''' , default=1 , type=_lowerCAmelCase , help='''Batch size.''' ) parser.add_argument('''--seed''' , type=_lowerCAmelCase , default=4_2 ) parser.add_argument('''--local_rank''' , type=_lowerCAmelCase , default=-1 , help='''local_rank for distributed training on gpus''' ) parser.add_argument('''--no_cuda''' , action='''store_true''' , help='''Whether not to use CUDA when available''' ) parser.add_argument('''--server_ip''' , type=_lowerCAmelCase , default='''''' , help='''Can be used for distant debugging.''' ) parser.add_argument('''--server_port''' , type=_lowerCAmelCase , default='''''' , help='''Can be used for distant debugging.''' ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('''Waiting for debugger attach''' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_lowerCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: UpperCAmelCase_ : Optional[int] = torch.device('''cuda''' if torch.cuda.is_available() and not args.no_cuda else '''cpu''' ) UpperCAmelCase_ : Dict = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) UpperCAmelCase_ : str = torch.device('''cuda''' , args.local_rank ) UpperCAmelCase_ : Union[str, Any] = 1 torch.distributed.init_process_group(backend='''nccl''' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('''device: {} n_gpu: {}, distributed: {}'''.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) UpperCAmelCase_ : Any = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: UpperCAmelCase_ : List[Any] = nn.parallel.DistributedDataParallel( _lowerCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_lowerCAmelCase ) elif args.n_gpu > 1: UpperCAmelCase_ : Union[str, Any] = nn.DataParallel(_lowerCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase ) torch.save(_lowerCAmelCase , os.path.join(args.output_dir , '''run_args.bin''' ) ) logger.info('''Training/evaluation parameters %s''' , _lowerCAmelCase ) # Prepare dataset UpperCAmelCase_ : Dict = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) UpperCAmelCase_ : List[str] = (torch.from_numpy(_lowerCAmelCase ),) UpperCAmelCase_ : Tuple = TensorDataset(*_lowerCAmelCase ) UpperCAmelCase_ : Dict = RandomSampler(_lowerCAmelCase ) UpperCAmelCase_ : int = DataLoader(_lowerCAmelCase , sampler=_lowerCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: UpperCAmelCase_ : Dict = mask_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) prune_heads(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": main()
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __UpperCamelCase : Union[str, Any] = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def snake_case_ ( ): UpperCAmelCase_ : int = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCAmelCase_ : List[str] = get_sagemaker_input() else: UpperCAmelCase_ : int = get_cluster_input() return config def snake_case_ ( __lowercase=None ): if subparsers is not None: UpperCAmelCase_ : Any = subparsers.add_parser('''config''' , description=lowerCamelCase_ ) else: UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser('''Accelerate config command''' , description=lowerCamelCase_ ) parser.add_argument( '''--config_file''' , default=lowerCamelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = get_user_input() if args.config_file is not None: UpperCAmelCase_ : Any = args.config_file else: if not os.path.isdir(lowerCamelCase_ ): os.makedirs(lowerCamelCase_ ) UpperCAmelCase_ : int = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(lowerCamelCase_ ) else: config.to_yaml_file(lowerCamelCase_ ) print(F'''accelerate configuration saved at {config_file}''' ) def snake_case_ ( ): UpperCAmelCase_ : List[Any] = config_command_parser() UpperCAmelCase_ : int = parser.parse_args() config_command(lowerCamelCase_ ) if __name__ == "__main__": main()
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
from importlib import import_module from .logging import get_logger __UpperCamelCase : Dict = get_logger(__name__) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[int] , __snake_case : List[str] , __snake_case : str=None ): '''simple docstring''' UpperCAmelCase_ : Any = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self , _lowercase , getattr(_lowercase , _lowercase ) ) UpperCAmelCase_ : Optional[int] = module._original_module if isinstance(_lowercase , _PatchedModuleObj ) else module class lowerCAmelCase__: '''simple docstring''' A_ : Any = [] def __init__( self : Optional[Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Union[str, Any]=None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = obj UpperCAmelCase_ : Tuple = target UpperCAmelCase_ : List[str] = new UpperCAmelCase_ : Dict = target.split('''.''' )[0] UpperCAmelCase_ : Optional[Any] = {} UpperCAmelCase_ : int = attrs or [] def __enter__( self : List[str] ): '''simple docstring''' *UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_lowercase ) ): try: UpperCAmelCase_ : List[Any] = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCAmelCase_ : Optional[Any] = getattr(self.obj , _lowercase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_lowercase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCAmelCase_ : Union[str, Any] = obj_attr # patch at top level setattr(self.obj , _lowercase , _PatchedModuleObj(_lowercase , attrs=self.attrs ) ) UpperCAmelCase_ : Optional[Any] = getattr(self.obj , _lowercase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_lowercase , _lowercase , _PatchedModuleObj(getattr(_lowercase , _lowercase , _lowercase ) , attrs=self.attrs ) ) UpperCAmelCase_ : str = getattr(_lowercase , _lowercase ) # finally set the target attribute setattr(_lowercase , _lowercase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCAmelCase_ : Dict = getattr(import_module('''.'''.join(_lowercase ) ) , _lowercase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _lowercase ) is attr_value: UpperCAmelCase_ : List[Any] = getattr(self.obj , _lowercase ) setattr(self.obj , _lowercase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCAmelCase_ : List[str] = globals()['''__builtins__'''][target_attr] setattr(self.obj , _lowercase , self.new ) else: raise RuntimeError(f'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : List[Any] , *__snake_case : Dict ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj , _lowercase , self.original.pop(_lowercase ) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): __UpperCamelCase : Dict = True from torch.cuda.amp import autocast __UpperCamelCase : List[Any] = logging.getLogger(__name__) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : List[str] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : List[str] = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : List[str] = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) A_ : int = field( default=snake_case__ , metadata={'help': 'Whether to log verbose messages or not.'} , ) A_ : Optional[Any] = field( default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} ) A_ : str = field( default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} ) A_ : Optional[Any] = field( default=0.9_9_9_9_9_5 , metadata={'help': 'Decay of gumbel temperature during training.'} ) def snake_case_ ( __lowercase , __lowercase ): logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) UpperCAmelCase_ : Any = logging.WARNING if model_args.verbose_logging: UpperCAmelCase_ : str = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): UpperCAmelCase_ : List[str] = logging.INFO logger.setLevel(__SCREAMING_SNAKE_CASE ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : str = field( default=snake_case__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) A_ : Tuple = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A_ : List[str] = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) A_ : List[Any] = field( default='validation' , metadata={ 'help': ( 'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) A_ : Union[str, Any] = field( default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , ) A_ : Dict = field( default=snake_case__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A_ : Optional[int] = field( default=1 , metadata={ 'help': 'The percentage of the train set used as validation set in case there\'s no validation split' } , ) A_ : List[str] = field( default=snake_case__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) A_ : str = field( default=2_0.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : List[Any] = 4_2 A_ : Any = 4_2 A_ : List[Any] = 'longest' A_ : List[Any] = None A_ : List[str] = None def __call__( self : List[Any] , __snake_case : Dict ): '''simple docstring''' # reformat list to dict and set to pytorch format UpperCAmelCase_ : List[Any] = self.feature_extractor.pad( lowercase_ , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) UpperCAmelCase_ : Optional[int] = self.model._get_feat_extract_output_lengths(batch['''input_values'''].shape[-1] ) UpperCAmelCase_ : Tuple = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula UpperCAmelCase_ : Tuple = self.model._get_feat_extract_output_lengths(batch['''attention_mask'''].sum(-1 ) ).to( torch.long ) UpperCAmelCase_ : Union[str, Any] = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['''input_values'''].device ) # these two operations makes sure that all values # before the output lengths indices are attended to UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Dict = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices UpperCAmelCase_ : str = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowercase_ , min_masks=2 , ) return batch class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : str , *__snake_case : Any , __snake_case : Dict=1 , __snake_case : Dict=0 , __snake_case : str=1.0 , **__snake_case : Tuple ): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : int = max_gumbel_temp UpperCAmelCase_ : Union[str, Any] = min_gumbel_temp UpperCAmelCase_ : List[str] = gumbel_temp_decay def _lowerCamelCase ( self : Tuple , __snake_case : Optional[int] , __snake_case : Any ): '''simple docstring''' model.train() UpperCAmelCase_ : Dict = self._prepare_inputs(lowercase_ ) if self.use_amp: with autocast(): UpperCAmelCase_ : Dict = self.compute_loss(lowercase_ , lowercase_ ) else: UpperCAmelCase_ : Tuple = self.compute_loss(lowercase_ , lowercase_ ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": UpperCAmelCase_ : Any = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": UpperCAmelCase_ : List[Any] = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: UpperCAmelCase_ : int = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase_ ).backward() elif self.use_apex: with amp.scale_loss(lowercase_ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase_ ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) UpperCAmelCase_ : str = parser.parse_args_into_dataclasses() configure_logger(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Downloading and loading a dataset from the hub. UpperCAmelCase_ : Optional[Any] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" UpperCAmelCase_ : Optional[int] = DatasetDict() UpperCAmelCase_ : Optional[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : Tuple = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" UpperCAmelCase_ : Tuple = DatasetDict() UpperCAmelCase_ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='''validation''' , cache_dir=model_args.cache_dir , ) UpperCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported UpperCAmelCase_ : List[str] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__SCREAMING_SNAKE_CASE ) def prepare_dataset(__lowercase ): # check that all files have the correct sampling rate UpperCAmelCase_ : Optional[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays UpperCAmelCase_ : Optional[int] = datasets.map( __SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['''train'''].column_names ) # filter audio files that are too long UpperCAmelCase_ : Any = vectorized_datasets.filter( lambda __lowercase : len(data['''speech'''] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowercase ): return feature_extractor(batch['''speech'''] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` UpperCAmelCase_ : Optional[Any] = vectorized_datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['''train'''].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 UpperCAmelCase_ : Optional[int] = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( '''PreTraining is only supported for ``config.do_stable_layer_norm=True`` and''' ''' ``config.feat_extract_norm=\'layer\'''' ) UpperCAmelCase_ : int = WavaVecaForPreTraining(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = DataCollatorForWavaVecaPretraining(model=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = WavaVecaPreTrainer( model=__SCREAMING_SNAKE_CASE , data_collator=__SCREAMING_SNAKE_CASE , args=__SCREAMING_SNAKE_CASE , train_dataset=vectorized_datasets['''train'''] , eval_dataset=vectorized_datasets['''validation'''] , tokenizer=__SCREAMING_SNAKE_CASE , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import os import re import shutil import sys import tempfile import unittest import black __UpperCamelCase : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. __UpperCamelCase : str = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) UpperCAmelCase_ : List[Any] = self.diffusers_dir shutil.copy( os.path.join(A_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Any=None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: UpperCAmelCase_ : Any = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result UpperCAmelCase_ : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase_ : List[Any] = black.format_str(A_ , mode=A_ ) UpperCAmelCase_ : Any = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(A_ , '''w''' , newline='''\n''' ) as f: f.write(A_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(A_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=A_ ) with open(A_ , '''r''' ) as f: self.assertTrue(f.read() , A_ ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : int = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(A_ , A_ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , A_ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , A_ ) , ) # Copy consistency with a really long name UpperCAmelCase_ : Any = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub('''Bert''' , A_ , A_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , A_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , A_ ) , )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : Any=None , *__snake_case : Dict , **__snake_case : int ): '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) if config is None: assert isinstance(self.model , __snake_case ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) UpperCAmelCase_ : Optional[Any] = self.model.config else: UpperCAmelCase_ : Tuple = config UpperCAmelCase_ : int = data_args UpperCAmelCase_ : Union[str, Any] = self.config.tgt_vocab_size if isinstance(self.config , __snake_case ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: UpperCAmelCase_ : Dict = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase_ : List[str] = label_smoothed_nll_loss def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' if self.optimizer is None: UpperCAmelCase_ : str = ["bias", "LayerNorm.weight"] UpperCAmelCase_ : Any = [ { "params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], "weight_decay": self.args.weight_decay, }, { "params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], "weight_decay": 0.0, }, ] UpperCAmelCase_ : Dict = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase_ : Dict = Adafactor UpperCAmelCase_ : Tuple = {"scale_parameter": False, "relative_step": False} else: UpperCAmelCase_ : Union[str, Any] = AdamW UpperCAmelCase_ : List[Any] = { "betas": (self.args.adam_betaa, self.args.adam_betaa), "eps": self.args.adam_epsilon, } UpperCAmelCase_ : Any = self.args.learning_rate if self.sharded_ddp: UpperCAmelCase_ : Dict = OSS( params=__snake_case , optim=__snake_case , **__snake_case , ) else: UpperCAmelCase_ : Tuple = optimizer_cls(__snake_case , **__snake_case ) if self.lr_scheduler is None: UpperCAmelCase_ : int = self._get_lr_scheduler(__snake_case ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : str = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase_ : Dict = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase_ : Union[str, Any] = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase_ : Tuple = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__snake_case ) return scheduler def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : int , __snake_case : Dict ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase_ : Any = model(**__snake_case , use_cache=__snake_case )[0] UpperCAmelCase_ : Optional[Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase_ : Optional[Any] = model(**__snake_case , labels=__snake_case , use_cache=__snake_case )[:2] else: # compute label smoothed loss UpperCAmelCase_ : List[Any] = model(**__snake_case , use_cache=__snake_case )[0] UpperCAmelCase_ : List[Any] = torch.nn.functional.log_softmax(__snake_case , dim=-1 ) UpperCAmelCase_ : str = self.loss_fn(__snake_case , __snake_case , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowerCamelCase ( self : Any , __snake_case : str , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = inputs.pop('''labels''' ) UpperCAmelCase_ : Any = self._compute_loss(__snake_case , __snake_case , __snake_case ) return loss def _lowerCamelCase ( self : Optional[Any] , __snake_case : nn.Module , __snake_case : Dict[str, Union[torch.Tensor, Any]] , __snake_case : bool , __snake_case : Optional[List[str]] = None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self._prepare_inputs(__snake_case ) UpperCAmelCase_ : str = { "max_length": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, "num_beams": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase_ : str = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__snake_case , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ : Dict = self._pad_tensors_to_max_len(__snake_case , gen_kwargs['''max_length'''] ) UpperCAmelCase_ : Any = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase_ : List[str] = self._compute_loss(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Tuple = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase_ : Optional[int] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase_ : str = self._pad_tensors_to_max_len(__snake_case , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _lowerCamelCase ( self : List[str] , __snake_case : Tuple , __snake_case : int ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined UpperCAmelCase_ : Optional[int] = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) UpperCAmelCase_ : Union[str, Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase_ : int = tensor return padded_tensor
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = [ [], [], [], ] def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int ): '''simple docstring''' try: if len(self.queues[priority] ) >= 100: raise OverflowError('''Maximum queue size is 100''' ) self.queues[priority].append(__UpperCamelCase ) except IndexError: raise ValueError('''Valid priorities are 0, 1, and 2''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('''All queues are empty''' ) def __str__( self : str ): '''simple docstring''' return "\n".join(f'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = [] def _lowerCamelCase ( self : str , __snake_case : int ): '''simple docstring''' if len(self.queue ) == 100: raise OverFlowError('''Maximum queue size is 100''' ) self.queue.append(__UpperCamelCase ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' if not self.queue: raise UnderFlowError('''The queue is empty''' ) else: UpperCAmelCase_ : Dict = min(self.queue ) self.queue.remove(__UpperCamelCase ) return data def __str__( self : Optional[Any] ): '''simple docstring''' return str(self.queue ) def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = FixedPriorityQueue() fpq.enqueue(0 , 1_0 ) fpq.enqueue(1 , 7_0 ) fpq.enqueue(0 , 1_0_0 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 6_4 ) fpq.enqueue(0 , 1_2_8 ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = ElementPriorityQueue() epq.enqueue(1_0 ) epq.enqueue(7_0 ) epq.enqueue(1_0_0 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(6_4 ) epq.enqueue(1_2_8 ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_SCREAMING_SNAKE_CASE ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
from math import factorial class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = real if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : List[Any] = [1] * rank else: UpperCAmelCase_ : Tuple = rank def __repr__( self : Any ): '''simple docstring''' return ( f'''{self.real}+''' f'''{'+'.join(str(__snake_case )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , __snake_case ) def __add__( self : Tuple , __snake_case : str ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ): return Dual(self.real + other , self.duals ) UpperCAmelCase_ : Any = self.duals.copy() UpperCAmelCase_ : List[str] = other.duals.copy() if len(__snake_case ) > len(__snake_case ): o_dual.extend([1] * (len(__snake_case ) - len(__snake_case )) ) elif len(__snake_case ) < len(__snake_case ): s_dual.extend([1] * (len(__snake_case ) - len(__snake_case )) ) UpperCAmelCase_ : Optional[Any] = [] for i in range(len(__snake_case ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , __snake_case ) A_ : Union[str, Any] = __add__ def __sub__( self : Optional[int] , __snake_case : int ): '''simple docstring''' return self + other * -1 def __mul__( self : Dict , __snake_case : Tuple ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Tuple = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , __snake_case ) UpperCAmelCase_ : List[str] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , __snake_case ) A_ : Tuple = __mul__ def __truediv__( self : Dict , __snake_case : str ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[int] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , __snake_case ) raise ValueError def __floordiv__( self : List[str] , __snake_case : int ): '''simple docstring''' if not isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[int] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , __snake_case ) raise ValueError def __pow__( self : Union[str, Any] , __snake_case : str ): '''simple docstring''' if n < 0 or isinstance(__snake_case , __snake_case ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self UpperCAmelCase_ : Optional[int] = self for _ in range(n - 1 ): x *= self return x def snake_case_ ( __lowercase , __lowercase , __lowercase ): if not callable(__lowercase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(__lowercase , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(__lowercase , __lowercase ): raise ValueError('''differentiate() requires an int as input for order''' ) UpperCAmelCase_ : str = Dual(__lowercase , 1 ) UpperCAmelCase_ : Dict = func(__lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case_ ( __lowercase ): return y**2 * y**4 print(differentiate(f, 9, 2))
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = MobileNetVaConfig(layer_norm_eps=0.0_0_1 ) if "_quant" in model_name: raise ValueError('''Quantized models are not supported.''' ) UpperCAmelCase_ : List[Any] = re.match(R'''^mobilenet_v1_([^_]*)_([^_]*)$''' , lowerCAmelCase__ ) if matches: UpperCAmelCase_ : Union[str, Any] = float(matches[1] ) UpperCAmelCase_ : Optional[Any] = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". UpperCAmelCase_ : Union[str, Any] = 1_0_0_1 UpperCAmelCase_ : List[Any] = 'imagenet-1k-id2label.json' UpperCAmelCase_ : List[Any] = 'huggingface/label-files' UpperCAmelCase_ : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Union[str, Any] = {int(lowerCAmelCase__ ) + 1: v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = 'background' UpperCAmelCase_ : Optional[int] = idalabel UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} return config def snake_case_ ( ): UpperCAmelCase_ : str = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase_ : Optional[int] = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=False ): UpperCAmelCase_ : List[Any] = get_mobilenet_va_config(lowerCAmelCase__ ) # Load 🤗 model UpperCAmelCase_ : Dict = MobileNetVaForImageClassification(lowerCAmelCase__ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor UpperCAmelCase_ : Union[str, Any] = MobileNetVaImageProcessor( crop_size={'''width''': config.image_size, '''height''': config.image_size} , size={'''shortest_edge''': config.image_size + 3_2} , ) UpperCAmelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) UpperCAmelCase_ : List[Any] = model(**lowerCAmelCase__ ) UpperCAmelCase_ : List[str] = outputs.logits assert logits.shape == (1, 1_0_0_1) if model_name == "mobilenet_v1_1.0_224": UpperCAmelCase_ : List[Any] = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ) elif model_name == "mobilenet_v1_0.75_192": UpperCAmelCase_ : Dict = torch.tensor([-3.9_4_4_0, -2.3_1_4_1, -0.3_3_3_3] ) else: UpperCAmelCase_ : Union[str, Any] = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print('''Pushing to the hub...''' ) UpperCAmelCase_ : Union[str, Any] = 'google/' + model_name image_processor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCamelCase : Tuple = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , __snake_case : str , __snake_case : Dict=7 , __snake_case : int=3 , __snake_case : Union[str, Any]=18 , __snake_case : str=30 , __snake_case : str=400 , __snake_case : List[Any]=True , __snake_case : Dict=None , __snake_case : Tuple=True , __snake_case : str=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=[0.5, 0.5, 0.5] , __snake_case : Optional[int]=[0.5, 0.5, 0.5] , __snake_case : Any=False , ): '''simple docstring''' UpperCAmelCase_ : Any = size if size is not None else {'''height''': 20, '''width''': 20} UpperCAmelCase_ : Dict = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Union[str, Any] = min_resolution UpperCAmelCase_ : Dict = max_resolution UpperCAmelCase_ : Optional[int] = do_resize UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Tuple = crop_size UpperCAmelCase_ : Any = do_normalize UpperCAmelCase_ : Tuple = image_mean UpperCAmelCase_ : Any = image_std UpperCAmelCase_ : Tuple = do_reduce_labels def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def snake_case_ ( ): UpperCAmelCase_ : str = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : List[str] = Image.open(dataset[0]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(dataset[1]['''file'''] ) return image, map def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCAmelCase_ : Optional[int] = Image.open(ds[0]['''file'''] ) UpperCAmelCase_ : Dict = Image.open(ds[1]['''file'''] ) UpperCAmelCase_ : List[str] = Image.open(ds[2]['''file'''] ) UpperCAmelCase_ : str = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class lowerCAmelCase__( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = BeitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = BeitImageProcessingTester(self ) @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''image_std''' ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCamelCase_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCamelCase_ ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input UpperCAmelCase_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : List[str] = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input UpperCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Union[str, Any] = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : Any ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = [] for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input UpperCAmelCase_ : int = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched UpperCAmelCase_ : List[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = prepare_semantic_single_inputs() UpperCAmelCase_ : List[Any] = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = prepare_semantic_batch_inputs() UpperCAmelCase_ : str = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 UpperCAmelCase_ , UpperCAmelCase_ : Tuple = prepare_semantic_single_inputs() UpperCAmelCase_ : str = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Dict = image_processing(lowerCamelCase_ , lowerCamelCase_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : int , __snake_case : Dict=13 , __snake_case : str=7 , __snake_case : Dict=True , __snake_case : Optional[int]=True , __snake_case : int=True , __snake_case : List[Any]=True , __snake_case : Dict=99 , __snake_case : str=64 , __snake_case : Optional[int]=32 , __snake_case : List[Any]=5 , __snake_case : Optional[Any]=4 , __snake_case : List[str]=37 , __snake_case : Optional[Any]="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : int=0.1 , __snake_case : str=512 , __snake_case : str=16 , __snake_case : Tuple=2 , __snake_case : Any=0.02 , __snake_case : Tuple=3 , __snake_case : str=4 , __snake_case : Optional[int]=None , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Union[str, Any] = use_input_mask UpperCAmelCase_ : Optional[int] = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Any = embedding_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Dict = max_position_embeddings UpperCAmelCase_ : List[Any] = type_vocab_size UpperCAmelCase_ : Optional[Any] = type_sequence_label_size UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : Dict = num_choices UpperCAmelCase_ : List[Any] = scope def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_input_mask: UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Any = None UpperCAmelCase_ : str = None UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = MobileBertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCAmelCase_ : Dict = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) UpperCAmelCase_ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : List[str] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = MobileBertForMaskedLM(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : int = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Any , __snake_case : Any , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = MobileBertForNextSentencePrediction(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Tuple = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Any , __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : Any , __snake_case : Dict , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MobileBertForPreTraining(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , next_sentence_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Dict = MobileBertForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Tuple , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : str = MobileBertForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.num_choices UpperCAmelCase_ : int = MobileBertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() UpperCAmelCase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A_ : int = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) A_ : List[str] = True def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any=False ): '''simple docstring''' UpperCAmelCase_ : List[str] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class in get_values(UpperCamelCase__ ): UpperCAmelCase_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = MobileBertModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*UpperCamelCase__ ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*UpperCamelCase__ ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*UpperCamelCase__ ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*UpperCamelCase__ ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*UpperCamelCase__ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*UpperCamelCase__ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*UpperCamelCase__ ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*UpperCamelCase__ ) def snake_case_ ( __lowercase ): return torch.tensor( __lowercase , dtype=torch.long , device=__lowercase , ) __UpperCamelCase : Optional[Any] = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(UpperCamelCase__ ) UpperCAmelCase_ : Any = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : str = model(UpperCamelCase__ )[0] UpperCAmelCase_ : Tuple = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , UpperCamelCase__ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526E07, 8.269_1656E04, 1.652_1838E05], [-5.754_1704E-01, 3.905_6022E00, 4.401_1507E00], [2.604_7359E00, 1.567_7652E00, -1.732_4188E-01], ] ] , device=UpperCamelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : List[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCamelCase : Optional[int] = 1.0_5457_1817E-34 # unit of ℏ : J * s __UpperCamelCase : Dict = 3E8 # unit of c : m * s^-1 def snake_case_ ( __lowercase , __lowercase , __lowercase ) -> dict[str, float]: if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: UpperCAmelCase_ : List[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: UpperCAmelCase_ : Any = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: UpperCAmelCase_ : str = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class lowerCAmelCase__( _UpperCamelCase ): '''simple docstring''' A_ : Any = 'van' def __init__( self : Union[str, Any] , __snake_case : Optional[int]=224 , __snake_case : Dict=3 , __snake_case : Union[str, Any]=[7, 3, 3, 3] , __snake_case : Tuple=[4, 2, 2, 2] , __snake_case : Tuple=[64, 128, 320, 512] , __snake_case : Tuple=[3, 3, 12, 3] , __snake_case : Tuple=[8, 8, 4, 4] , __snake_case : Dict="gelu" , __snake_case : Tuple=0.02 , __snake_case : Tuple=1E-6 , __snake_case : str=1E-2 , __snake_case : str=0.0 , __snake_case : Optional[Any]=0.0 , **__snake_case : str , ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : int = patch_sizes UpperCAmelCase_ : int = strides UpperCAmelCase_ : Tuple = hidden_sizes UpperCAmelCase_ : Optional[int] = depths UpperCAmelCase_ : int = mlp_ratios UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Any = layer_scale_init_value UpperCAmelCase_ : Dict = drop_path_rate UpperCAmelCase_ : Tuple = dropout_rate
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCamelCase : Union[str, Any] = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __UpperCamelCase : Union[str, Any] = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('utf-8').split() ) __UpperCamelCase : List[str] = '|'.join(sys.argv[1:]) __UpperCamelCase : Optional[int] = re.compile(RF'^({joined_dirs}).*?\.py$') __UpperCamelCase : List[Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
import operator as op def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = lambda __lowercase , __lowercase : int(x / y ) # noqa: E731 integer division operation UpperCAmelCase_ : List[Any] = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(1_2 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (3_0 + len(UpperCAmelCase__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(UpperCAmelCase__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(1_2 ) , ''','''.join(UpperCAmelCase__ ) , sep=''' | ''' ) else: UpperCAmelCase_ : int = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(1_2 ) , ''','''.join(UpperCAmelCase__ ) , sep=''' | ''' ) UpperCAmelCase_ : Union[str, Any] = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(1_2 ) , ''','''.join(UpperCAmelCase__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(UpperCAmelCase__ ) , int(UpperCAmelCase__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(1_2 ) , ''','''.join(UpperCAmelCase__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": __UpperCamelCase : List[str] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import math def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_UpperCamelCase ) def snake_case_ ( __lowercase = 1 / 1_2_3_4_5 ): UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[Any] = 3 while True: UpperCAmelCase_ : Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_UpperCamelCase ): UpperCAmelCase_ : Any = int(_UpperCamelCase ) total_partitions += 1 if check_partition_perfect(_UpperCamelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_UpperCamelCase ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Any = {"""vocab_file""": """spiece.model"""} __UpperCamelCase : Optional[Any] = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } __UpperCamelCase : List[str] = { """google/bigbird-roberta-base""": 4096, """google/bigbird-roberta-large""": 4096, """google/bigbird-base-trivia-itc""": 4096, } class lowerCAmelCase__( __UpperCAmelCase ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : str = PRETRAINED_VOCAB_FILES_MAP A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Optional[Any] = ['input_ids', 'attention_mask'] A_ : Any = [] def __init__( self : Tuple , __snake_case : str , __snake_case : str="<unk>" , __snake_case : Tuple="<s>" , __snake_case : Union[str, Any]="</s>" , __snake_case : int="<pad>" , __snake_case : Tuple="[SEP]" , __snake_case : Optional[int]="[MASK]" , __snake_case : str="[CLS]" , __snake_case : Optional[Any] = None , **__snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token UpperCAmelCase_ : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase_ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , sep_token=__snake_case , mask_token=__snake_case , cls_token=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase_ : Optional[Any] = vocab_file UpperCAmelCase_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return self.sp_model.get_piece_size() def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.__dict__.copy() UpperCAmelCase_ : Union[str, Any] = None return state def __setstate__( self : Tuple , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase_ : List[str] = {} UpperCAmelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self : Any , __snake_case : List[Any] ): '''simple docstring''' return self.sp_model.encode(__snake_case , out_type=__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str ): '''simple docstring''' return self.sp_model.piece_to_id(__snake_case ) def _lowerCamelCase ( self : List[str] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.sp_model.IdToPiece(__snake_case ) return token def _lowerCamelCase ( self : str , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = '''''' UpperCAmelCase_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__snake_case ) + token UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : str = [] else: current_sub_tokens.append(__snake_case ) UpperCAmelCase_ : Optional[Any] = False out_string += self.sp_model.decode(__snake_case ) return out_string.strip() def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Optional[Any] = False , __snake_case : Dict = None , __snake_case : Optional[int] = True , **__snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : int = kwargs.pop('''use_source_tokenizer''' , __snake_case ) UpperCAmelCase_ : Tuple = self.convert_ids_to_tokens(__snake_case , skip_special_tokens=__snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case ) ) UpperCAmelCase_ : Any = [] sub_texts.append(__snake_case ) else: current_sub_text.append(__snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase_ : Optional[int] = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(__snake_case ) ) else: UpperCAmelCase_ : List[str] = ''''''.join(__snake_case ) UpperCAmelCase_ : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase_ : Optional[Any] = self.clean_up_tokenization(__snake_case ) return clean_text else: return text def _lowerCamelCase ( self : Optional[int] , __snake_case : str , __snake_case : Dict = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : int = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , '''wb''' ) as fi: UpperCAmelCase_ : str = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,) def _lowerCamelCase ( self : Optional[int] , __snake_case : str , __snake_case : Optional[int] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Union[str, Any] = [self.cls_token_id] UpperCAmelCase_ : Any = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : List[str] , __snake_case : Optional[Any] , __snake_case : List[Any] = None , __snake_case : Tuple = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def _lowerCamelCase ( self : List[str] , __snake_case : List[str] , __snake_case : Tuple = None ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [self.sep_token_id] UpperCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = AltDiffusionPipeline A_ : Tuple = TEXT_TO_IMAGE_PARAMS A_ : Optional[int] = TEXT_TO_IMAGE_BATCH_PARAMS A_ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS A_ : Any = TEXT_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) UpperCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , ) torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) UpperCAmelCase_ : List[Any] = CLIPTextModel(lowerCamelCase__ ) UpperCAmelCase_ : List[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) UpperCAmelCase_ : Tuple = 77 UpperCAmelCase_ : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self : Tuple , __snake_case : Optional[int] , __snake_case : Tuple=0 ): '''simple docstring''' if str(lowerCamelCase__ ).startswith('''mps''' ): UpperCAmelCase_ : Optional[int] = torch.manual_seed(lowerCamelCase__ ) else: UpperCAmelCase_ : Dict = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCAmelCase_ : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : int ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[int] = self.get_dummy_components() torch.manual_seed(0 ) UpperCAmelCase_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : int = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) UpperCAmelCase_ : Any = text_encoder UpperCAmelCase_ : Dict = AltDiffusionPipeline(**lowerCamelCase__ ) UpperCAmelCase_ : Any = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase_ : Dict = self.get_dummy_inputs(lowerCamelCase__ ) UpperCAmelCase_ : Optional[int] = '''A photo of an astronaut''' UpperCAmelCase_ : int = alt_pipe(**lowerCamelCase__ ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array( [0.5_748_162, 0.60_447_145, 0.48_821_217, 0.50_100_636, 0.5_431_185, 0.45_763_683, 0.49_657_696, 0.48_132_733, 0.47_573_093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : Optional[Any] = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder UpperCAmelCase_ : int = RobertaSeriesModelWithTransformation(lowerCamelCase__ ) UpperCAmelCase_ : str = text_encoder UpperCAmelCase_ : str = AltDiffusionPipeline(**lowerCamelCase__ ) UpperCAmelCase_ : Optional[Any] = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase_ : List[Any] = self.get_dummy_inputs(lowerCamelCase__ ) UpperCAmelCase_ : Tuple = alt_pipe(**lowerCamelCase__ ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array( [0.51_605_093, 0.5_707_241, 0.47_365_507, 0.50_578_886, 0.5_633_877, 0.4_642_503, 0.5_182_081, 0.48_763_484, 0.49_084_237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : int = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=lowerCamelCase__ ) UpperCAmelCase_ : Union[str, Any] = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase_ : Any = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = alt_pipe([prompt] , generator=lowerCamelCase__ , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) UpperCAmelCase_ : Union[str, Any] = output.images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.1_010, 0.0_800, 0.0_794, 0.0_885, 0.0_843, 0.0_762, 0.0_769, 0.0_729, 0.0_586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) UpperCAmelCase_ : Optional[int] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ ) UpperCAmelCase_ : Dict = alt_pipe.to(lowerCamelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase_ : Optional[int] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : List[str] = alt_pipe([prompt] , generator=lowerCamelCase__ , num_inference_steps=2 , output_type='''numpy''' ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : str = np.array([0.4_019, 0.4_052, 0.3_810, 0.4_119, 0.3_916, 0.3_982, 0.4_651, 0.4_195, 0.5_323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
import sys __UpperCamelCase : Union[str, Any] = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def snake_case_ ( __lowercase = N ): UpperCAmelCase_ : Optional[int] = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 1_2 ): UpperCAmelCase_ : List[str] = 1 for j in range(1_3 ): product *= int(n[i + j] ) if product > largest_product: UpperCAmelCase_ : Tuple = product return largest_product if __name__ == "__main__": print(F'{solution() = }')
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : Tuple , __snake_case : str=13 , __snake_case : Dict=7 , __snake_case : Dict=True , __snake_case : List[str]=True , __snake_case : List[str]=True , __snake_case : int=True , __snake_case : Optional[Any]=99 , __snake_case : List[str]=64 , __snake_case : Optional[int]=32 , __snake_case : Any=5 , __snake_case : Any=4 , __snake_case : List[Any]=37 , __snake_case : Optional[int]="gelu" , __snake_case : int=0.1 , __snake_case : List[Any]=0.1 , __snake_case : int=512 , __snake_case : Dict=16 , __snake_case : Optional[Any]=2 , __snake_case : Optional[Any]=0.02 , __snake_case : List[str]=3 , __snake_case : Any=4 , __snake_case : Optional[int]=None , ): '''simple docstring''' UpperCAmelCase_ : Any = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Tuple = use_input_mask UpperCAmelCase_ : Union[str, Any] = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Dict = embedding_size UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Tuple = intermediate_size UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Tuple = hidden_dropout_prob UpperCAmelCase_ : str = attention_probs_dropout_prob UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Optional[int] = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : int = scope def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_input_mask: UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : int , __snake_case : Tuple , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = MegatronBertModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ : int = model(__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ : Dict = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = MegatronBertForMaskedLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : int , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = MegatronBertForCausalLM(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : int , __snake_case : Tuple , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = MegatronBertForNextSentencePrediction(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[Any] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = MegatronBertForPreTraining(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , next_sentence_label=__snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : str , __snake_case : Dict , __snake_case : int , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = MegatronBertForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : int , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.num_labels UpperCAmelCase_ : List[str] = MegatronBertForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Tuple = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : int , __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MegatronBertForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Any , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_choices UpperCAmelCase_ : Any = MegatronBertForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : str = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Any = config_and_inputs UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' A_ : int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[str] = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Tuple = True # test_resize_embeddings = False A_ : Any = False def _lowerCamelCase ( self : Any , __snake_case : Tuple , __snake_case : Dict , __snake_case : Any=False ): '''simple docstring''' UpperCAmelCase_ : Any = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class in get_values(__snake_case ): UpperCAmelCase_ : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = MegatronBertModelTester(self ) UpperCAmelCase_ : str = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__snake_case ) def snake_case_ ( __lowercase ): return torch.tensor( UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , ) __UpperCamelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: UpperCAmelCase_ : Dict = os.path.join(os.environ['''MYDIR'''] , __snake_case ) UpperCAmelCase_ : List[Any] = MegatronBertModel.from_pretrained(__snake_case ) model.to(__snake_case ) model.half() UpperCAmelCase_ : int = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(__snake_case )[0] UpperCAmelCase_ : Optional[Any] = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ : Optional[int] = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): UpperCAmelCase_ : Tuple = output[0, ii, jj] UpperCAmelCase_ : int = expected[3 * ii + jj] UpperCAmelCase_ : int = '''ii={} jj={} a={} b={}'''.format(__snake_case , __snake_case , __snake_case , __snake_case ) self.assertTrue(math.isclose(__snake_case , __snake_case , rel_tol=__snake_case , abs_tol=__snake_case ) , msg=__snake_case )
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
from math import pi def snake_case_ ( __lowercase , __lowercase ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
from __future__ import annotations from math import pi, sqrt def snake_case_ ( __lowercase , __lowercase ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __UpperCamelCase : str = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def snake_case_ ( __lowercase ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') __UpperCamelCase : Dict = parser.parse_args() if args.check_lib: __UpperCamelCase : List[str] = importlib.import_module('transformers') __UpperCamelCase : str = Path(transformers_module.__file__).parent else: __UpperCamelCase : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
def snake_case_ ( __lowercase , __lowercase , __lowercase ): def update_area_of_max_square(__lowercase , __lowercase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase_ : int = update_area_of_max_square(__lowercase , col + 1 ) UpperCAmelCase_ : Dict = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase_ : int = update_area_of_max_square(row + 1 , __lowercase ) if mat[row][col]: UpperCAmelCase_ : List[str] = 1 + min([right, diagonal, down] ) UpperCAmelCase_ : str = max(largest_square_area[0] , __lowercase ) return sub_problem_sol else: return 0 UpperCAmelCase_ : List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def snake_case_ ( __lowercase , __lowercase , __lowercase ): def update_area_of_max_square_using_dp_array( __lowercase , __lowercase , __lowercase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase_ : str = update_area_of_max_square_using_dp_array(__lowercase , col + 1 , __lowercase ) UpperCAmelCase_ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __lowercase ) UpperCAmelCase_ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , __lowercase , __lowercase ) if mat[row][col]: UpperCAmelCase_ : Dict = 1 + min([right, diagonal, down] ) UpperCAmelCase_ : List[Any] = max(largest_square_area[0] , __lowercase ) UpperCAmelCase_ : List[str] = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase_ : List[str] = [0] UpperCAmelCase_ : int = [[-1] * cols for _ in range(__lowercase )] update_area_of_max_square_using_dp_array(0 , 0 , __lowercase ) return largest_square_area[0] def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase_ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase_ : List[str] = dp_array[row][col + 1] UpperCAmelCase_ : int = dp_array[row + 1][col + 1] UpperCAmelCase_ : int = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase_ : Any = 1 + min(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : str = max(dp_array[row][col] , __lowercase ) else: UpperCAmelCase_ : Tuple = 0 return largest_square_area def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = [0] * (cols + 1) UpperCAmelCase_ : Optional[int] = [0] * (cols + 1) UpperCAmelCase_ : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase_ : int = current_row[col + 1] UpperCAmelCase_ : List[str] = next_row[col + 1] UpperCAmelCase_ : int = next_row[col] if mat[row][col] == 1: UpperCAmelCase_ : Optional[int] = 1 + min(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Dict = max(current_row[col] , __lowercase ) else: UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Optional[int] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[str]=13 , __snake_case : Tuple=3 , __snake_case : List[str]=True , __snake_case : List[str]=True , __snake_case : Tuple=0.1 , __snake_case : Dict=0.1 , __snake_case : List[str]=224 , __snake_case : Union[str, Any]=1_000 , __snake_case : List[Any]=[3, 3, 6, 4] , __snake_case : Union[str, Any]=[48, 56, 112, 220] , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : List[Any] = layer_depths UpperCAmelCase_ : Union[str, Any] = embed_dims def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__snake_case , layer_scale_init_value=1E-5 , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = SwiftFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _lowerCamelCase ( self : Any , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ : Any = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : int ): '''simple docstring''' (UpperCAmelCase_) : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () A_ : Union[str, Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) A_ : List[str] = False A_ : Optional[Any] = False A_ : List[Any] = False A_ : str = False A_ : int = False def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = SwiftFormerModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester( self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(__snake_case ) UpperCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(__snake_case ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = SwiftFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' def check_hidden_states_output(__snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] ): UpperCAmelCase_ : int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ : Union[str, Any] = outputs.hidden_states UpperCAmelCase_ : List[Any] = 8 self.assertEqual(len(__snake_case ) , __snake_case ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__snake_case ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' def _config_zero_init(__snake_case : Optional[Any] ): UpperCAmelCase_ : str = copy.deepcopy(__snake_case ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__snake_case , __snake_case , 1E-10 ) if isinstance(getattr(__snake_case , __snake_case , __snake_case ) , __snake_case ): UpperCAmelCase_ : List[Any] = _config_zero_init(getattr(__snake_case , __snake_case ) ) setattr(__snake_case , __snake_case , __snake_case ) return configs_no_init UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=__snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass def snake_case_ ( ): UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : int ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(__snake_case ) UpperCAmelCase_ : List[str] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Any = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**__snake_case ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ : Tuple = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['input_features', 'attention_mask'] def __init__( self : int , __snake_case : Any=80 , __snake_case : Union[str, Any]=16_000 , __snake_case : int=0.0 , __snake_case : Tuple=10 , __snake_case : Any=25 , __snake_case : Optional[int]="hamming_window" , __snake_case : Optional[int]=32_768.0 , __snake_case : List[Any]=0.97 , __snake_case : Optional[Any]=1.0 , __snake_case : List[str]=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=False , **__snake_case : List[Any] , ): '''simple docstring''' super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) UpperCAmelCase_ : Any = feature_size UpperCAmelCase_ : List[str] = sampling_rate UpperCAmelCase_ : str = padding_value UpperCAmelCase_ : Optional[Any] = hop_length UpperCAmelCase_ : Optional[int] = win_length UpperCAmelCase_ : Union[str, Any] = frame_signal_scale UpperCAmelCase_ : int = preemphasis_coeff UpperCAmelCase_ : List[Any] = mel_floor UpperCAmelCase_ : List[Any] = normalize_means UpperCAmelCase_ : Tuple = normalize_vars UpperCAmelCase_ : List[str] = win_function UpperCAmelCase_ : Optional[Any] = return_attention_mask UpperCAmelCase_ : Optional[Any] = win_length * sampling_rate // 1_000 UpperCAmelCase_ : Optional[Any] = hop_length * sampling_rate // 1_000 UpperCAmelCase_ : int = optimal_fft_length(self.sample_size ) UpperCAmelCase_ : Union[str, Any] = (self.n_fft // 2) + 1 def _lowerCamelCase ( self : int , __snake_case : np.array ): '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase_ : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__snake_case ) else: UpperCAmelCase_ : str = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase_ : str = spectrogram( one_waveform * self.frame_signal_scale , window=__snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__snake_case , preemphasis=self.preemphasis_coeff , mel_filters=__snake_case , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : List[str] ): '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: UpperCAmelCase_ : int = x[:input_length].mean(axis=0 ) UpperCAmelCase_ : str = np.subtract(__snake_case , __snake_case ) if self.normalize_vars: UpperCAmelCase_ : int = x[:input_length].std(axis=0 ) UpperCAmelCase_ : Optional[Any] = np.divide(__snake_case , __snake_case ) if input_length < x.shape[0]: UpperCAmelCase_ : Union[str, Any] = padding_value # make sure array is in float32 UpperCAmelCase_ : List[str] = x.astype(np.floataa ) return x def _lowerCamelCase ( self : str , __snake_case : List[np.ndarray] , __snake_case : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__snake_case , __snake_case , self.padding_value ) for x, n in zip(__snake_case , __snake_case )] def __call__( self : str , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , **__snake_case : Tuple , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase_ : Dict = isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase_ : Tuple = is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : str = [np.asarray(__snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): UpperCAmelCase_ : str = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : Union[str, Any] = [raw_speech] # extract fbank features UpperCAmelCase_ : Any = [self._extract_mfsc_features(__snake_case ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase_ : Any = BatchFeature({'''input_features''': features} ) UpperCAmelCase_ : List[Any] = self.pad( __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) # make sure list is in array format UpperCAmelCase_ : List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __snake_case ): UpperCAmelCase_ : int = [np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] UpperCAmelCase_ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase_ : Optional[Any] = [np.asarray(__snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase_ : str = ( np.array(__snake_case , dtype=np.intaa ) if self._get_padding_strategies(__snake_case , max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase_ : str = self.normalize( padded_inputs['''input_features'''] , attention_mask=__snake_case ) if return_tensors is not None: UpperCAmelCase_ : int = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCamelCase : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __UpperCamelCase : int = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('utf-8').split() ) __UpperCamelCase : Optional[Any] = '|'.join(sys.argv[1:]) __UpperCamelCase : Union[str, Any] = re.compile(RF'^({joined_dirs}).*?\.py$') __UpperCamelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self._create_example_records() UpperCAmelCase_ : Optional[Any] = Dataset.from_list(__snake_case ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(__snake_case ): self.assertDictEqual(__snake_case , example_records[i] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self._create_example_records() UpperCAmelCase_ : List[Any] = Dataset.from_list(__snake_case ) UpperCAmelCase_ : Optional[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowerCamelCase ( self : Optional[int] ): # checks what happens with missing columns '''simple docstring''' UpperCAmelCase_ : Any = [{'''col_1''': 1}, {'''col_2''': '''x'''}] UpperCAmelCase_ : Any = Dataset.from_list(__snake_case ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def _lowerCamelCase ( self : Any ): # checks if the type can be inferred from the second record '''simple docstring''' UpperCAmelCase_ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] UpperCAmelCase_ : Optional[Any] = Dataset.from_list(__snake_case ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = Dataset.from_list([] ) self.assertEqual(len(__snake_case ) , 0 ) self.assertListEqual(dset.column_names , [] )
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
from __future__ import annotations def snake_case_ ( __lowercase ): return [ord(__lowercase ) - 9_6 for elem in plain] def snake_case_ ( __lowercase ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def snake_case_ ( ): UpperCAmelCase_ : List[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __lowercase ) print('''Decoded:''' , decode(__lowercase ) ) if __name__ == "__main__": main()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = 'facebook/bart-large-mnli' A_ : List[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) A_ : Optional[Any] = 'text_classifier' A_ : Dict = AutoTokenizer A_ : int = AutoModelForSequenceClassification A_ : List[str] = ['text', ['text']] A_ : Tuple = ['text'] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().setup() UpperCAmelCase_ : Tuple = self.model.config UpperCAmelCase_ : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): UpperCAmelCase_ : List[str] = int(__snake_case ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = labels return self.pre_processor( [text] * len(__snake_case ) , [f'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def _lowerCamelCase ( self : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = outputs.logits UpperCAmelCase_ : int = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import pytest __UpperCamelCase : int = '__dummy_dataset1__' __UpperCamelCase : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def snake_case_ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def snake_case_ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = dataset_loading_script_name UpperCAmelCase_ : Union[str, Any] = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__lowercase ) UpperCAmelCase_ : List[str] = script_dir / F'''{script_name}.py''' with open(__lowercase , '''w''' ) as f: f.write(__lowercase ) return str(__lowercase )
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase : Tuple = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase : Dict = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) __UpperCamelCase : int = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions __UpperCamelCase : Any = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) __UpperCamelCase : Tuple = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase : Tuple = np.expand_dims(test_image, axis=0) __UpperCamelCase : Dict = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase : Union[str, Any] = 'Normal' if result[0][0] == 1: __UpperCamelCase : Any = 'Abnormality detected'
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ) -> List[Any]: UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ) -> List[Any]: UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ) -> Optional[int]: UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ) -> Dict: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ) -> Tuple: UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ) -> List[str]: UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __UpperCamelCase : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __UpperCamelCase : List[str] = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ : Any = bs[:] UpperCAmelCase_ : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : str = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = set() UpperCAmelCase_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Union[str, Any] = char return pairs class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , __snake_case : Any , __snake_case : Tuple , __snake_case : List[Any]="replace" , __snake_case : Union[str, Any]="<s>" , __snake_case : Tuple="</s>" , __snake_case : Tuple="</s>" , __snake_case : Optional[int]="<s>" , __snake_case : int="<unk>" , __snake_case : List[Any]="<pad>" , __snake_case : Tuple="<mask>" , __snake_case : Any=False , **__snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase_ : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : str = json.load(__snake_case ) UpperCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : List[Any] = errors # how to handle errors in decoding UpperCAmelCase_ : Tuple = bytes_to_unicode() UpperCAmelCase_ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : Dict = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ : Any = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : Optional[Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self : Any ): '''simple docstring''' return len(self.encoder ) def _lowerCamelCase ( self : int ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self : str , __snake_case : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase_ : Optional[Any] = tuple(__snake_case ) UpperCAmelCase_ : Optional[int] = get_pairs(__snake_case ) if not pairs: return token while True: UpperCAmelCase_ : Dict = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ : str = bigram UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = 0 while i < len(__snake_case ): try: UpperCAmelCase_ : Dict = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : List[Any] = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[Any] = tuple(__snake_case ) UpperCAmelCase_ : str = new_word if len(__snake_case ) == 1: break else: UpperCAmelCase_ : Optional[int] = get_pairs(__snake_case ) UpperCAmelCase_ : Any = ''' '''.join(__snake_case ) UpperCAmelCase_ : str = word return word def _lowerCamelCase ( self : List[str] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : str = [] for token in re.findall(self.pat , __snake_case ): UpperCAmelCase_ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def _lowerCamelCase ( self : List[Any] , __snake_case : List[Any] ): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self : List[str] , __snake_case : str ): '''simple docstring''' return self.decoder.get(__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = ''''''.join(__snake_case ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCamelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : int = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) UpperCAmelCase_ : Optional[int] = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : Optional[Any] = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : List[str] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Any=False , **__snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = ''' ''' + text return (text, kwargs) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : List[Any] , __snake_case : "Conversation" ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(__snake_case ) UpperCAmelCase_ : List[str] = ''' '''.join(__snake_case ) UpperCAmelCase_ : Any = self.encode(__snake_case ) if len(__snake_case ) > self.model_max_length: UpperCAmelCase_ : Dict = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' from sklearn.metrics import fa_score import datasets __UpperCamelCase : Dict = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' __UpperCamelCase : int = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' __UpperCamelCase : List[str] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def _lowerCamelCase ( self : int , __snake_case : Any , __snake_case : List[str] , __snake_case : Any=None , __snake_case : int=1 , __snake_case : Any="binary" , __snake_case : int=None ): '''simple docstring''' UpperCAmelCase_ : Dict = fa_score( __snake_case , __snake_case , labels=__snake_case , pos_label=__snake_case , average=__snake_case , sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
import numpy as np from transformers import Pipeline def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = np.max(__lowercase , axis=-1 , keepdims=__lowercase ) UpperCAmelCase_ : int = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowercase ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Dict , **__snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = {} if "second_text" in kwargs: UpperCAmelCase_ : List[str] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple=None ): '''simple docstring''' return self.tokenizer(__snake_case , text_pair=__snake_case , return_tensors=self.framework ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = model_outputs.logits[0].numpy() UpperCAmelCase_ : Optional[Any] = softmax(__snake_case ) UpperCAmelCase_ : Any = np.argmax(__snake_case ) UpperCAmelCase_ : Optional[int] = self.model.config.idalabel[best_class] UpperCAmelCase_ : Union[str, Any] = probabilities[best_class].item() UpperCAmelCase_ : Any = logits.tolist() return {"label": label, "score": score, "logits": logits}
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : Optional[Any]=7 , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : Union[str, Any]=True , __snake_case : int=True , __snake_case : List[str]=99 , __snake_case : List[str]=32 , __snake_case : Tuple=5 , __snake_case : int=4 , __snake_case : List[Any]=37 , __snake_case : str="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Tuple=16 , __snake_case : List[str]=2 , __snake_case : List[Any]=0.02 , __snake_case : Tuple=4 , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Union[str, Any] = use_attention_mask UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[Any] = num_choices def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_attention_mask: UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__snake_case , ) return config, input_ids, attention_mask def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ : str = model_class_name.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase_ : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ : str = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase_ : List[Any] = (1, 11, 768) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ : List[Any] = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1E-4 ) )
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : List[Any] = RemBertConfig.from_json_file(__lowercase ) print('''Building PyTorch model from configuration: {}'''.format(str(__lowercase ) ) ) UpperCAmelCase_ : Optional[int] = RemBertModel(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__lowercase ) ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) (UpperCAmelCase_ ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) (UpperCAmelCase_ ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
from __future__ import annotations import math from collections.abc import Callable def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase = 1_0_0 , ): UpperCAmelCase_ : Optional[int] = x_start UpperCAmelCase_ : List[str] = fnc(__lowercase ) UpperCAmelCase_ : List[str] = 0.0 for _ in range(__lowercase ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase_ : List[Any] = (x_end - x_start) / steps + xa UpperCAmelCase_ : str = fnc(__lowercase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase_ : str = xa UpperCAmelCase_ : Any = fxa return length if __name__ == "__main__": def snake_case_ ( __lowercase ): return math.sin(1_0 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') __UpperCamelCase : Optional[Any] = 10 while i <= 10_0000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Any = ['pixel_values'] def __init__( self : Optional[int] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : Union[str, Any] , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : Any = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : int = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : List[str] = resample UpperCAmelCase_ : List[Any] = do_center_crop UpperCAmelCase_ : Dict = crop_size UpperCAmelCase_ : int = do_rescale UpperCAmelCase_ : List[str] = rescale_factor UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : Optional[int] = do_convert_rgb def _lowerCamelCase ( self : str , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : str = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Union[str, Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : List[str] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Any = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Tuple , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ): '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ): '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Tuple = size if size is not None else self.size UpperCAmelCase_ : Any = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Any = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Dict = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) UpperCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : int = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : Optional[int] = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ : Optional[int] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ : List[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase_ : Union[str, Any] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase_ : Union[str, Any] = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase_ : str = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : int = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def snake_case_ ( __lowercase ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase_ : Union[str, Any] = k.replace(__lowercase , __lowercase ) if k.startswith('''encoder''' ): UpperCAmelCase_ : str = k.replace('''.attn''' , '''.self_attn''' ) UpperCAmelCase_ : int = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase_ : Dict = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): UpperCAmelCase_ : Any = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase_ : Optional[Any] = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) UpperCAmelCase_ : List[str] = k.replace('''norm3''' , '''final_layer_norm''' ) return k def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: UpperCAmelCase_ : Tuple = sd.pop(__lowercase ) UpperCAmelCase_ : Union[str, Any] = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd UpperCAmelCase_ : Union[str, Any] = v __UpperCamelCase : Union[str, Any] = ['START'] @torch.no_grad() def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Any = model['''model'''] UpperCAmelCase_ : Any = BlenderbotConfig.from_json_file(__lowercase ) UpperCAmelCase_ : Optional[int] = BlenderbotForConditionalGeneration(__lowercase ) UpperCAmelCase_ : List[str] = m.model.state_dict().keys() UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase_ : str = rename_state_dict_key(__lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase_ : Optional[int] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowercase ) m.model.load_state_dict(__lowercase , strict=__lowercase ) m.half() m.save_pretrained(__lowercase ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCamelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def snake_case_ ( __lowercase , __lowercase , __lowercase = 1_6_0_0_0 ): UpperCAmelCase_ : Optional[Any] = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav UpperCAmelCase_ : int = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : Optional[str] = field(default=snake_case__ , metadata={'help': 'Name of a dataset from the datasets package'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) A_ : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) A_ : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) A_ : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) A_ : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) A_ : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A_ : float = field( default=2_0 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) A_ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'Name or path of preprocessor config.'} ) A_ : bool = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) A_ : bool = field( default=snake_case__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) A_ : bool = field( default=snake_case__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A_ : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) A_ : bool = field( default=snake_case__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase_ : Optional[int] = DatasetDict() UpperCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase_ : str = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase_ : List[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase_ : Optional[Any] = feature_extractor.model_input_names[0] def train_transforms(__lowercase ): UpperCAmelCase_ : List[Any] = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase_ : Any = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) UpperCAmelCase_ : Optional[Any] = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase_ : Union[str, Any] = {model_input_name: inputs.get(__lowercase )} UpperCAmelCase_ : Dict = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase ): UpperCAmelCase_ : Optional[int] = [audio['''array'''] for audio in batch[data_args.audio_column_name]] UpperCAmelCase_ : List[Any] = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase_ : str = {model_input_name: inputs.get(__lowercase )} UpperCAmelCase_ : Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase_ : Tuple = raw_datasets['''train'''].features[data_args.label_column_name].names UpperCAmelCase_ : List[str] = {}, {} for i, label in enumerate(__lowercase ): UpperCAmelCase_ : Union[str, Any] = str(__lowercase ) UpperCAmelCase_ : Tuple = label # Load the accuracy metric from the datasets package UpperCAmelCase_ : Optional[Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase ): UpperCAmelCase_ : int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ : List[str] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase_ : Tuple = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase_ : List[str] = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer UpperCAmelCase_ : Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: UpperCAmelCase_ : Dict = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Dict = last_checkpoint UpperCAmelCase_ : int = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , __lowercase ) trainer.save_metrics('''eval''' , __lowercase ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Tuple = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'big_bird' def __init__( self : List[str] , __snake_case : List[Any]=50_358 , __snake_case : Any=768 , __snake_case : List[str]=12 , __snake_case : int=12 , __snake_case : Dict=3_072 , __snake_case : Union[str, Any]="gelu_new" , __snake_case : List[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Union[str, Any]=4_096 , __snake_case : str=2 , __snake_case : Any=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : int=True , __snake_case : Optional[int]=0 , __snake_case : List[str]=1 , __snake_case : Optional[int]=2 , __snake_case : Tuple=66 , __snake_case : Tuple="block_sparse" , __snake_case : Union[str, Any]=True , __snake_case : int=False , __snake_case : str=64 , __snake_case : Optional[Any]=3 , __snake_case : List[str]=None , **__snake_case : List[str] , ): '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : str = use_cache UpperCAmelCase_ : Union[str, Any] = rescale_embeddings UpperCAmelCase_ : int = attention_type UpperCAmelCase_ : str = use_bias UpperCAmelCase_ : Tuple = block_size UpperCAmelCase_ : int = num_random_blocks UpperCAmelCase_ : Union[str, Any] = classifier_dropout class lowerCAmelCase__( snake_case__ ): '''simple docstring''' @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'blip_text_model' def __init__( self : Optional[int] , __snake_case : Any=30_524 , __snake_case : str=768 , __snake_case : Dict=768 , __snake_case : Dict=3_072 , __snake_case : List[Any]=768 , __snake_case : Optional[Any]=12 , __snake_case : int=8 , __snake_case : Tuple=512 , __snake_case : Optional[int]="gelu" , __snake_case : List[str]=1E-12 , __snake_case : Union[str, Any]=0.0 , __snake_case : Dict=0.0 , __snake_case : List[str]=0.02 , __snake_case : Optional[Any]=30_522 , __snake_case : List[str]=2 , __snake_case : str=0 , __snake_case : Union[str, Any]=102 , __snake_case : Any=True , __snake_case : Tuple=True , **__snake_case : List[str] , ): '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = encoder_hidden_size UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = projection_dim UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Any = is_decoder UpperCAmelCase_ : int = use_cache @classmethod def _lowerCamelCase ( cls : Any , __snake_case : Union[str, os.PathLike] , **__snake_case : str ): '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) UpperCAmelCase_ : List[Any] = cls.get_config_dict(__snake_case , **__snake_case ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase_ : Optional[int] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'blip_vision_model' def __init__( self : Union[str, Any] , __snake_case : int=768 , __snake_case : str=3_072 , __snake_case : Dict=512 , __snake_case : Optional[Any]=12 , __snake_case : Any=12 , __snake_case : Union[str, Any]=384 , __snake_case : Tuple=16 , __snake_case : Union[str, Any]="gelu" , __snake_case : Tuple=1E-5 , __snake_case : List[Any]=0.0 , __snake_case : Dict=1E-10 , **__snake_case : Any , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : List[Any] = projection_dim UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = hidden_act @classmethod def _lowerCamelCase ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) UpperCAmelCase_ : Tuple = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase_ : Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Tuple = 'blip' A_ : List[Any] = True def __init__( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=2.6_592 , __snake_case : Tuple=256 , **__snake_case : Optional[int] , ): '''simple docstring''' super().__init__(**__snake_case ) if text_config is None: UpperCAmelCase_ : Optional[int] = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: UpperCAmelCase_ : List[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) UpperCAmelCase_ : Tuple = BlipTextConfig(**__snake_case ) UpperCAmelCase_ : Tuple = BlipVisionConfig(**__snake_case ) UpperCAmelCase_ : Any = self.vision_config.hidden_size UpperCAmelCase_ : str = projection_dim UpperCAmelCase_ : str = logit_scale_init_value UpperCAmelCase_ : Optional[int] = 1.0 UpperCAmelCase_ : Dict = 0.02 UpperCAmelCase_ : List[str] = image_text_hidden_size @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : BlipTextConfig , __snake_case : BlipVisionConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.text_config.to_dict() UpperCAmelCase_ : Tuple = self.vision_config.to_dict() UpperCAmelCase_ : List[str] = self.__class__.model_type return output
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase__( unittest.TestCase , snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = load_tool('''text-to-speech''' ) self.tool.setup() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = self.tool('''hey''' ) UpperCAmelCase_ : List[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = self.tool('''hey''' ) UpperCAmelCase_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
from math import ceil def snake_case_ ( __lowercase = 1_0_0_1 ): UpperCAmelCase_ : int = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ : Tuple = 2 * i + 1 UpperCAmelCase_ : Tuple = 2 * i UpperCAmelCase_ : Optional[int] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] UpperCAmelCase_ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False UpperCAmelCase_ : Tuple = True if '''large''' in model_name or '''huge''' in model_name else False UpperCAmelCase_ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: UpperCAmelCase_ : List[Any] = [3, 3, 3, 3] UpperCAmelCase_ : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: UpperCAmelCase_ : Tuple = [4, 4, 4, 4] UpperCAmelCase_ : List[str] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: UpperCAmelCase_ : Tuple = [3, 3, 3, 3] if "lrf" in model_name: UpperCAmelCase_ : Dict = [3, 3, 3, 3] else: UpperCAmelCase_ : Tuple = [2, 2, 2, 2] if "tiny" in model_name: UpperCAmelCase_ : Optional[int] = 9_6 elif "small" in model_name: UpperCAmelCase_ : Tuple = 9_6 elif "base" in model_name: UpperCAmelCase_ : Optional[Any] = 1_2_8 elif "large" in model_name: UpperCAmelCase_ : int = 1_9_2 elif "xlarge" in model_name: UpperCAmelCase_ : Dict = 2_5_6 elif "huge" in model_name: UpperCAmelCase_ : Union[str, Any] = 3_5_2 # set label information UpperCAmelCase_ : Dict = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: UpperCAmelCase_ : List[Any] = '''imagenet-22k-id2label.json''' else: UpperCAmelCase_ : Union[str, Any] = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : int = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Optional[Any] = {int(__lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[str] = FocalNetConfig( embed_dim=__lowercase , depths=__lowercase , focal_levels=__lowercase , focal_windows=__lowercase , use_conv_embed=__lowercase , idalabel=__lowercase , labelaid=__lowercase , use_post_layernorm=__lowercase , use_layerscale=__lowercase , ) return config def snake_case_ ( __lowercase ): if "patch_embed.proj" in name: UpperCAmelCase_ : int = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCAmelCase_ : Any = '''encoder.''' + name if "encoder.layers" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: UpperCAmelCase_ : int = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: UpperCAmelCase_ : List[str] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: UpperCAmelCase_ : List[str] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: UpperCAmelCase_ : Tuple = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: UpperCAmelCase_ : str = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": UpperCAmelCase_ : Tuple = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase_ : Dict = '''layernorm.bias''' if "head" in name: UpperCAmelCase_ : Tuple = name.replace('''head''' , '''classifier''' ) else: UpperCAmelCase_ : str = '''focalnet.''' + name return name def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): # fmt: off UpperCAmelCase_ : Union[str, Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on UpperCAmelCase_ : List[Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowercase ) UpperCAmelCase_ : List[str] = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): UpperCAmelCase_ : int = state_dict.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val UpperCAmelCase_ : Optional[Any] = get_focalnet_config(__lowercase ) UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(__lowercase ) model.eval() # load state dict model.load_state_dict(__lowercase ) # verify conversion UpperCAmelCase_ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : Optional[int] = BitImageProcessor( do_resize=__lowercase , size={'''shortest_edge''': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowercase , crop_size=2_2_4 , do_normalize=__lowercase , image_mean=__lowercase , image_std=__lowercase , ) UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) UpperCAmelCase_ : Union[str, Any] = processor(images=__lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : List[str] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCAmelCase_ : str = image_transforms(__lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowercase , atol=1e-4 ) UpperCAmelCase_ : Union[str, Any] = model(**__lowercase ) UpperCAmelCase_ : Any = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": UpperCAmelCase_ : Optional[Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": UpperCAmelCase_ : Optional[Any] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": UpperCAmelCase_ : Union[str, Any] = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": UpperCAmelCase_ : Any = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": UpperCAmelCase_ : List[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __UpperCamelCase : Tuple = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Tuple=7 , __snake_case : int=3 , __snake_case : str=10 , __snake_case : Union[str, Any]=18 , __snake_case : Dict=30 , __snake_case : Union[str, Any]=400 , __snake_case : Optional[Any]=True , __snake_case : Dict=None , __snake_case : List[str]=True , __snake_case : List[Any]=[0.5, 0.5, 0.5] , __snake_case : int=[0.5, 0.5, 0.5] , __snake_case : List[Any]=None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 18} UpperCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : List[str] = num_frames UpperCAmelCase_ : str = image_size UpperCAmelCase_ : Dict = min_resolution UpperCAmelCase_ : List[Any] = max_resolution UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : List[str] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = crop_size def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = VivitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : int = VivitImageProcessingTester(self ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCAmelCase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Tuple = 'sequence-classification' def __init__( self : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Dict = Namespace(**__snake_case ) UpperCAmelCase_ : Union[str, Any] = glue_output_modes[hparams.task] UpperCAmelCase_ : Dict = glue_tasks_num_labels[hparams.task] super().__init__(__snake_case , __snake_case , self.mode ) def _lowerCamelCase ( self : List[Any] , **__snake_case : Any ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : Any , __snake_case : str , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase_ : Optional[Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase_ : Optional[int] = self(**__snake_case ) UpperCAmelCase_ : int = outputs[0] UpperCAmelCase_ : Dict = self.trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase_ : Optional[Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.hparams UpperCAmelCase_ : Dict = processors[args.task]() UpperCAmelCase_ : int = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase_ : str = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : List[str] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase_ : List[str] = convert_examples_to_features( __snake_case , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : Any = '''dev''' if mode == '''test''' else mode UpperCAmelCase_ : Any = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Dict = torch.load(__snake_case ) UpperCAmelCase_ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCAmelCase_ : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase_ : List[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase_ : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case , shuffle=__snake_case , ) def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase_ : Any = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase_ : Tuple = self(**__snake_case ) UpperCAmelCase_ : str = outputs[:2] UpperCAmelCase_ : List[Any] = logits.detach().cpu().numpy() UpperCAmelCase_ : Union[str, Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : Optional[Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : str = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase_ : Optional[Any] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase_ : Union[str, Any] = np.squeeze(__snake_case ) UpperCAmelCase_ : Optional[int] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Union[str, Any] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __snake_case , __snake_case )} UpperCAmelCase_ : List[str] = dict(results.items() ) UpperCAmelCase_ : Optional[int] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[Any] , __snake_case : list ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self._eval_end(__snake_case ) UpperCAmelCase_ : Dict = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Any = self._eval_end(__snake_case ) UpperCAmelCase_ : List[str] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__snake_case , required=__snake_case , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def snake_case_ ( ): UpperCAmelCase_ : Any = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) UpperCAmelCase_ : Tuple = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase_ : int = os.path.join( '''./results''' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) UpperCAmelCase_ : str = GLUETransformer(__lowercase ) UpperCAmelCase_ : str = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase_ : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__lowercase ) ) UpperCAmelCase_ : Optional[int] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCamelCase : Tuple = 50_0000 __UpperCamelCase : int = os.path.split(__file__) __UpperCamelCase : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def snake_case_ ( __lowercase , **__lowercase ): UpperCAmelCase_ : Dict = dataset.map(**__lowercase ) @get_duration def snake_case_ ( __lowercase , **__lowercase ): UpperCAmelCase_ : str = dataset.filter(**__lowercase ) def snake_case_ ( ): UpperCAmelCase_ : str = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Union[str, Any] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : str = generate_example_dataset( os.path.join(__lowercase , '''dataset.arrow''' ) , __lowercase , num_examples=__lowercase ) UpperCAmelCase_ : Optional[int] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowercase ) def tokenize(__lowercase ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : Union[str, Any] = map(__lowercase ) UpperCAmelCase_ : Dict = map(__lowercase , batched=__lowercase ) UpperCAmelCase_ : List[Any] = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : int = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : List[str] = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCAmelCase_ : Tuple = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) UpperCAmelCase_ : Optional[Any] = map(__lowercase , function=__lowercase , batched=__lowercase ) UpperCAmelCase_ : Optional[int] = filter(__lowercase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowercase , '''wb''' ) as f: f.write(json.dumps(__lowercase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : Optional[int] = FunnelConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : Optional[Any] = FunnelBaseModel(__lowercase ) if base_model else FunnelModel(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) __UpperCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Tuple , __snake_case : Dict , __snake_case : int=768 ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Optional[Any] = proj_size UpperCAmelCase_ : Tuple = CLIPVisionModel(__snake_case ) UpperCAmelCase_ : List[Any] = PaintByExampleMapper(__snake_case ) UpperCAmelCase_ : Optional[int] = nn.LayerNorm(config.hidden_size ) UpperCAmelCase_ : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model(pixel_values=__snake_case ) UpperCAmelCase_ : int = clip_output.pooler_output UpperCAmelCase_ : Optional[Any] = self.mapper(latent_states[:, None] ) UpperCAmelCase_ : List[str] = self.final_layer_norm(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.proj_out(__snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : int , __snake_case : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase_ : str = config.hidden_size UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : int = nn.ModuleList( [ BasicTransformerBlock(__snake_case , __snake_case , __snake_case , activation_fn='''gelu''' , attention_bias=__snake_case ) for _ in range(__snake_case ) ] ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' for block in self.blocks: UpperCAmelCase_ : Tuple = block(__snake_case ) return hidden_states
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' def snake_case_ ( __lowercase = 2_0_0 ): UpperCAmelCase_ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ : Union[str, Any] = [0] * (pence + 1) UpperCAmelCase_ : Optional[int] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCamelCase : Optional[int] = 1.0_5457_1817E-34 # unit of ℏ : J * s __UpperCamelCase : str = 3E8 # unit of c : m * s^-1 def snake_case_ ( __lowercase , __lowercase , __lowercase ): if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: UpperCAmelCase_ : Tuple = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: UpperCAmelCase_ : List[Any] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: UpperCAmelCase_ : Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase : str = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } __UpperCamelCase : Optional[int] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def snake_case_ ( ): UpperCAmelCase_ : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ : Tuple = bs[:] UpperCAmelCase_ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = set() UpperCAmelCase_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Dict = char return pairs class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : Dict = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = ['input_ids', 'attention_mask'] def __init__( self : List[str] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[Any]="replace" , __snake_case : Tuple="<s>" , __snake_case : Union[str, Any]="</s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Any="<s>" , __snake_case : str="<unk>" , __snake_case : Tuple="<pad>" , __snake_case : Any="<mask>" , __snake_case : List[str]=False , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ : List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase_ : Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : Optional[Any] = json.load(__snake_case ) UpperCAmelCase_ : str = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : Optional[int] = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : Tuple = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Optional[int] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : str = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self : str , __snake_case : Optional[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase_ : Any = tuple(__snake_case ) UpperCAmelCase_ : Union[str, Any] = get_pairs(__snake_case ) if not pairs: return token while True: UpperCAmelCase_ : List[Any] = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ : Dict = bigram UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[int] = 0 while i < len(__snake_case ): try: UpperCAmelCase_ : Optional[int] = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Optional[int] = tuple(__snake_case ) UpperCAmelCase_ : List[str] = new_word if len(__snake_case ) == 1: break else: UpperCAmelCase_ : Tuple = get_pairs(__snake_case ) UpperCAmelCase_ : Optional[int] = ''' '''.join(__snake_case ) UpperCAmelCase_ : Optional[Any] = word return word def _lowerCamelCase ( self : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [] for token in re.findall(self.pat , __snake_case ): UpperCAmelCase_ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def _lowerCamelCase ( self : List[str] , __snake_case : List[Any] ): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self : int , __snake_case : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ''''''.join(__snake_case ) UpperCAmelCase_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) UpperCAmelCase_ : Dict = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : Any = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] UpperCAmelCase_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def _lowerCamelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Dict = [self.sep_token_id] UpperCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple , __snake_case : List[Any]=False , **__snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = ''' ''' + text return (text, kwargs)
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import numpy as np def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ : Tuple = np.zeros((n + 1,) ) UpperCAmelCase_ : int = ya UpperCAmelCase_ : Tuple = xa for k in range(__lowercase ): UpperCAmelCase_ : int = f(__lowercase , y[k] ) UpperCAmelCase_ : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Optional[Any] = f(x + h , y[k] + h * ka ) UpperCAmelCase_ : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Optional[Any] = padding_value UpperCAmelCase_ : List[Any] = kwargs.pop('''padding_side''' , '''right''' ) UpperCAmelCase_ : Optional[Any] = kwargs.pop('''return_attention_mask''' , __snake_case ) super().__init__(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: UpperCAmelCase_ : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[Any] = required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): UpperCAmelCase_ : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): UpperCAmelCase_ : List[Any] = '''tf''' elif is_torch_tensor(__snake_case ): UpperCAmelCase_ : Optional[Any] = '''pt''' elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = '''np''' else: raise ValueError( f'''type of {first_element} unknown: {type(__snake_case )}. ''' '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : List[Any] = to_numpy(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = [to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Any = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : Any = len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) UpperCAmelCase_ : int = [] for i in range(__snake_case ): UpperCAmelCase_ : List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : Tuple = self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Any = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : Optional[Any] = {} for i in range(__snake_case ): # padding UpperCAmelCase_ : Dict = self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Dict = value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : List[Any] = len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Tuple = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : str = np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : str = np.pad( processed_features['''attention_mask'''] , (0, difference) ) UpperCAmelCase_ : Optional[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[int] = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : List[str] = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) UpperCAmelCase_ : List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : int = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def _lowerCamelCase ( self : List[str] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) UpperCAmelCase_ : List[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Union[str, Any] = len(__snake_case ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Any = processed_features['''attention_mask'''][:max_length] return processed_features def _lowerCamelCase ( self : str , __snake_case : Dict=False , __snake_case : Union[str, Any]=None ): '''simple docstring''' # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : str = PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : List[Any] = padding else: UpperCAmelCase_ : List[str] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case_ ( __lowercase=None ): if subparsers is not None: UpperCAmelCase_ : List[str] = subparsers.add_parser('''test''' ) else: UpperCAmelCase_ : Dict = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=__lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__lowercase ) return parser def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase_ : Optional[Any] = script_name else: UpperCAmelCase_ : Tuple = F'''--config_file={args.config_file} {script_name}''' UpperCAmelCase_ : Any = ['''accelerate-launch'''] + test_args.split() UpperCAmelCase_ : int = execute_subprocess_async(__lowercase , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def snake_case_ ( ): UpperCAmelCase_ : List[str] = test_command_parser() UpperCAmelCase_ : str = parser.parse_args() test_command(__lowercase ) if __name__ == "__main__": main()
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0