code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart __UpperCamelCase : str = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } __UpperCamelCase : Optional[int] = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def snake_case_ ( ): UpperCAmelCase_ : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ : Tuple = bs[:] UpperCAmelCase_ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = set() UpperCAmelCase_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Dict = char return pairs class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : Dict = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = ['input_ids', 'attention_mask'] def __init__( self : List[str] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[Any]="replace" , __snake_case : Tuple="<s>" , __snake_case : Union[str, Any]="</s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Any="<s>" , __snake_case : str="<unk>" , __snake_case : Tuple="<pad>" , __snake_case : Any="<mask>" , __snake_case : List[str]=False , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ : List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase_ : Optional[int] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : Optional[Any] = json.load(__snake_case ) UpperCAmelCase_ : str = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : Any = errors # how to handle errors in decoding UpperCAmelCase_ : Optional[int] = bytes_to_unicode() UpperCAmelCase_ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : Tuple = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ : int = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : Optional[int] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : str = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self : str , __snake_case : Optional[Any] ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase_ : Any = tuple(__snake_case ) UpperCAmelCase_ : Union[str, Any] = get_pairs(__snake_case ) if not pairs: return token while True: UpperCAmelCase_ : List[Any] = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : Dict = bigram UpperCAmelCase_ : str = [] UpperCAmelCase_ : Optional[int] = 0 while i < len(__snake_case ): try: UpperCAmelCase_ : Optional[int] = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : Union[str, Any] = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : Optional[int] = tuple(__snake_case ) UpperCAmelCase_ : List[str] = new_word if len(__snake_case ) == 1: break else: UpperCAmelCase_ : Tuple = get_pairs(__snake_case ) UpperCAmelCase_ : Optional[int] = ''' '''.join(__snake_case ) UpperCAmelCase_ : Optional[Any] = word return word def _lowerCamelCase ( self : Tuple , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [] for token in re.findall(self.pat , __snake_case ): UpperCAmelCase_ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def _lowerCamelCase ( self : List[str] , __snake_case : List[Any] ): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self : int , __snake_case : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ''''''.join(__snake_case ) UpperCAmelCase_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Union[str, Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) UpperCAmelCase_ : Dict = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : Any = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] UpperCAmelCase_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def _lowerCamelCase ( self : str , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Dict = [self.sep_token_id] UpperCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple , __snake_case : List[Any]=False , **__snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = ''' ''' + text return (text, kwargs)
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) __UpperCamelCase : Tuple = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') __UpperCamelCase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) __UpperCamelCase : Union[str, Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) __UpperCamelCase : Dict = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) __UpperCamelCase : int = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions __UpperCamelCase : Any = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) __UpperCamelCase : Tuple = tf.keras.preprocessing.image.img_to_array(test_image) __UpperCamelCase : Tuple = np.expand_dims(test_image, axis=0) __UpperCamelCase : Dict = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: __UpperCamelCase : Union[str, Any] = 'Normal' if result[0][0] == 1: __UpperCamelCase : Any = 'Abnormality detected'
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Tuple , __snake_case : Dict , __snake_case : int=768 ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Optional[Any] = proj_size UpperCAmelCase_ : Tuple = CLIPVisionModel(__snake_case ) UpperCAmelCase_ : List[Any] = PaintByExampleMapper(__snake_case ) UpperCAmelCase_ : Optional[int] = nn.LayerNorm(config.hidden_size ) UpperCAmelCase_ : Optional[Any] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling UpperCAmelCase_ : List[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model(pixel_values=__snake_case ) UpperCAmelCase_ : int = clip_output.pooler_output UpperCAmelCase_ : Optional[Any] = self.mapper(latent_states[:, None] ) UpperCAmelCase_ : List[str] = self.final_layer_norm(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.proj_out(__snake_case ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : int , __snake_case : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[Any] = (config.num_hidden_layers + 1) // 5 UpperCAmelCase_ : str = config.hidden_size UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : int = nn.ModuleList( [ BasicTransformerBlock(__snake_case , __snake_case , __snake_case , activation_fn='''gelu''' , attention_bias=__snake_case ) for _ in range(__snake_case ) ] ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' for block in self.blocks: UpperCAmelCase_ : Tuple = block(__snake_case ) return hidden_states
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : Optional[int] = FunnelConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : Optional[Any] = FunnelBaseModel(__lowercase ) if base_model else FunnelModel(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) __UpperCamelCase : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
import pytest __UpperCamelCase : int = '__dummy_dataset1__' __UpperCamelCase : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def snake_case_ ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def snake_case_ ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = dataset_loading_script_name UpperCAmelCase_ : Union[str, Any] = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=__lowercase ) UpperCAmelCase_ : List[str] = script_dir / F'''{script_name}.py''' with open(__lowercase , '''w''' ) as f: f.write(__lowercase ) return str(__lowercase )
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : int = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def snake_case_ ( __lowercase ): if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: UpperCAmelCase_ : Union[str, Any] = k.replace(__lowercase , __lowercase ) if k.startswith('''encoder''' ): UpperCAmelCase_ : str = k.replace('''.attn''' , '''.self_attn''' ) UpperCAmelCase_ : int = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase_ : Dict = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): UpperCAmelCase_ : Any = k.replace('''norm1''' , '''self_attn_layer_norm''' ) UpperCAmelCase_ : Optional[Any] = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) UpperCAmelCase_ : List[str] = k.replace('''norm3''' , '''final_layer_norm''' ) return k def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: UpperCAmelCase_ : Tuple = sd.pop(__lowercase ) UpperCAmelCase_ : Union[str, Any] = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd UpperCAmelCase_ : Union[str, Any] = v __UpperCamelCase : Union[str, Any] = ['START'] @torch.no_grad() def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Any = model['''model'''] UpperCAmelCase_ : Any = BlenderbotConfig.from_json_file(__lowercase ) UpperCAmelCase_ : Optional[int] = BlenderbotForConditionalGeneration(__lowercase ) UpperCAmelCase_ : List[str] = m.model.state_dict().keys() UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Any = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue UpperCAmelCase_ : str = rename_state_dict_key(__lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: UpperCAmelCase_ : Optional[int] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__lowercase ) m.model.load_state_dict(__lowercase , strict=__lowercase ) m.half() m.save_pretrained(__lowercase ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __UpperCamelCase : Optional[Any] = '<<<<<<< This should probably be modified because it mentions: ' __UpperCamelCase : Union[str, Any] = '=======\n>>>>>>>\n' __UpperCamelCase : int = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] __UpperCamelCase : Union[str, Any] = [ # (pattern, replacement) # Order is important here for some replacements (R'tfds\.core', R'datasets'), (R'tf\.io\.gfile\.GFile', R'open'), (R'tf\.([\w\d]+)', R'datasets.Value(\'\1\')'), (R'tfds\.features\.Text\(\)', R'datasets.Value(\'string\')'), (R'tfds\.features\.Text\(', R'datasets.Value(\'string\'),'), (R'features\s*=\s*tfds.features.FeaturesDict\(', R'features=datasets.Features('), (R'tfds\.features\.FeaturesDict\(', R'dict('), (R'The TensorFlow Datasets Authors', R'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (R'tfds\.', R'datasets.'), (R'dl_manager\.manual_dir', R'self.config.data_dir'), (R'self\.builder_config', R'self.config'), ] def snake_case_ ( __lowercase ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' @staticmethod def _lowerCamelCase ( __snake_case : ArgumentParser ): '''simple docstring''' UpperCAmelCase_ : List[str] = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=__snake_case , required=__snake_case , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=__snake_case , required=__snake_case , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=__snake_case ) def __init__( self : Tuple , __snake_case : str , __snake_case : str , *__snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = get_logger('''datasets-cli/converting''' ) UpperCAmelCase_ : Tuple = tfds_path UpperCAmelCase_ : Tuple = datasets_directory def _lowerCamelCase ( self : Any ): '''simple docstring''' if os.path.isdir(self._tfds_path ): UpperCAmelCase_ : str = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase_ : Optional[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) UpperCAmelCase_ : Tuple = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Optional[Any] = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase_ : List[str] = os.listdir(__snake_case ) else: UpperCAmelCase_ : Optional[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) UpperCAmelCase_ : int = os.path.join(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = os.path.join(__snake_case , __snake_case ) if not os.path.isfile(__snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(__snake_case , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Optional[Any] = f.readlines() UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : List[str] = [] for line in lines: UpperCAmelCase_ : int = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase_ : Any = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase_ : Optional[int] = '''''' continue elif "from absl import logging" in out_line: UpperCAmelCase_ : Any = '''from datasets import logging\n''' elif "getLogger" in out_line: UpperCAmelCase_ : List[str] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Union[str, Any] = list(filter(lambda __snake_case : e in out_line , __snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__snake_case ) + '''\n''' ) out_lines.append(__snake_case ) out_lines.append(__snake_case ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase_ : int = re.sub(__snake_case , __snake_case , __snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase_ : Optional[int] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , __snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) UpperCAmelCase_ : List[Any] = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase_ : Optional[Any] = True out_lines.append(__snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase_ : Optional[int] = f_name.replace('''.py''' , '''''' ) UpperCAmelCase_ : List[str] = os.path.join(__snake_case , __snake_case ) UpperCAmelCase_ : Optional[Any] = os.path.join(__snake_case , __snake_case ) os.makedirs(__snake_case , exist_ok=__snake_case ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__snake_case ) if needs_manual_update: with_manual_update.append(__snake_case ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.writelines(__snake_case ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: UpperCAmelCase_ : List[Any] = os.path.basename(__snake_case ) UpperCAmelCase_ : Optional[Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__snake_case , __snake_case ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
import re def snake_case_ ( __lowercase ): if len(re.findall('''[ATCG]''' , __lowercase ) ) != len(__lowercase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : Optional[Any] = logging.getLogger(__name__) def snake_case_ ( __lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = False , ): UpperCAmelCase_ : Dict = bnb_quantization_config.load_in_abit UpperCAmelCase_ : Optional[int] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCAmelCase_ : Optional[Any] = [] # custom device map if isinstance(__lowercase , __lowercase ) and len(device_map.keys() ) > 1: UpperCAmelCase_ : Any = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCAmelCase_ : List[str] = get_keys_to_not_convert(__lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowercase ) UpperCAmelCase_ : Optional[int] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : int = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowercase ) # compatibility with peft UpperCAmelCase_ : List[Any] = load_in_abit UpperCAmelCase_ : Optional[int] = load_in_abit UpperCAmelCase_ : Optional[Any] = get_parameter_device(__lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCAmelCase_ : str = replace_with_bnb_layers(__lowercase , __lowercase , modules_to_not_convert=__lowercase ) # convert param to the right dtype UpperCAmelCase_ : int = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCAmelCase_ : str = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCAmelCase_ : Dict = getattr(__lowercase , __lowercase , __lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowercase ): param.to(__lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''' ) else: with init_empty_weights(): UpperCAmelCase_ : int = replace_with_bnb_layers( __lowercase , __lowercase , modules_to_not_convert=__lowercase ) UpperCAmelCase_ : Optional[int] = get_quantized_model_device_map( __lowercase , __lowercase , __lowercase , max_memory=__lowercase , no_split_module_classes=__lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Optional[Any] = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( __lowercase , __lowercase , __lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowercase , offload_state_dict=__lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowercase , device_map=__lowercase , offload_dir=__lowercase ) def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ): if device_map is None: if torch.cuda.is_available(): UpperCAmelCase_ : List[Any] = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(__lowercase , __lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCAmelCase_ : List[str] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : Tuple = special_dtypes UpperCAmelCase_ : List[str] = no_split_module_classes UpperCAmelCase_ : str = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCAmelCase_ : Union[str, Any] = get_balanced_memory( __lowercase , low_zero=(device_map == '''balanced_low_0''') , max_memory=__lowercase , **__lowercase , ) UpperCAmelCase_ : List[Any] = max_memory UpperCAmelCase_ : List[Any] = infer_auto_device_map(__lowercase , **__lowercase ) if isinstance(__lowercase , __lowercase ): # check if don't have any quantized module on the cpu UpperCAmelCase_ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCAmelCase_ : int = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None ): if modules_to_not_convert is None: UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , ): UpperCAmelCase_ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase_ : Union[str, Any] = [] current_key_name.append(__lowercase ) if isinstance(__lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCAmelCase_ : Dict = '''.'''.join(__lowercase ) UpperCAmelCase_ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCAmelCase_ : Tuple = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCAmelCase_ : List[str] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCAmelCase_ : Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCAmelCase_ : Optional[Any] = module.weight.data if module.bias is not None: UpperCAmelCase_ : List[str] = module.bias.data bnb_module.requires_grad_(__lowercase ) setattr(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = True if len(list(module.children() ) ) > 0: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = _replace_with_bnb_layers( __lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case_ ( __lowercase ): # Create a copy of the model with init_empty_weights(): UpperCAmelCase_ : List[str] = deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCAmelCase_ : int = find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ : int = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase_ : Optional[int] = sum(__lowercase , [] ) UpperCAmelCase_ : Optional[Any] = len(__lowercase ) > 0 # Check if it is a base model UpperCAmelCase_ : Union[str, Any] = False if hasattr(__lowercase , '''base_model_prefix''' ): UpperCAmelCase_ : Optional[int] = not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase_ : Optional[Any] = list(model.named_children() ) UpperCAmelCase_ : int = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase_ : int = set(__lowercase ) - set(__lowercase ) UpperCAmelCase_ : List[str] = list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys UpperCAmelCase_ : Optional[Any] = ['''.weight''', '''.bias'''] UpperCAmelCase_ : Union[str, Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase_ : List[str] = name.replace(__lowercase , '''''' ) filtered_module_names.append(__lowercase ) return filtered_module_names def snake_case_ ( __lowercase ): for m in model.modules(): if isinstance(__lowercase , bnb.nn.Linearabit ): return True return False def snake_case_ ( __lowercase ): return next(parameter.parameters() ).device def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowercase , __lowercase , 0 , dtype=__lowercase , value=__lowercase ) UpperCAmelCase_ : Optional[int] = param_name UpperCAmelCase_ : Optional[int] = model if "." in tensor_name: UpperCAmelCase_ : int = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase_ : Any = getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) UpperCAmelCase_ : Any = new_module UpperCAmelCase_ : int = splits[-1] # offload weights UpperCAmelCase_ : Any = False offload_weight(module._parameters[tensor_name] , __lowercase , __lowercase , index=__lowercase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , __lowercase , index=__lowercase , ) else: offload_weight(__lowercase , __lowercase , __lowercase , index=__lowercase ) offload_weight(__lowercase , param_name.replace('''weight''' , '''SCB''' ) , __lowercase , index=__lowercase ) set_module_tensor_to_device(__lowercase , __lowercase , '''meta''' , dtype=__lowercase , value=torch.empty(*param.size() ) )
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
from torch import nn def snake_case_ ( __lowercase ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F'''Unsupported activation function: {act_fn}''' )
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__( unittest.TestCase , snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Any = load_tool('''text-classification''' ) self.tool.setup() UpperCAmelCase_ : str = load_tool('''text-classification''' , remote=__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(__snake_case , '''positive''' )
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase_ : Union[str, Any] = model_name.find('''patch''' ) UpperCAmelCase_ : Optional[Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) UpperCAmelCase_ : Optional[Any] = XCLIPVisionConfig(patch_size=__lowercase , num_frames=__lowercase ) if "large" in model_name: UpperCAmelCase_ : Tuple = 7_6_8 UpperCAmelCase_ : Union[str, Any] = 3_0_7_2 UpperCAmelCase_ : Optional[int] = 1_2 UpperCAmelCase_ : Dict = 1_0_2_4 UpperCAmelCase_ : List[str] = 4_0_9_6 UpperCAmelCase_ : int = 1_6 UpperCAmelCase_ : int = 2_4 UpperCAmelCase_ : Tuple = 7_6_8 UpperCAmelCase_ : str = 3_0_7_2 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ : Tuple = 3_3_6 UpperCAmelCase_ : List[str] = XCLIPConfig.from_text_vision_configs(__lowercase , __lowercase ) if "large" in model_name: UpperCAmelCase_ : Dict = 7_6_8 return config def snake_case_ ( __lowercase ): # text encoder if name == "token_embedding.weight": UpperCAmelCase_ : List[Any] = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": UpperCAmelCase_ : Union[str, Any] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: UpperCAmelCase_ : Optional[int] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: UpperCAmelCase_ : Dict = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): UpperCAmelCase_ : Tuple = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase_ : Optional[int] = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: UpperCAmelCase_ : Tuple = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase_ : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": UpperCAmelCase_ : Optional[Any] = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): UpperCAmelCase_ : Union[str, Any] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: UpperCAmelCase_ : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: UpperCAmelCase_ : List[Any] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: UpperCAmelCase_ : str = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: UpperCAmelCase_ : List[Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: UpperCAmelCase_ : List[str] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase_ : Dict = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: UpperCAmelCase_ : Tuple = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": UpperCAmelCase_ : int = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): UpperCAmelCase_ : List[Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): UpperCAmelCase_ : int = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def snake_case_ ( __lowercase , __lowercase ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : Any = orig_state_dict.pop(__lowercase ) if "attn.in_proj" in key: UpperCAmelCase_ : List[Any] = key.split('''.''' ) if key.startswith('''visual''' ): UpperCAmelCase_ : Any = key_split[3] UpperCAmelCase_ : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase_ : List[Any] = val[ :dim, : ] UpperCAmelCase_ : Any = val[ dim : dim * 2, : ] UpperCAmelCase_ : Tuple = val[ -dim:, : ] else: UpperCAmelCase_ : Dict = val[ :dim ] UpperCAmelCase_ : Union[str, Any] = val[ dim : dim * 2 ] UpperCAmelCase_ : List[Any] = val[ -dim: ] else: if "weight" in key: UpperCAmelCase_ : Union[str, Any] = val[ :dim, : ] UpperCAmelCase_ : Tuple = val[ dim : dim * 2, : ] UpperCAmelCase_ : Tuple = val[ -dim:, : ] else: UpperCAmelCase_ : int = val[:dim] UpperCAmelCase_ : int = val[ dim : dim * 2 ] UpperCAmelCase_ : List[str] = val[-dim:] elif key.startswith('''mit''' ): UpperCAmelCase_ : List[str] = key_split[2] UpperCAmelCase_ : int = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase_ : Optional[int] = val[:dim, :] UpperCAmelCase_ : Any = val[dim : dim * 2, :] UpperCAmelCase_ : Any = val[-dim:, :] else: UpperCAmelCase_ : Any = val[:dim] UpperCAmelCase_ : str = val[dim : dim * 2] UpperCAmelCase_ : Any = val[-dim:] else: UpperCAmelCase_ : str = key_split[2] UpperCAmelCase_ : str = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ : Dict = val[:dim, :] UpperCAmelCase_ : Optional[Any] = val[ dim : dim * 2, : ] UpperCAmelCase_ : List[str] = val[-dim:, :] else: UpperCAmelCase_ : Any = val[:dim] UpperCAmelCase_ : Optional[int] = val[ dim : dim * 2 ] UpperCAmelCase_ : int = val[-dim:] else: UpperCAmelCase_ : Optional[Any] = rename_key(__lowercase ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase_ : List[str] = val.T UpperCAmelCase_ : int = val return orig_state_dict def snake_case_ ( __lowercase ): if num_frames == 8: UpperCAmelCase_ : Optional[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 1_6: UpperCAmelCase_ : int = '''eating_spaghetti.npy''' elif num_frames == 3_2: UpperCAmelCase_ : Union[str, Any] = '''eating_spaghetti_32_frames.npy''' UpperCAmelCase_ : str = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=__lowercase , repo_type='''dataset''' , ) UpperCAmelCase_ : Optional[Any] = np.load(__lowercase ) return list(__lowercase ) def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : Tuple = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } UpperCAmelCase_ : Dict = model_to_url[model_name] UpperCAmelCase_ : Union[str, Any] = 8 if "16-frames" in model_name: UpperCAmelCase_ : str = 1_6 elif "shot" in model_name: UpperCAmelCase_ : Tuple = 3_2 UpperCAmelCase_ : List[str] = get_xclip_config(__lowercase , __lowercase ) UpperCAmelCase_ : Any = XCLIPModel(__lowercase ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase_ : Dict = '''pytorch_model.bin''' gdown.cached_download(__lowercase , __lowercase , quiet=__lowercase ) UpperCAmelCase_ : int = torch.load(__lowercase , map_location='''cpu''' )['''model'''] else: UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(__lowercase )['''model'''] UpperCAmelCase_ : List[Any] = convert_state_dict(__lowercase , __lowercase ) UpperCAmelCase_ : Union[str, Any] = XCLIPModel(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase_ : Tuple = 3_3_6 if model_name == '''xclip-large-patch14-16-frames''' else 2_2_4 UpperCAmelCase_ : Tuple = VideoMAEImageProcessor(size=__lowercase ) UpperCAmelCase_ : Optional[Any] = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) UpperCAmelCase_ : int = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) UpperCAmelCase_ : Union[str, Any] = XCLIPProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : List[Any] = prepare_video(__lowercase ) UpperCAmelCase_ : str = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=__lowercase , return_tensors='''pt''' , padding=__lowercase ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) # Verify outputs UpperCAmelCase_ : Dict = outputs.logits_per_video UpperCAmelCase_ : Any = logits_per_video.softmax(dim=1 ) print('''Probs:''' , __lowercase ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase_ : Optional[int] = torch.tensor([[0.0_0_1_9, 0.9_9_5_1, 0.0_0_3_0]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase_ : int = torch.tensor([[7.09_99e-04, 9.98_83e-01, 4.55_80e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase_ : List[Any] = torch.tensor([[0.0_0_8_3, 0.9_6_8_1, 0.0_2_3_6]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase_ : str = torch.tensor([[7.69_37e-04, 9.97_28e-01, 1.94_73e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase_ : str = torch.tensor([[0.0_0_6_2, 0.9_8_6_4, 0.0_0_7_5]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ : List[str] = torch.tensor([[3.38_77e-04, 9.99_37e-01, 2.88_88e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase_ : Tuple = torch.tensor([[0.0_5_5_5, 0.8_9_1_4, 0.0_5_3_1]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase_ : List[str] = torch.tensor([[3.85_54e-04, 9.99_29e-01, 3.27_54e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase_ : Any = torch.tensor([[0.0_0_3_6, 0.9_9_2_0, 0.0_0_4_5]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase_ : Any = torch.tensor([[7.18_90e-06, 9.99_94e-01, 5.65_59e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase_ : Optional[Any] = torch.tensor([[1.03_20e-05, 9.99_93e-01, 6.24_35e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4.13_77e-06, 9.99_90e-01, 9.83_86e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase_ : int = torch.tensor([[4.13_47e-05, 9.99_62e-01, 3.34_11e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase_ : List[str] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase_ : List[Any] = torch.tensor([[8.58_57e-05, 9.99_28e-01, 6.32_91e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase_ : int = torch.tensor([[0.0_0_2_7, 0.9_9_0_4, 0.0_0_7_0]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase_ : List[str] = torch.tensor([[9.82_19e-04, 9.95_93e-01, 3.08_63e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase_ : int = torch.tensor([[3.50_82e-04, 9.97_85e-01, 1.79_66e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(__lowercase , __lowercase , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(__lowercase , organization='''nielsr''' ) processor.push_to_hub(__lowercase , organization='''nielsr''' ) slow_tokenizer.push_to_hub(__lowercase , organization='''nielsr''' ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='xclip-base-patch32', type=str, help='Name of the model.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCamelCase : Tuple = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : str , __snake_case : int , __snake_case : Dict=7 , __snake_case : Any=3 , __snake_case : Dict=18 , __snake_case : Optional[Any]=30 , __snake_case : Tuple=400 , __snake_case : List[str]=True , __snake_case : Tuple=None , __snake_case : Tuple=True , __snake_case : Dict=False , __snake_case : Any=True , __snake_case : Optional[Any]=True , __snake_case : Dict=[0.5, 0.5, 0.5] , __snake_case : int=[0.5, 0.5, 0.5] , ): '''simple docstring''' UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : str = num_channels UpperCAmelCase_ : Union[str, Any] = image_size UpperCAmelCase_ : Optional[Any] = min_resolution UpperCAmelCase_ : Union[str, Any] = max_resolution UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Optional[Any] = size if size is not None else {'''height''': 18, '''width''': 20} UpperCAmelCase_ : Dict = do_thumbnail UpperCAmelCase_ : int = do_align_axis UpperCAmelCase_ : Dict = do_pad UpperCAmelCase_ : Optional[int] = do_normalize UpperCAmelCase_ : List[str] = image_mean UpperCAmelCase_ : Any = image_std def _lowerCamelCase ( self : str ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : str = DonutImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = DonutImageProcessingTester(self ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_thumbnail''' ) ) self.assertTrue(hasattr(__snake_case , '''do_align_long_axis''' ) ) self.assertTrue(hasattr(__snake_case , '''do_pad''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 20} ) UpperCAmelCase_ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) # Previous config had dimensions in (width, height) order UpperCAmelCase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'''height''': 84, '''width''': 42} ) def _lowerCamelCase ( self : str ): '''simple docstring''' pass @is_flaky() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Optional[Any] = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) @is_flaky() def _lowerCamelCase ( self : str ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched UpperCAmelCase_ : str = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = (IPNDMScheduler,) A_ : Any = (('num_inference_steps', 5_0),) def _lowerCamelCase ( self : Any , **__snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = {'''num_train_timesteps''': 1_000} config.update(**__snake_case ) return config def _lowerCamelCase ( self : Optional[Any] , __snake_case : str=0 , **__snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = dict(self.forward_default_kwargs ) UpperCAmelCase_ : str = kwargs.pop('''num_inference_steps''' , __snake_case ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : Optional[int] = 0.1 * sample UpperCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Optional[Any] = self.get_scheduler_config(**__snake_case ) UpperCAmelCase_ : int = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals UpperCAmelCase_ : List[str] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) UpperCAmelCase_ : Tuple = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals UpperCAmelCase_ : str = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : List[str] = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Union[str, Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : List[Any] = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass def _lowerCamelCase ( self : Any , __snake_case : List[Any]=0 , **__snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = dict(self.forward_default_kwargs ) UpperCAmelCase_ : List[str] = kwargs.pop('''num_inference_steps''' , __snake_case ) UpperCAmelCase_ : int = self.dummy_sample UpperCAmelCase_ : Tuple = 0.1 * sample UpperCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : int = self.get_scheduler_config() UpperCAmelCase_ : Union[str, Any] = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : List[str] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) UpperCAmelCase_ : int = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] UpperCAmelCase_ : Dict = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : str = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" UpperCAmelCase_ : int = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : List[str] = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : Optional[int] , **__snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : Optional[Any] = self.get_scheduler_config(**__snake_case ) UpperCAmelCase_ : Any = scheduler_class(**__snake_case ) UpperCAmelCase_ : Any = 10 UpperCAmelCase_ : int = self.dummy_model() UpperCAmelCase_ : Any = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : str = model(__snake_case , __snake_case ) UpperCAmelCase_ : Any = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : Optional[Any] = model(__snake_case , __snake_case ) UpperCAmelCase_ : List[Any] = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Any = kwargs.pop('''num_inference_steps''' , __snake_case ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Optional[Any] = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**__snake_case ) UpperCAmelCase_ : int = self.dummy_sample UpperCAmelCase_ : int = 0.1 * sample if num_inference_steps is not None and hasattr(__snake_case , '''set_timesteps''' ): scheduler.set_timesteps(__snake_case ) elif num_inference_steps is not None and not hasattr(__snake_case , '''set_timesteps''' ): UpperCAmelCase_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : Any = dummy_past_residuals[:] UpperCAmelCase_ : List[str] = scheduler.timesteps[5] UpperCAmelCase_ : str = scheduler.timesteps[6] UpperCAmelCase_ : List[str] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : Any = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) UpperCAmelCase_ : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : Optional[int] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=__snake_case , time_step=__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=__snake_case , time_step=__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : int = self.full_loop() UpperCAmelCase_ : int = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
import cva import numpy as np class lowerCAmelCase__: '''simple docstring''' def __init__( self : Dict , __snake_case : float , __snake_case : int ): '''simple docstring''' if k in (0.04, 0.06): UpperCAmelCase_ : Optional[int] = k UpperCAmelCase_ : int = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def _lowerCamelCase ( self : Optional[int] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = cva.imread(__snake_case , 0 ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = img.shape UpperCAmelCase_ : list[list[int]] = [] UpperCAmelCase_ : Union[str, Any] = img.copy() UpperCAmelCase_ : str = cva.cvtColor(__snake_case , cva.COLOR_GRAY2RGB ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = np.gradient(__snake_case ) UpperCAmelCase_ : Union[str, Any] = dx**2 UpperCAmelCase_ : Optional[int] = dy**2 UpperCAmelCase_ : Optional[int] = dx * dy UpperCAmelCase_ : Dict = 0.04 UpperCAmelCase_ : Tuple = self.window_size // 2 for y in range(__snake_case , h - offset ): for x in range(__snake_case , w - offset ): UpperCAmelCase_ : int = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ : List[str] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ : Tuple = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCAmelCase_ : Dict = (wxx * wyy) - (wxy**2) UpperCAmelCase_ : str = wxx + wyy UpperCAmelCase_ : str = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase : int = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase : Optional[Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import os import jsonlines import numpy as np from tqdm import tqdm __UpperCamelCase : Optional[int] = 2048 __UpperCamelCase : List[str] = 4096 __UpperCamelCase : int = 42 __UpperCamelCase : Union[str, Any] = os.environ.pop('PROCESS_TRAIN', 'false') __UpperCamelCase : Optional[Any] = {'null': 0, 'short': 1, 'long': 2, 'yes': 3, 'no': 4} def snake_case_ ( __lowercase ): def choose_first(__lowercase , __lowercase=False ): assert isinstance(__lowercase , __lowercase ) if len(__lowercase ) == 1: UpperCAmelCase_ : Optional[Any] = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: UpperCAmelCase_ : Any = {k: [a[k]] for k in a} if len(a['''start_token'''] ) > 0: break return a UpperCAmelCase_ : Dict = {'''id''': example['''id''']} UpperCAmelCase_ : Dict = example['''annotations'''] UpperCAmelCase_ : Dict = annotation['''yes_no_answer'''] if 0 in yes_no_answer or 1 in yes_no_answer: UpperCAmelCase_ : List[str] = ['''yes'''] if 1 in yes_no_answer else ['''no'''] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : List[str] = ['''<cls>'''] else: UpperCAmelCase_ : Dict = ['''short'''] UpperCAmelCase_ : List[Any] = choose_first(annotation['''short_answers'''] ) if len(out['''start_token'''] ) == 0: # answer will be long if short is not available UpperCAmelCase_ : int = ['''long'''] UpperCAmelCase_ : Optional[Any] = choose_first(annotation['''long_answer'''] , is_long_answer=__lowercase ) UpperCAmelCase_ : Any = [] answer.update(__lowercase ) # disregard some samples if len(answer['''start_token'''] ) > 1 or answer["start_token"] == answer["end_token"]: UpperCAmelCase_ : str = True else: UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : int = ['''start_token''', '''end_token''', '''start_byte''', '''end_byte''', '''text'''] if not all(isinstance(answer[k] , __lowercase ) for k in cols ): raise ValueError('''Issue in ID''' , example['''id'''] ) return answer def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Dict = _get_single_answer(__lowercase ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase_ : Optional[int] = example['''document''']['''tokens'''] UpperCAmelCase_ : Dict = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) return { "context": " ".join(__lowercase ), "answer": { "start_token": -1_0_0, # ignore index in cross-entropy "end_token": -1_0_0, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples UpperCAmelCase_ : Dict = ['''start_token''', '''end_token'''] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 UpperCAmelCase_ : Tuple = example['''document''']['''tokens'''] UpperCAmelCase_ : Any = answer['''start_token'''] UpperCAmelCase_ : List[Any] = answer['''end_token'''] UpperCAmelCase_ : Optional[Any] = [] for i in range(len(doc['''token'''] ) ): if not doc["is_html"][i]: context.append(doc['''token'''][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 UpperCAmelCase_ : Any = ''' '''.join(context[start_token:end_token] ) # checking above code if assertion: UpperCAmelCase_ : Optional[Any] = doc['''is_html'''][answer['''start_token'''] : answer['''end_token''']] UpperCAmelCase_ : List[str] = doc['''token'''][answer['''start_token'''] : answer['''end_token''']] UpperCAmelCase_ : Dict = ''' '''.join([old[i] for i in range(len(__lowercase ) ) if not is_html[i]] ) if new != old: print('''ID:''' , example['''id'''] ) print('''New:''' , __lowercase , end='''\n''' ) print('''Old:''' , __lowercase , end='''\n\n''' ) return { "context": " ".join(__lowercase ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def snake_case_ ( __lowercase , __lowercase , __lowercase=2_0_4_8 , __lowercase=4_0_9_6 , __lowercase=True ): # overlap will be of doc_stride - q_len UpperCAmelCase_ : Optional[Any] = get_context_and_ans(__lowercase , assertion=__lowercase ) UpperCAmelCase_ : str = out['''answer'''] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } UpperCAmelCase_ : List[Any] = tokenizer(example['''question''']['''text'''] , out['''context'''] ).input_ids UpperCAmelCase_ : List[str] = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = input_ids[:q_len] UpperCAmelCase_ : Dict = range(__lowercase , len(__lowercase ) , max_length - doc_stride ) for i in doc_start_indices: UpperCAmelCase_ : List[Any] = i + max_length - q_len UpperCAmelCase_ : Union[str, Any] = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer['''category'''][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-1_0_0] * len(__lowercase ), "end_token": [-1_0_0] * len(__lowercase ), "category": category, }, } UpperCAmelCase_ : Union[str, Any] = out['''context'''].split() UpperCAmelCase_ : int = splitted_context[answer['''end_token''']] UpperCAmelCase_ : Optional[Any] = len( tokenizer( ''' '''.join(splitted_context[: answer['''start_token''']] ) , add_special_tokens=__lowercase , ).input_ids ) UpperCAmelCase_ : Optional[int] = len( tokenizer(''' '''.join(splitted_context[: answer['''end_token''']] ) , add_special_tokens=__lowercase ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token UpperCAmelCase_ : List[str] = len(tokenizer(__lowercase , add_special_tokens=__lowercase ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 UpperCAmelCase_ : Tuple = input_ids[answer['''start_token'''] : answer['''end_token'''] + 1] # right & left are inclusive UpperCAmelCase_ : Dict = answer['''start_token'''] UpperCAmelCase_ : int = answer['''end_token'''] if assertion: UpperCAmelCase_ : List[Any] = tokenizer.decode(__lowercase ) if answer["span"] != new: print('''ISSUE IN TOKENIZATION''' ) print('''OLD:''' , answer['''span'''] ) print('''NEW:''' , __lowercase , end='''\n\n''' ) if len(__lowercase ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } UpperCAmelCase_ : Optional[Any] = input_ids[:q_len] UpperCAmelCase_ : int = range(__lowercase , len(__lowercase ) , max_length - doc_stride ) UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : str = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Any = [] # null, yes, no, long, short for i in doc_start_indices: UpperCAmelCase_ : Union[str, Any] = i + max_length - q_len UpperCAmelCase_ : Any = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: UpperCAmelCase_ : str = start_token - i + q_len UpperCAmelCase_ : Tuple = end_token - i + q_len answers_category.append(answer['''category'''][0] ) # ["short"] -> "short" else: UpperCAmelCase_ : Any = -1_0_0 UpperCAmelCase_ : int = -1_0_0 answers_category.append('''null''' ) UpperCAmelCase_ : Optional[int] = inputs[-1][start_token : end_token + 1] answers_start_token.append(__lowercase ) answers_end_token.append(__lowercase ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print('''ISSUE in strided for ID:''' , example['''id'''] ) print('''New:''' , tokenizer.decode(__lowercase ) ) print('''Old:''' , tokenizer.decode(__lowercase ) , end='''\n\n''' ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def snake_case_ ( __lowercase , __lowercase , __lowercase=2_0_4_8 , __lowercase=4_0_9_6 , __lowercase=False ): UpperCAmelCase_ : List[str] = get_strided_contexts_and_ans( __lowercase , __lowercase , doc_stride=__lowercase , max_length=__lowercase , assertion=__lowercase , ) return example def snake_case_ ( __lowercase , __lowercase ): with jsonlines.open(__lowercase , '''a''' ) as writer: for example in tqdm(__lowercase , total=len(__lowercase ) , desc='''Saving samples ... ''' ): UpperCAmelCase_ : List[str] = example['''labels'''] for ids, start, end, cat in zip( example['''input_ids'''] , labels['''start_token'''] , labels['''end_token'''] , labels['''category'''] , ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { '''input_ids''': ids, '''start_token''': start, '''end_token''': end, '''category''': CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer __UpperCamelCase : str = load_dataset('natural_questions') __UpperCamelCase : Any = BigBirdTokenizer.from_pretrained('google/bigbird-roberta-base') __UpperCamelCase : List[Any] = data['train' if PROCESS_TRAIN == 'true' else 'validation'] __UpperCamelCase : int = { 'tokenizer': tokenizer, 'doc_stride': DOC_STRIDE, 'max_length': MAX_LENGTH, 'assertion': False, } __UpperCamelCase : Optional[Any] = data.map(prepare_inputs, fn_kwargs=fn_kwargs) __UpperCamelCase : str = data.remove_columns(['annotations', 'document', 'id', 'question']) print(data) np.random.seed(SEED) __UpperCamelCase : int = 'nq-training.jsonl' if PROCESS_TRAIN == 'true' else 'nq-validation.jsonl' save_to_disk(data, file_name=cache_file_name)
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
def snake_case_ ( __lowercase = 1 , __lowercase = 1_0_0_0 ): UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : str = 0 for divide_by_number in range(__lowercase , digit + 1 ): UpperCAmelCase_ : list[int] = [] UpperCAmelCase_ : int = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): UpperCAmelCase_ : Union[str, Any] = len(__lowercase ) UpperCAmelCase_ : str = divide_by_number else: has_been_divided.append(__lowercase ) UpperCAmelCase_ : Union[str, Any] = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
def snake_case_ ( __lowercase ): if edge <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError('''Length must be a positive.''' ) return 3 * ((2_5 + 1_0 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def snake_case_ ( __lowercase ): if edge <= 0 or not isinstance(__lowercase , __lowercase ): raise ValueError('''Length must be a positive.''' ) return ((1_5 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import requests from bsa import BeautifulSoup def snake_case_ ( __lowercase = "https://www.worldometers.info/coronavirus" ): UpperCAmelCase_ : Optional[Any] = BeautifulSoup(requests.get(__lowercase ).text , '''html.parser''' ) UpperCAmelCase_ : Tuple = soup.findAll('''h1''' ) UpperCAmelCase_ : Optional[int] = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowercase , __lowercase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F'{key}\n{value}\n')
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = CodeGenTokenizer A_ : str = CodeGenTokenizerFast A_ : Any = True A_ : Optional[Any] = {'add_prefix_space': True} A_ : Optional[Any] = False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] UpperCAmelCase_ : Optional[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase_ : Optional[Any] = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__snake_case ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def _lowerCamelCase ( self : str , **__snake_case : str ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def _lowerCamelCase ( self : str , **__snake_case : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def _lowerCamelCase ( self : Dict , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ : str = '''lower newer''' UpperCAmelCase_ : Any = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase_ : str = tokens + [tokenizer.unk_token] UpperCAmelCase_ : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) UpperCAmelCase_ : Optional[int] = '''lower newer''' # Testing tokenization UpperCAmelCase_ : Dict = tokenizer.tokenize(__snake_case , add_prefix_space=__snake_case ) UpperCAmelCase_ : Union[str, Any] = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids without special tokens UpperCAmelCase_ : Optional[int] = tokenizer.encode(__snake_case , add_special_tokens=__snake_case , add_prefix_space=__snake_case ) UpperCAmelCase_ : List[Any] = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing conversion to ids with special tokens UpperCAmelCase_ : Union[str, Any] = self.get_rust_tokenizer(add_prefix_space=__snake_case ) UpperCAmelCase_ : Any = tokenizer.encode(__snake_case , add_prefix_space=__snake_case ) UpperCAmelCase_ : str = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # Testing the unknown token UpperCAmelCase_ : List[str] = tokens + [rust_tokenizer.unk_token] UpperCAmelCase_ : str = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : int , *__snake_case : str , **__snake_case : str ): '''simple docstring''' # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase_ : int = self.rust_tokenizer_class.from_pretrained(__snake_case , **__snake_case ) # Simple input UpperCAmelCase_ : str = '''This is a simple input''' UpperCAmelCase_ : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Any = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : List[str] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='''max_length''' ) # Simple input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='''max_length''' ) # Simple input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='''max_length''' , ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode , __snake_case , max_length=__snake_case , padding='''max_length''' ) # Pair input self.assertRaises(__snake_case , tokenizer_r.encode_plus , __snake_case , max_length=__snake_case , padding='''max_length''' ) # Pair input self.assertRaises( __snake_case , tokenizer_r.batch_encode_plus , __snake_case , max_length=__snake_case , padding='''max_length''' , ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : Optional[Any] = ['''This is a simple input looooooooong''', '''This is a simple input'''] UpperCAmelCase_ : str = ('''This is a simple input''', '''This is a pair''') UpperCAmelCase_ : List[str] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] UpperCAmelCase_ : int = tokenizer.pad_token_id UpperCAmelCase_ : List[Any] = tokenizer(__snake_case , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) UpperCAmelCase_ : Any = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors='''np''' ) UpperCAmelCase_ : List[Any] = tokenizer(*__snake_case , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) UpperCAmelCase_ : Optional[int] = tokenizer(__snake_case , padding=__snake_case , truncate=__snake_case , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : int = '''$$$''' UpperCAmelCase_ : Tuple = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__snake_case , add_bos_token=__snake_case ) UpperCAmelCase_ : Optional[int] = '''This is a simple input''' UpperCAmelCase_ : Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCAmelCase_ : Optional[Any] = tokenizer.bos_token_id UpperCAmelCase_ : Dict = tokenizer(__snake_case ) UpperCAmelCase_ : Optional[int] = tokenizer(__snake_case ) self.assertEqual(out_s.input_ids[0] , __snake_case ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase_ : str = tokenizer.decode(out_s.input_ids ) UpperCAmelCase_ : List[str] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __snake_case ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) UpperCAmelCase_ : int = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' UpperCAmelCase_ : Tuple = '''\nif len_a > len_b: result = a\nelse: result = b''' UpperCAmelCase_ : List[Any] = tokenizer.encode(__snake_case ) UpperCAmelCase_ : str = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] UpperCAmelCase_ : str = tokenizer.decode(__snake_case , truncate_before_pattern=__snake_case ) self.assertEqual(__snake_case , __snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : List[Any] = RemBertConfig.from_json_file(__lowercase ) print('''Building PyTorch model from configuration: {}'''.format(str(__lowercase ) ) ) UpperCAmelCase_ : Optional[int] = RemBertModel(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(__lowercase ) ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = os.path.join(args.tf_model_dir , '''parameters.json''' ) UpperCAmelCase_ : List[str] = json.loads(open(__lowercase ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith('''.pt''' ): UpperCAmelCase_ : int = args.output + '''.pt''' UpperCAmelCase_ : List[str] = OrderedDict() with tf.device('''/CPU:0''' ): UpperCAmelCase_ : Dict = tf.train.load_checkpoint(args.tf_model_dir ) UpperCAmelCase_ : Dict = reader.get_variable_to_shape_map() for key_name in shapes.keys(): UpperCAmelCase_ : Dict = reader.get_tensor(__lowercase ).astype(np.floataa ) if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ): continue if key_name.startswith('''pasts/''' ): if key_name.startswith('''pasts/mlp''' ): UpperCAmelCase_ : Union[str, Any] = int(key_name[9] ) elif key_name.startswith('''pasts/out''' ): UpperCAmelCase_ : Union[str, Any] = 8 UpperCAmelCase_ : Optional[Any] = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time UpperCAmelCase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Dict = torch.tensor(__lowercase ) elif key_name.startswith('''model/moe''' ): UpperCAmelCase_ : List[str] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/switch_gating/kernel''' ): UpperCAmelCase_ : str = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player UpperCAmelCase_ : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : List[str] = torch.tensor(__lowercase ) elif key_name.endswith('''/softmlp/kernel''' ): UpperCAmelCase_ : List[Any] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player UpperCAmelCase_ : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Optional[Any] = torch.tensor(__lowercase ) elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ): UpperCAmelCase_ : List[Any] = key_name[-9:-7] for i in range(1_6 ): UpperCAmelCase_ : List[str] = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer) UpperCAmelCase_ : Optional[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided UpperCAmelCase_ : str = torch.tensor(__lowercase ) elif key_name.startswith('''model/mlp''' ): UpperCAmelCase_ : Optional[Any] = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/p1/kernel''' ): UpperCAmelCase_ : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player UpperCAmelCase_ : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Optional[int] = torch.tensor(__lowercase ) elif key_name.endswith('''/p1/bias''' ): UpperCAmelCase_ : Union[str, Any] = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player UpperCAmelCase_ : Dict = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : Optional[int] = torch.tensor(__lowercase ) elif key_name.endswith('''/p2/kernel''' ): UpperCAmelCase_ : str = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player UpperCAmelCase_ : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : str = torch.tensor(__lowercase ) elif key_name.endswith('''/p2/bias''' ): UpperCAmelCase_ : List[Any] = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player UpperCAmelCase_ : List[Any] = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : int = torch.tensor(__lowercase ) elif key_name.startswith('''model/ln''' ): UpperCAmelCase_ : List[Any] = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): UpperCAmelCase_ : Any = '''model.blocks.%d.feed_forward.norm.bias''' % player UpperCAmelCase_ : Union[str, Any] = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : int = torch.tensor(__lowercase ) elif key_name.endswith('''/g''' ): UpperCAmelCase_ : Optional[Any] = '''model.blocks.%d.feed_forward.norm.weight''' % player UpperCAmelCase_ : Union[str, Any] = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : Dict = torch.tensor(__lowercase ) elif key_name.startswith('''model/att''' ): UpperCAmelCase_ : Tuple = int(key_name[9:].split('''/''' )[0] ) if key_name.endswith('''/qkv/kernel''' ): UpperCAmelCase_ : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum UpperCAmelCase_ : int = state[:, 0, :, :] UpperCAmelCase_ : List[str] = state[:, 1, :, :] UpperCAmelCase_ : int = state[:, 2, :, :] UpperCAmelCase_ : List[str] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Tuple = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Union[str, Any] = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player UpperCAmelCase_ : str = torch.tensor(__lowercase ) UpperCAmelCase_ : int = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player UpperCAmelCase_ : List[Any] = torch.tensor(__lowercase ) UpperCAmelCase_ : int = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player UpperCAmelCase_ : Tuple = torch.tensor(__lowercase ) elif key_name.endswith('''/o/kernel''' ): UpperCAmelCase_ : int = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player UpperCAmelCase_ : Optional[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Tuple = torch.tensor(__lowercase ) elif key_name.startswith('''model/an''' ): UpperCAmelCase_ : str = int(key_name[8:].split('''/''' )[0] ) if key_name.endswith('''/b''' ): UpperCAmelCase_ : List[str] = '''model.blocks.%d.self_attn.norm.bias''' % player UpperCAmelCase_ : str = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : List[Any] = torch.tensor(__lowercase ) elif key_name.endswith('''/g''' ): UpperCAmelCase_ : Optional[Any] = '''model.blocks.%d.self_attn.norm.weight''' % player UpperCAmelCase_ : Optional[Any] = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : Dict = torch.tensor(__lowercase ) elif ( key_name.startswith('''model/wte''' ) or key_name.startswith('''model/wpe''' ) or key_name.startswith('''model/ete''' ) ): UpperCAmelCase_ : str = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[ key_name[-3:] ] UpperCAmelCase_ : Optional[int] = '''model.%s.weight''' % nlayer UpperCAmelCase_ : List[str] = vnp.copy() # same in embedded UpperCAmelCase_ : Any = torch.tensor(__lowercase ) if key_name.startswith('''model/wte''' ): UpperCAmelCase_ : Union[str, Any] = '''lm_head.weight''' UpperCAmelCase_ : Dict = vnp.copy() # same in embedded UpperCAmelCase_ : Union[str, Any] = torch.tensor(__lowercase ) elif key_name.startswith('''model/wob''' ): UpperCAmelCase_ : int = '''final_logits_bias''' UpperCAmelCase_ : Dict = vnp.copy() # same in embedded UpperCAmelCase_ : List[Any] = state.reshape((1, -1) ) UpperCAmelCase_ : str = torch.tensor(__lowercase ) elif key_name == "model/dense/kernel": UpperCAmelCase_ : str = '''model.last_project.weight''' UpperCAmelCase_ : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix UpperCAmelCase_ : Union[str, Any] = torch.tensor(__lowercase ) elif key_name == "model/dense_1/bias": UpperCAmelCase_ : Tuple = '''model.last_project.bias''' UpperCAmelCase_ : List[Any] = vnp.copy() # same because it is one dimensional UpperCAmelCase_ : Union[str, Any] = torch.tensor(__lowercase ) torch.save(__lowercase , args.output ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') __UpperCamelCase : Optional[Any] = parser.parse_args() convert_tf_gptsan_to_pt(args)
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : str = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple=0 ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__snake_case ) ) UpperCAmelCase_ : Dict = np.random.RandomState(__snake_case ) UpperCAmelCase_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.75, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs() UpperCAmelCase_ : List[Any] = pipe(**__snake_case ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : List[str] = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs() UpperCAmelCase_ : List[Any] = pipe(**__snake_case ).images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) # warmup pass to apply optimizations UpperCAmelCase_ : Dict = pipe(**self.get_dummy_inputs() ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : int = pipe(**__snake_case ).images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : List[Any] = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : str = pipe(**__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Tuple = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = self.get_dummy_inputs() UpperCAmelCase_ : List[str] = pipe(**__snake_case ).images UpperCAmelCase_ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Any = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs() UpperCAmelCase_ : List[str] = pipe(**__snake_case ).images UpperCAmelCase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = ort.SessionOptions() UpperCAmelCase_ : Tuple = False return options def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase_ : str = init_image.resize((768, 512) ) # using the PNDM scheduler by default UpperCAmelCase_ : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : List[Any] = '''A fantasy landscape, trending on artstation''' UpperCAmelCase_ : str = np.random.RandomState(0 ) UpperCAmelCase_ : int = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type='''np''' , ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase_ : Any = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) UpperCAmelCase_ : Dict = init_image.resize((768, 512) ) UpperCAmelCase_ : Tuple = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__snake_case , safety_checker=__snake_case , feature_extractor=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = '''A fantasy landscape, trending on artstation''' UpperCAmelCase_ : Dict = np.random.RandomState(0 ) UpperCAmelCase_ : Any = pipe( prompt=__snake_case , image=__snake_case , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type='''np''' , ) UpperCAmelCase_ : Optional[Any] = output.images UpperCAmelCase_ : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : Tuple = logging.get_logger(__name__) # General docstring __UpperCamelCase : List[str] = 'RegNetConfig' # Base docstring __UpperCamelCase : Dict = 'facebook/regnet-y-040' __UpperCamelCase : int = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase : Optional[Any] = 'facebook/regnet-y-040' __UpperCamelCase : Optional[int] = 'tabby, tabby cat' __UpperCamelCase : List[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Any , __snake_case : int , __snake_case : int , __snake_case : int = 3 , __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : Optional[str] = "relu" , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Union[str, Any] = nn.Convad( __snake_case , __snake_case , kernel_size=__snake_case , stride=__snake_case , padding=kernel_size // 2 , groups=__snake_case , bias=__snake_case , ) UpperCAmelCase_ : Union[str, Any] = nn.BatchNormad(__snake_case ) UpperCAmelCase_ : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def _lowerCamelCase ( self : Optional[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.convolution(__snake_case ) UpperCAmelCase_ : int = self.normalization(__snake_case ) UpperCAmelCase_ : Optional[Any] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : List[str] , __snake_case : RegNetConfig ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) UpperCAmelCase_ : Optional[Any] = config.num_channels def _lowerCamelCase ( self : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) UpperCAmelCase_ : Tuple = self.embedder(__snake_case ) return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __snake_case : int , __snake_case : int , __snake_case : int = 2 ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Convad(__snake_case , __snake_case , kernel_size=1 , stride=__snake_case , bias=__snake_case ) UpperCAmelCase_ : List[Any] = nn.BatchNormad(__snake_case ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tensor ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.convolution(__snake_case ) UpperCAmelCase_ : Optional[Any] = self.normalization(__snake_case ) return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : List[str] , __snake_case : int , __snake_case : int ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Any = nn.AdaptiveAvgPoolad((1, 1) ) UpperCAmelCase_ : Any = nn.Sequential( nn.Convad(__snake_case , __snake_case , kernel_size=1 ) , nn.ReLU() , nn.Convad(__snake_case , __snake_case , kernel_size=1 ) , nn.Sigmoid() , ) def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' # b c h w -> b c 1 1 UpperCAmelCase_ : List[str] = self.pooler(__snake_case ) UpperCAmelCase_ : List[Any] = self.attention(__snake_case ) UpperCAmelCase_ : Optional[int] = hidden_state * attention return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 ): '''simple docstring''' super().__init__() UpperCAmelCase_ : str = in_channels != out_channels or stride != 1 UpperCAmelCase_ : List[str] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : Dict = ( RegNetShortCut(__snake_case , __snake_case , stride=__snake_case ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ : Optional[Any] = nn.Sequential( RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case ) , ) UpperCAmelCase_ : int = ACTaFN[config.hidden_act] def _lowerCamelCase ( self : Optional[Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = hidden_state UpperCAmelCase_ : Union[str, Any] = self.layer(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase_ : List[Any] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : List[str] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Any = in_channels != out_channels or stride != 1 UpperCAmelCase_ : Optional[Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : Tuple = ( RegNetShortCut(__snake_case , __snake_case , stride=__snake_case ) if should_apply_shortcut else nn.Identity() ) UpperCAmelCase_ : int = nn.Sequential( RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__snake_case , __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act ) , RegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__snake_case , __snake_case , kernel_size=1 , activation=__snake_case ) , ) UpperCAmelCase_ : Optional[Any] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = hidden_state UpperCAmelCase_ : Optional[Any] = self.layer(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase_ : Tuple = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Any , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 2 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Union[str, Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer UpperCAmelCase_ : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( __snake_case , __snake_case , __snake_case , stride=__snake_case , ) , *[layer(__snake_case , __snake_case , __snake_case ) for _ in range(depth - 1 )] , ) def _lowerCamelCase ( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.layers(__snake_case ) return hidden_state class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : List[str] , __snake_case : RegNetConfig ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Optional[Any] = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) UpperCAmelCase_ : Optional[int] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(__snake_case , config.depths[1:] ): self.stages.append(RegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case ) ) def _lowerCamelCase ( self : List[str] , __snake_case : Tensor , __snake_case : bool = False , __snake_case : bool = True ): '''simple docstring''' UpperCAmelCase_ : List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ : Union[str, Any] = hidden_states + (hidden_state,) UpperCAmelCase_ : str = stage_module(__snake_case ) if output_hidden_states: UpperCAmelCase_ : Optional[int] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = RegNetConfig A_ : Dict = 'regnet' A_ : Union[str, Any] = 'pixel_values' A_ : Union[str, Any] = True def _lowerCamelCase ( self : str , __snake_case : Any ): '''simple docstring''' if isinstance(__snake_case , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : str = value __UpperCamelCase : Tuple = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCamelCase : Union[str, Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : Optional[int] ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : List[str] = config UpperCAmelCase_ : List[Any] = RegNetEmbeddings(__snake_case ) UpperCAmelCase_ : Optional[Any] = RegNetEncoder(__snake_case ) UpperCAmelCase_ : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : List[str] , __snake_case : Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None ): '''simple docstring''' UpperCAmelCase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Union[str, Any] = self.embedder(__snake_case ) UpperCAmelCase_ : Optional[int] = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) UpperCAmelCase_ : List[Any] = encoder_outputs[0] UpperCAmelCase_ : int = self.pooler(__snake_case ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Optional[Any] = config.num_labels UpperCAmelCase_ : Any = RegNetModel(__snake_case ) # classification head UpperCAmelCase_ : List[str] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Any , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[torch.LongTensor] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Dict = self.regnet(__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case ) UpperCAmelCase_ : Union[str, Any] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ : str = self.classifier(__snake_case ) UpperCAmelCase_ : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCAmelCase_ : Dict = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCAmelCase_ : Any = '''single_label_classification''' else: UpperCAmelCase_ : Any = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCAmelCase_ : Union[str, Any] = MSELoss() if self.num_labels == 1: UpperCAmelCase_ : int = loss_fct(logits.squeeze() , labels.squeeze() ) else: UpperCAmelCase_ : Union[str, Any] = loss_fct(__snake_case , __snake_case ) elif self.config.problem_type == "single_label_classification": UpperCAmelCase_ : Union[str, Any] = CrossEntropyLoss() UpperCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": UpperCAmelCase_ : Tuple = BCEWithLogitsLoss() UpperCAmelCase_ : int = loss_fct(__snake_case , __snake_case ) if not return_dict: UpperCAmelCase_ : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
from __future__ import annotations __UpperCamelCase : Optional[Any] = list[list[int]] # assigning initial values to the grid __UpperCamelCase : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCamelCase : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def snake_case_ ( __lowercase ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def snake_case_ ( __lowercase ): if location := find_empty_location(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(__lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = digit if sudoku(__lowercase ) is not None: return grid UpperCAmelCase_ : Union[str, Any] = 0 return None def snake_case_ ( __lowercase ): for row in grid: for cell in row: print(__lowercase , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __UpperCamelCase : int = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
def snake_case_ ( __lowercase = 2_0_0 ): UpperCAmelCase_ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] UpperCAmelCase_ : Union[str, Any] = [0] * (pence + 1) UpperCAmelCase_ : Optional[int] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(__lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 7_3682
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] UpperCAmelCase_ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False UpperCAmelCase_ : Tuple = True if '''large''' in model_name or '''huge''' in model_name else False UpperCAmelCase_ : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: UpperCAmelCase_ : List[Any] = [3, 3, 3, 3] UpperCAmelCase_ : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: UpperCAmelCase_ : Tuple = [4, 4, 4, 4] UpperCAmelCase_ : List[str] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: UpperCAmelCase_ : Tuple = [3, 3, 3, 3] if "lrf" in model_name: UpperCAmelCase_ : Dict = [3, 3, 3, 3] else: UpperCAmelCase_ : Tuple = [2, 2, 2, 2] if "tiny" in model_name: UpperCAmelCase_ : Optional[int] = 9_6 elif "small" in model_name: UpperCAmelCase_ : Tuple = 9_6 elif "base" in model_name: UpperCAmelCase_ : Optional[Any] = 1_2_8 elif "large" in model_name: UpperCAmelCase_ : int = 1_9_2 elif "xlarge" in model_name: UpperCAmelCase_ : Dict = 2_5_6 elif "huge" in model_name: UpperCAmelCase_ : Union[str, Any] = 3_5_2 # set label information UpperCAmelCase_ : Dict = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: UpperCAmelCase_ : List[Any] = '''imagenet-22k-id2label.json''' else: UpperCAmelCase_ : Union[str, Any] = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : int = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Optional[Any] = {int(__lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : List[str] = FocalNetConfig( embed_dim=__lowercase , depths=__lowercase , focal_levels=__lowercase , focal_windows=__lowercase , use_conv_embed=__lowercase , idalabel=__lowercase , labelaid=__lowercase , use_post_layernorm=__lowercase , use_layerscale=__lowercase , ) return config def snake_case_ ( __lowercase ): if "patch_embed.proj" in name: UpperCAmelCase_ : int = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCAmelCase_ : Any = '''encoder.''' + name if "encoder.layers" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: UpperCAmelCase_ : int = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: UpperCAmelCase_ : List[str] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: UpperCAmelCase_ : List[str] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: UpperCAmelCase_ : Tuple = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: UpperCAmelCase_ : str = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": UpperCAmelCase_ : Tuple = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase_ : Dict = '''layernorm.bias''' if "head" in name: UpperCAmelCase_ : Tuple = name.replace('''head''' , '''classifier''' ) else: UpperCAmelCase_ : str = '''focalnet.''' + name return name def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): # fmt: off UpperCAmelCase_ : Union[str, Any] = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on UpperCAmelCase_ : List[Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __lowercase ) UpperCAmelCase_ : List[str] = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): UpperCAmelCase_ : int = state_dict.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val UpperCAmelCase_ : Optional[Any] = get_focalnet_config(__lowercase ) UpperCAmelCase_ : Optional[int] = FocalNetForImageClassification(__lowercase ) model.eval() # load state dict model.load_state_dict(__lowercase ) # verify conversion UpperCAmelCase_ : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : Optional[int] = BitImageProcessor( do_resize=__lowercase , size={'''shortest_edge''': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowercase , crop_size=2_2_4 , do_normalize=__lowercase , image_mean=__lowercase , image_std=__lowercase , ) UpperCAmelCase_ : Optional[Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) UpperCAmelCase_ : Union[str, Any] = processor(images=__lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : List[str] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCAmelCase_ : str = image_transforms(__lowercase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowercase , atol=1e-4 ) UpperCAmelCase_ : Union[str, Any] = model(**__lowercase ) UpperCAmelCase_ : Any = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": UpperCAmelCase_ : List[Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": UpperCAmelCase_ : Optional[Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": UpperCAmelCase_ : Optional[Any] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": UpperCAmelCase_ : Union[str, Any] = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": UpperCAmelCase_ : Any = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": UpperCAmelCase_ : List[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) __UpperCamelCase : Tuple = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Tuple = { 'configuration_roberta_prelayernorm': [ 'ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaPreLayerNormConfig', 'RobertaPreLayerNormOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'RobertaPreLayerNormForCausalLM', 'RobertaPreLayerNormForMaskedLM', 'RobertaPreLayerNormForMultipleChoice', 'RobertaPreLayerNormForQuestionAnswering', 'RobertaPreLayerNormForSequenceClassification', 'RobertaPreLayerNormForTokenClassification', 'RobertaPreLayerNormModel', 'RobertaPreLayerNormPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRobertaPreLayerNormForCausalLM', 'TFRobertaPreLayerNormForMaskedLM', 'TFRobertaPreLayerNormForMultipleChoice', 'TFRobertaPreLayerNormForQuestionAnswering', 'TFRobertaPreLayerNormForSequenceClassification', 'TFRobertaPreLayerNormForTokenClassification', 'TFRobertaPreLayerNormMainLayer', 'TFRobertaPreLayerNormModel', 'TFRobertaPreLayerNormPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'FlaxRobertaPreLayerNormForCausalLM', 'FlaxRobertaPreLayerNormForMaskedLM', 'FlaxRobertaPreLayerNormForMultipleChoice', 'FlaxRobertaPreLayerNormForQuestionAnswering', 'FlaxRobertaPreLayerNormForSequenceClassification', 'FlaxRobertaPreLayerNormForTokenClassification', 'FlaxRobertaPreLayerNormModel', 'FlaxRobertaPreLayerNormPreTrainedModel', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
def snake_case_ ( __lowercase ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) UpperCAmelCase_ : Any = [True] * (num + 1) UpperCAmelCase_ : Any = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowercase ): UpperCAmelCase_ : Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[Any] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : int=13 , __snake_case : Optional[Any]=7 , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : Union[str, Any]=True , __snake_case : int=True , __snake_case : List[str]=99 , __snake_case : List[str]=32 , __snake_case : Tuple=5 , __snake_case : int=4 , __snake_case : List[Any]=37 , __snake_case : str="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=512 , __snake_case : Tuple=16 , __snake_case : List[str]=2 , __snake_case : List[Any]=0.02 , __snake_case : Tuple=4 , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Union[str, Any] = use_attention_mask UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Optional[Any] = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_vocab_size UpperCAmelCase_ : str = type_sequence_label_size UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : List[Any] = num_choices def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = None if self.use_attention_mask: UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__snake_case , ) return config, input_ids, attention_mask def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : int = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = FlaxDistilBertModelTester(self ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ : str = model_class_name.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase_ : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) UpperCAmelCase_ : Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) UpperCAmelCase_ : str = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase_ : List[Any] = (1, 11, 768) self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ : List[Any] = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __snake_case , atol=1E-4 ) )
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['input_features', 'attention_mask'] def __init__( self : int , __snake_case : Any=80 , __snake_case : Union[str, Any]=16_000 , __snake_case : int=0.0 , __snake_case : Tuple=10 , __snake_case : Any=25 , __snake_case : Optional[int]="hamming_window" , __snake_case : Optional[int]=32_768.0 , __snake_case : List[Any]=0.97 , __snake_case : Optional[Any]=1.0 , __snake_case : List[str]=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=False , **__snake_case : List[Any] , ): '''simple docstring''' super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) UpperCAmelCase_ : Any = feature_size UpperCAmelCase_ : List[str] = sampling_rate UpperCAmelCase_ : str = padding_value UpperCAmelCase_ : Optional[Any] = hop_length UpperCAmelCase_ : Optional[int] = win_length UpperCAmelCase_ : Union[str, Any] = frame_signal_scale UpperCAmelCase_ : int = preemphasis_coeff UpperCAmelCase_ : List[Any] = mel_floor UpperCAmelCase_ : List[Any] = normalize_means UpperCAmelCase_ : Tuple = normalize_vars UpperCAmelCase_ : List[str] = win_function UpperCAmelCase_ : Optional[Any] = return_attention_mask UpperCAmelCase_ : Optional[Any] = win_length * sampling_rate // 1_000 UpperCAmelCase_ : Optional[Any] = hop_length * sampling_rate // 1_000 UpperCAmelCase_ : int = optimal_fft_length(self.sample_size ) UpperCAmelCase_ : Union[str, Any] = (self.n_fft // 2) + 1 def _lowerCamelCase ( self : int , __snake_case : np.array ): '''simple docstring''' if self.win_function == "hamming_window": UpperCAmelCase_ : List[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=__snake_case ) else: UpperCAmelCase_ : str = window_function(window_length=self.sample_size , name=self.win_function ) UpperCAmelCase_ : List[Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCAmelCase_ : str = spectrogram( one_waveform * self.frame_signal_scale , window=__snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__snake_case , preemphasis=self.preemphasis_coeff , mel_filters=__snake_case , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : List[str] ): '''simple docstring''' # make sure we normalize float32 arrays if self.normalize_means: UpperCAmelCase_ : int = x[:input_length].mean(axis=0 ) UpperCAmelCase_ : str = np.subtract(__snake_case , __snake_case ) if self.normalize_vars: UpperCAmelCase_ : int = x[:input_length].std(axis=0 ) UpperCAmelCase_ : Optional[Any] = np.divide(__snake_case , __snake_case ) if input_length < x.shape[0]: UpperCAmelCase_ : Union[str, Any] = padding_value # make sure array is in float32 UpperCAmelCase_ : List[str] = x.astype(np.floataa ) return x def _lowerCamelCase ( self : str , __snake_case : List[np.ndarray] , __snake_case : Optional[np.ndarray] = None ): '''simple docstring''' UpperCAmelCase_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__snake_case , __snake_case , self.padding_value ) for x, n in zip(__snake_case , __snake_case )] def __call__( self : str , __snake_case : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[int] = None , **__snake_case : Tuple , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCAmelCase_ : Dict = isinstance(__snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCAmelCase_ : Tuple = is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCAmelCase_ : str = [np.asarray(__snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): UpperCAmelCase_ : str = np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCAmelCase_ : Union[str, Any] = [raw_speech] # extract fbank features UpperCAmelCase_ : Any = [self._extract_mfsc_features(__snake_case ) for one_waveform in raw_speech] # convert into correct format for padding UpperCAmelCase_ : Any = BatchFeature({'''input_features''': features} ) UpperCAmelCase_ : List[Any] = self.pad( __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) # make sure list is in array format UpperCAmelCase_ : List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __snake_case ): UpperCAmelCase_ : int = [np.asarray(__snake_case , dtype=np.floataa ) for feature in input_features] UpperCAmelCase_ : List[Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: UpperCAmelCase_ : Optional[Any] = [np.asarray(__snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCAmelCase_ : str = ( np.array(__snake_case , dtype=np.intaa ) if self._get_padding_strategies(__snake_case , max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCAmelCase_ : str = self.normalize( padded_inputs['''input_features'''] , attention_mask=__snake_case ) if return_tensors is not None: UpperCAmelCase_ : int = padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( 'The RoBERTa Model transformer with early exiting (DeeRoBERTa). ' , snake_case__ , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = RobertaConfig A_ : List[Any] = 'roberta' def __init__( self : str , __snake_case : Tuple ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Tuple = RobertaEmbeddings(__snake_case ) self.init_weights() @add_start_docstrings( 'RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. ' , snake_case__ , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = RobertaConfig A_ : int = 'roberta' def __init__( self : str , __snake_case : Optional[int] ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : int = config.num_labels UpperCAmelCase_ : Dict = config.num_hidden_layers UpperCAmelCase_ : Dict = DeeRobertaModel(__snake_case ) UpperCAmelCase_ : Optional[int] = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase_ : str = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : int=None , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Union[str, Any]=None , __snake_case : List[str]=None , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=-1 , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_layers try: UpperCAmelCase_ : List[Any] = self.roberta( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , position_ids=__snake_case , head_mask=__snake_case , inputs_embeds=__snake_case , ) UpperCAmelCase_ : Optional[int] = outputs[1] UpperCAmelCase_ : List[Any] = self.dropout(__snake_case ) UpperCAmelCase_ : str = self.classifier(__snake_case ) UpperCAmelCase_ : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: UpperCAmelCase_ : Optional[Any] = e.message UpperCAmelCase_ : Tuple = e.exit_layer UpperCAmelCase_ : Any = outputs[0] if not self.training: UpperCAmelCase_ : Tuple = entropy(__snake_case ) UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[int] = [] if labels is not None: if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : Optional[int] = MSELoss() UpperCAmelCase_ : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : Any = CrossEntropyLoss() UpperCAmelCase_ : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits UpperCAmelCase_ : int = [] for highway_exit in outputs[-1]: UpperCAmelCase_ : Optional[int] = highway_exit[0] if not self.training: highway_logits_all.append(__snake_case ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression UpperCAmelCase_ : Union[str, Any] = MSELoss() UpperCAmelCase_ : str = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase_ : Tuple = CrossEntropyLoss() UpperCAmelCase_ : Optional[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__snake_case ) if train_highway: UpperCAmelCase_ : Optional[int] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: UpperCAmelCase_ : Optional[Any] = (loss,) + outputs if not self.training: UpperCAmelCase_ : Optional[int] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: UpperCAmelCase_ : List[Any] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
from __future__ import annotations def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) UpperCAmelCase_ : Dict = result + left + right return input_list def snake_case_ ( __lowercase ): if len(__lowercase ) <= 1: return input_list UpperCAmelCase_ : Tuple = list(__lowercase ) # iteration for two-way merging UpperCAmelCase_ : Union[str, Any] = 2 while p <= len(__lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(__lowercase ) , __lowercase ): UpperCAmelCase_ : str = i UpperCAmelCase_ : List[Any] = i + p - 1 UpperCAmelCase_ : Any = (low + high + 1) // 2 UpperCAmelCase_ : Union[str, Any] = merge(__lowercase , __lowercase , __lowercase , __lowercase ) # final merge of last two parts if p * 2 >= len(__lowercase ): UpperCAmelCase_ : List[str] = i UpperCAmelCase_ : str = merge(__lowercase , 0 , __lowercase , len(__lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": __UpperCamelCase : int = input('Enter numbers separated by a comma:\n').strip() if user_input == "": __UpperCamelCase : Optional[int] = [] else: __UpperCamelCase : List[str] = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import math def snake_case_ ( __lowercase , __lowercase ): return math.pow(__lowercase , 2 ) - a def snake_case_ ( __lowercase ): return 2 * x def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = 2.0 while start <= a: UpperCAmelCase_ : Any = math.pow(__lowercase , 2 ) return start def snake_case_ ( __lowercase , __lowercase = 9_9_9_9 , __lowercase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): if a < 0: raise ValueError('''math domain error''' ) UpperCAmelCase_ : Dict = get_initial_point(__lowercase ) for _ in range(__lowercase ): UpperCAmelCase_ : Optional[int] = value UpperCAmelCase_ : str = value - fx(__lowercase , __lowercase ) / fx_derivative(__lowercase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
from pathlib import Path import numpy as np from PIL import Image def snake_case_ ( __lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def snake_case_ ( __lowercase ): return (gray > 1_2_7) & (gray <= 2_5_5) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Union[str, Any] = np.zeros_like(__lowercase ) UpperCAmelCase_ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase_ : Optional[int] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase_ : Dict = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase_ : List[str] = int(summation > 0 ) return output if __name__ == "__main__": # read original image __UpperCamelCase : int = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' __UpperCamelCase : Optional[Any] = np.array(Image.open(lena_path)) # kernel to be applied __UpperCamelCase : Optional[Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __UpperCamelCase : Any = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __UpperCamelCase : Union[str, Any] = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import json import os import unittest from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = XLMTokenizer A_ : Dict = False def _lowerCamelCase ( self : Any ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] UpperCAmelCase_ : Dict = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : str = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__snake_case ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__snake_case ) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = '''lower newer''' UpperCAmelCase_ : Union[str, Any] = '''lower newer''' return input_text, output_text def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = XLMTokenizer(self.vocab_file , self.merges_file ) UpperCAmelCase_ : Union[str, Any] = '''lower''' UpperCAmelCase_ : Optional[Any] = ['''low''', '''er</w>'''] UpperCAmelCase_ : Union[str, Any] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase_ : str = tokens + ['''<unk>'''] UpperCAmelCase_ : Any = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' ) UpperCAmelCase_ : Union[str, Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == [0] + text + [1] assert encoded_pair == [0] + text + [1] + text_a + [1]
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __UpperCamelCase : Any = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __UpperCamelCase : int = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowercase )[0] @deprecated(__lowercase , '''Please use tf.data to implement this functionality.''' ) def snake_case_ ( __lowercase ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: UpperCAmelCase_ : int = _readaa(__lowercase ) if magic != 2_0_5_1: raise ValueError( '''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) ) UpperCAmelCase_ : int = _readaa(__lowercase ) UpperCAmelCase_ : Optional[Any] = _readaa(__lowercase ) UpperCAmelCase_ : str = _readaa(__lowercase ) UpperCAmelCase_ : Optional[Any] = bytestream.read(rows * cols * num_images ) UpperCAmelCase_ : Any = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) UpperCAmelCase_ : Optional[int] = data.reshape(__lowercase , __lowercase , __lowercase , 1 ) return data @deprecated(__lowercase , '''Please use tf.one_hot on tensors.''' ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = labels_dense.shape[0] UpperCAmelCase_ : Union[str, Any] = numpy.arange(__lowercase ) * num_classes UpperCAmelCase_ : int = numpy.zeros((num_labels, num_classes) ) UpperCAmelCase_ : Union[str, Any] = 1 return labels_one_hot @deprecated(__lowercase , '''Please use tf.data to implement this functionality.''' ) def snake_case_ ( __lowercase , __lowercase=False , __lowercase=1_0 ): print('''Extracting''' , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: UpperCAmelCase_ : Any = _readaa(__lowercase ) if magic != 2_0_4_9: raise ValueError( '''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) ) UpperCAmelCase_ : Any = _readaa(__lowercase ) UpperCAmelCase_ : List[Any] = bytestream.read(__lowercase ) UpperCAmelCase_ : Union[str, Any] = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowercase , __lowercase ) return labels class lowerCAmelCase__: '''simple docstring''' @deprecated( __snake_case , '''Please use alternatives such as official/mnist/_DataSet.py''' ''' from tensorflow/models.''' , ) def __init__( self : Dict , __snake_case : str , __snake_case : Dict , __snake_case : List[Any]=False , __snake_case : Any=False , __snake_case : str=dtypes.floataa , __snake_case : Dict=True , __snake_case : Dict=None , ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : str = random_seed.get_seed(__snake_case ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) UpperCAmelCase_ : Optional[int] = dtypes.as_dtype(__snake_case ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype ) if fake_data: UpperCAmelCase_ : Dict = 10_000 UpperCAmelCase_ : Any = one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'''images.shape: {images.shape} labels.shape: {labels.shape}''' UpperCAmelCase_ : int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCAmelCase_ : Union[str, Any] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCAmelCase_ : Dict = images.astype(numpy.floataa ) UpperCAmelCase_ : Dict = numpy.multiply(__snake_case , 1.0 / 255.0 ) UpperCAmelCase_ : List[Any] = images UpperCAmelCase_ : Optional[Any] = labels UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Dict = 0 @property def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' return self._images @property def _lowerCamelCase ( self : str ): '''simple docstring''' return self._labels @property def _lowerCamelCase ( self : str ): '''simple docstring''' return self._num_examples @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self._epochs_completed def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : int=False , __snake_case : List[Any]=True ): '''simple docstring''' if fake_data: UpperCAmelCase_ : List[Any] = [1] * 784 UpperCAmelCase_ : Any = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(__snake_case )], [fake_label for _ in range(__snake_case )], ) UpperCAmelCase_ : Dict = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCAmelCase_ : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(__snake_case ) UpperCAmelCase_ : Dict = self.images[perma] UpperCAmelCase_ : List[Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCAmelCase_ : Any = self._num_examples - start UpperCAmelCase_ : Tuple = self._images[start : self._num_examples] UpperCAmelCase_ : int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCAmelCase_ : Dict = numpy.arange(self._num_examples ) numpy.random.shuffle(__snake_case ) UpperCAmelCase_ : Tuple = self.images[perm] UpperCAmelCase_ : Optional[int] = self.labels[perm] # Start next epoch UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : str = batch_size - rest_num_examples UpperCAmelCase_ : Dict = self._index_in_epoch UpperCAmelCase_ : Dict = self._images[start:end] UpperCAmelCase_ : Optional[int] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size UpperCAmelCase_ : List[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowercase , '''Please write your own downloading logic.''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if not gfile.Exists(__lowercase ): gfile.MakeDirs(__lowercase ) UpperCAmelCase_ : Tuple = os.path.join(__lowercase , __lowercase ) if not gfile.Exists(__lowercase ): urllib.request.urlretrieve(__lowercase , __lowercase ) # noqa: S310 with gfile.GFile(__lowercase ) as f: UpperCAmelCase_ : str = f.size() print('''Successfully downloaded''' , __lowercase , __lowercase , '''bytes.''' ) return filepath @deprecated( __lowercase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' ) def snake_case_ ( __lowercase , __lowercase=False , __lowercase=False , __lowercase=dtypes.floataa , __lowercase=True , __lowercase=5_0_0_0 , __lowercase=None , __lowercase=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowercase , one_hot=__lowercase , dtype=__lowercase , seed=__lowercase ) UpperCAmelCase_ : str = fake() UpperCAmelCase_ : Optional[int] = fake() UpperCAmelCase_ : List[str] = fake() return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase ) if not source_url: # empty string check UpperCAmelCase_ : Any = DEFAULT_SOURCE_URL UpperCAmelCase_ : int = '''train-images-idx3-ubyte.gz''' UpperCAmelCase_ : Tuple = '''train-labels-idx1-ubyte.gz''' UpperCAmelCase_ : Any = '''t10k-images-idx3-ubyte.gz''' UpperCAmelCase_ : List[Any] = '''t10k-labels-idx1-ubyte.gz''' UpperCAmelCase_ : List[Any] = _maybe_download( __lowercase , __lowercase , source_url + train_images_file ) with gfile.Open(__lowercase , '''rb''' ) as f: UpperCAmelCase_ : Union[str, Any] = _extract_images(__lowercase ) UpperCAmelCase_ : List[Any] = _maybe_download( __lowercase , __lowercase , source_url + train_labels_file ) with gfile.Open(__lowercase , '''rb''' ) as f: UpperCAmelCase_ : List[Any] = _extract_labels(__lowercase , one_hot=__lowercase ) UpperCAmelCase_ : List[Any] = _maybe_download( __lowercase , __lowercase , source_url + test_images_file ) with gfile.Open(__lowercase , '''rb''' ) as f: UpperCAmelCase_ : Optional[int] = _extract_images(__lowercase ) UpperCAmelCase_ : Tuple = _maybe_download( __lowercase , __lowercase , source_url + test_labels_file ) with gfile.Open(__lowercase , '''rb''' ) as f: UpperCAmelCase_ : Any = _extract_labels(__lowercase , one_hot=__lowercase ) if not 0 <= validation_size <= len(__lowercase ): UpperCAmelCase_ : Tuple = ( '''Validation size should be between 0 and ''' F'''{len(__lowercase )}. Received: {validation_size}.''' ) raise ValueError(__lowercase ) UpperCAmelCase_ : str = train_images[:validation_size] UpperCAmelCase_ : Dict = train_labels[:validation_size] UpperCAmelCase_ : int = train_images[validation_size:] UpperCAmelCase_ : Optional[Any] = train_labels[validation_size:] UpperCAmelCase_ : Any = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} UpperCAmelCase_ : Tuple = _DataSet(__lowercase , __lowercase , **__lowercase ) UpperCAmelCase_ : Dict = _DataSet(__lowercase , __lowercase , **__lowercase ) UpperCAmelCase_ : Optional[Any] = _DataSet(__lowercase , __lowercase , **__lowercase ) return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = (DPMSolverSinglestepScheduler,) A_ : Dict = (('num_inference_steps', 2_5),) def _lowerCamelCase ( self : List[Any] , **__snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**__snake_case ) return config def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any]=0 , **__snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : int = kwargs.pop('''num_inference_steps''' , __snake_case ) UpperCAmelCase_ : Optional[Any] = self.dummy_sample UpperCAmelCase_ : str = 0.1 * sample UpperCAmelCase_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Dict = self.get_scheduler_config(**__snake_case ) UpperCAmelCase_ : Dict = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) UpperCAmelCase_ : Union[str, Any] = scheduler_class.from_pretrained(__snake_case ) new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals UpperCAmelCase_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = sample, sample for t in range(__snake_case , time_step + scheduler.config.solver_order + 1 ): UpperCAmelCase_ : Union[str, Any] = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : int = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : int , __snake_case : Optional[Any]=0 , **__snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''num_inference_steps''' , __snake_case ) UpperCAmelCase_ : int = self.dummy_sample UpperCAmelCase_ : Any = 0.1 * sample UpperCAmelCase_ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Optional[Any] = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**__snake_case ) scheduler.set_timesteps(__snake_case ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : List[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__snake_case ) UpperCAmelCase_ : Optional[Any] = scheduler_class.from_pretrained(__snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(__snake_case ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCAmelCase_ : Dict = scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample UpperCAmelCase_ : Tuple = new_scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self : str , __snake_case : Tuple=None , **__snake_case : Optional[int] ): '''simple docstring''' if scheduler is None: UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : Tuple = self.get_scheduler_config(**__snake_case ) UpperCAmelCase_ : List[Any] = scheduler_class(**__snake_case ) UpperCAmelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase_ : Any = self.get_scheduler_config(**__snake_case ) UpperCAmelCase_ : List[Any] = scheduler_class(**__snake_case ) UpperCAmelCase_ : List[Any] = 10 UpperCAmelCase_ : List[Any] = self.dummy_model() UpperCAmelCase_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : List[Any] = model(__snake_case , __snake_case ) UpperCAmelCase_ : Any = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample return sample def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCAmelCase_ : List[Any] = 50 UpperCAmelCase_ : Optional[int] = self.dummy_model() UpperCAmelCase_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(__snake_case ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): UpperCAmelCase_ : Dict = model(__snake_case , __snake_case ) UpperCAmelCase_ : Optional[int] = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample UpperCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2_574 ) < 1E-3 def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCAmelCase_ : List[str] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) UpperCAmelCase_ : Optional[Any] = self.full_loop(scheduler=__snake_case ) UpperCAmelCase_ : List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 UpperCAmelCase_ : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ : str = DPMSolverMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ : Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) UpperCAmelCase_ : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) UpperCAmelCase_ : Tuple = self.full_loop(scheduler=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self.check_over_configs(thresholding=__snake_case ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=__snake_case , prediction_type=__snake_case , sample_max_value=__snake_case , algorithm_type='''dpmsolver++''' , solver_order=__snake_case , solver_type=__snake_case , ) def _lowerCamelCase ( self : int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , algorithm_type=__snake_case , ) UpperCAmelCase_ : List[Any] = self.full_loop( solver_order=__snake_case , solver_type=__snake_case , prediction_type=__snake_case , algorithm_type=__snake_case , ) assert not torch.isnan(__snake_case ).any(), "Samples have nan numbers" def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.check_over_configs(lower_order_final=__snake_case ) self.check_over_configs(lower_order_final=__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.check_over_configs(variance_type=__snake_case ) self.check_over_configs(variance_type='''learned_range''' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=__snake_case , time_step=0 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.full_loop() UpperCAmelCase_ : List[str] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2_791 ) < 1E-3 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = self.full_loop(use_karras_sigmas=__snake_case ) UpperCAmelCase_ : Optional[Any] = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.2_248 ) < 1E-3 def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.full_loop(prediction_type='''v_prediction''' ) UpperCAmelCase_ : Tuple = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.1_453 ) < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=__snake_case ) UpperCAmelCase_ : Any = torch.mean(torch.abs(__snake_case ) ) assert abs(result_mean.item() - 0.0_649 ) < 1E-3 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.scheduler_classes[0] UpperCAmelCase_ : str = self.get_scheduler_config(thresholding=__snake_case , dynamic_thresholding_ratio=0 ) UpperCAmelCase_ : Optional[Any] = scheduler_class(**__snake_case ) UpperCAmelCase_ : Optional[Any] = 10 UpperCAmelCase_ : str = self.dummy_model() UpperCAmelCase_ : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(__snake_case ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : Optional[int] = model(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = scheduler.step(__snake_case , __snake_case , __snake_case ).prev_sample assert sample.dtype == torch.floataa
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
import numpy as np from transformers import Pipeline def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = np.max(__lowercase , axis=-1 , keepdims=__lowercase ) UpperCAmelCase_ : int = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=__lowercase ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Dict , **__snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = {} if "second_text" in kwargs: UpperCAmelCase_ : List[str] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : Tuple=None ): '''simple docstring''' return self.tokenizer(__snake_case , text_pair=__snake_case , return_tensors=self.framework ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = model_outputs.logits[0].numpy() UpperCAmelCase_ : Optional[Any] = softmax(__snake_case ) UpperCAmelCase_ : Any = np.argmax(__snake_case ) UpperCAmelCase_ : Optional[int] = self.model.config.idalabel[best_class] UpperCAmelCase_ : Union[str, Any] = probabilities[best_class].item() UpperCAmelCase_ : Any = logits.tolist() return {"label": label, "score": score, "logits": logits}
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : NestedDataStructureLike[PathLike] , __snake_case : Optional[NamedSplit] = None , __snake_case : Optional[Features] = None , __snake_case : str = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : Optional[int] = None , **__snake_case : str , ): '''simple docstring''' super().__init__( __snake_case , split=__snake_case , features=__snake_case , cache_dir=__snake_case , keep_in_memory=__snake_case , streaming=__snake_case , num_proc=__snake_case , **__snake_case , ) UpperCAmelCase_ : Tuple = path_or_paths if isinstance(__snake_case , __snake_case ) else {self.split: path_or_paths} UpperCAmelCase_ : Optional[int] = Text( cache_dir=__snake_case , data_files=__snake_case , features=__snake_case , **__snake_case , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' # Build iterable dataset if self.streaming: UpperCAmelCase_ : Dict = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : int = None self.builder.download_and_prepare( download_config=__snake_case , download_mode=__snake_case , verification_mode=__snake_case , base_path=__snake_case , num_proc=self.num_proc , ) UpperCAmelCase_ : List[str] = self.builder.as_dataset( split=self.split , verification_mode=__snake_case , in_memory=self.keep_in_memory ) return dataset
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
from math import ceil def snake_case_ ( __lowercase = 1_0_0_1 ): UpperCAmelCase_ : int = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): UpperCAmelCase_ : Tuple = 2 * i + 1 UpperCAmelCase_ : Tuple = 2 * i UpperCAmelCase_ : Optional[int] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCamelCase : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Optional[Any] = {'processing_layoutxlm': ['LayoutXLMProcessor']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['LayoutXLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = ['LayoutXLMTokenizerFast'] if TYPE_CHECKING: from .processing_layoutxlm import LayoutXLMProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm import LayoutXLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = {} UpperCAmelCase_ : Tuple = tokenizer(example['''content'''] , truncation=__lowercase )['''input_ids'''] UpperCAmelCase_ : Dict = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __UpperCamelCase : str = HfArgumentParser(PretokenizationArguments) __UpperCamelCase : Union[str, Any] = parser.parse_args() if args.num_workers is None: __UpperCamelCase : Any = multiprocessing.cpu_count() __UpperCamelCase : Optional[int] = AutoTokenizer.from_pretrained(args.tokenizer_dir) __UpperCamelCase : int = time.time() __UpperCamelCase : Dict = load_dataset(args.dataset_name, split='train') print(F'Dataset loaded in {time.time()-t_start:.2f}s') __UpperCamelCase : Optional[int] = time.time() __UpperCamelCase : Optional[int] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ 'repo_name', 'path', 'copies', 'size', 'content', 'license', 'hash', 'line_mean', 'line_max', 'alpha_frac', 'autogenerated', ], ) print(F'Dataset tokenized in {time.time()-t_start:.2f}s') __UpperCamelCase : Any = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'Data pushed to the hub in {time.time()-t_start:.2f}s')
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : Any = emb.weight.shape UpperCAmelCase_ : str = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) UpperCAmelCase_ : int = emb.weight.data return lin_layer def snake_case_ ( __lowercase , __lowercase=None ): UpperCAmelCase_ : Optional[Any] = {} for old_key in state_dict.keys(): UpperCAmelCase_ : Optional[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : Tuple = key.replace('''moe_layer.experts.0''' , F'''ffn.experts.expert_{expert_idx}''' ) else: UpperCAmelCase_ : Union[str, Any] = key.replace('''moe_layer.experts.''' , '''ffn.experts.expert_''' ) if "gate" in key: UpperCAmelCase_ : Dict = key.replace('''.moe_layer.gate.wg''' , '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: UpperCAmelCase_ : Optional[int] = key.replace('''.fc2.''' , '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: UpperCAmelCase_ : Any = key.replace('''.fc1.''' , '''.ffn.fc1.''' ) if ".encoder_attn." in key: UpperCAmelCase_ : Optional[int] = key.replace('''.encoder_attn.''' , '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''encoder_attn_layer_norm''' , '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: UpperCAmelCase_ : Optional[int] = key.replace('''final_layer_norm''' , '''ff_layer_norm''' ) UpperCAmelCase_ : Union[str, Any] = state_dict[old_key] return new_dict def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = WEIGHTS_NAME ): UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = 0 os.makedirs(__lowercase , exist_ok=__lowercase ) for expert in range(__lowercase ): UpperCAmelCase_ : str = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(__lowercase ): UpperCAmelCase_ : Optional[int] = torch.load(__lowercase )['''model'''] remove_ignore_keys_(__lowercase ) UpperCAmelCase_ : int = rename_fairseq_keys(__lowercase , __lowercase ) UpperCAmelCase_ : Dict = os.path.join( __lowercase , weights_name.replace('''.bin''' , F'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) torch.save(__lowercase , __lowercase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowercase )[0]].dtype ) # Add the last block UpperCAmelCase_ : Dict = os.path.join(__lowercase , weights_name.replace('''.bin''' , F'''-{len(__lowercase )+1:05d}-of-???.bin''' ) ) UpperCAmelCase_ : Tuple = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(__lowercase ) UpperCAmelCase_ : Tuple = rename_fairseq_keys(__lowercase , __lowercase ) UpperCAmelCase_ : Tuple = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowercase ) == 1: UpperCAmelCase_ : Any = os.path.join(__lowercase , __lowercase ) torch.save(__lowercase , __lowercase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowercase , __lowercase ) # Otherwise, let's build the index UpperCAmelCase_ : Optional[Any] = {} for idx, shard in enumerate(__lowercase ): UpperCAmelCase_ : Tuple = weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-{len(__lowercase ):05d}.bin''' ) UpperCAmelCase_ : int = os.path.join(__lowercase , weights_name.replace('''.bin''' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(__lowercase , os.path.join(__lowercase , __lowercase ) ) for key in shard: UpperCAmelCase_ : int = shard_file # Add the metadata UpperCAmelCase_ : List[Any] = {'''total_size''': total_size} UpperCAmelCase_ : Any = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(__lowercase , __lowercase ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ : Union[str, Any] = json.dumps(__lowercase , indent=2 , sort_keys=__lowercase ) + '''\n''' f.write(__lowercase ) return metadata, index if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __UpperCamelCase : int = parser.parse_args() __UpperCamelCase , __UpperCamelCase : Dict = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __UpperCamelCase : Optional[int] = NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __UpperCamelCase : List[Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'nielsr/canine-s': 2048, } # Unicode defines 1,114,112 total “codepoints” __UpperCamelCase : Optional[int] = 111_4112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __UpperCamelCase : List[str] = 0 __UpperCamelCase : str = 0xe000 __UpperCamelCase : Union[str, Any] = 0xe001 __UpperCamelCase : Any = 0xe002 __UpperCamelCase : Dict = 0xe003 __UpperCamelCase : Tuple = 0xe004 # Maps special codepoints to human-readable names. __UpperCamelCase : Dict[int, str] = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __UpperCamelCase : Dict[str, int] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[str] , __snake_case : Optional[Any]=chr(__snake_case ) , __snake_case : Optional[int]=chr(__snake_case ) , __snake_case : Dict=chr(__snake_case ) , __snake_case : Tuple=chr(__snake_case ) , __snake_case : Dict=chr(__snake_case ) , __snake_case : Tuple=chr(__snake_case ) , __snake_case : List[Any]=False , __snake_case : Optional[int]=2_048 , **__snake_case : str , ): '''simple docstring''' UpperCAmelCase_ : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase_ : List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( bos_token=__snake_case , eos_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , model_max_length=__snake_case , **__snake_case , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase_ : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase_ : List[str] = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase_ : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase_ : Dict = UNICODE_VOCAB_SIZE UpperCAmelCase_ : Optional[int] = len(self._special_codepoints ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self._unicode_vocab_size def _lowerCamelCase ( self : Optional[int] , __snake_case : str ): '''simple docstring''' return list(__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str ): '''simple docstring''' try: return ord(__snake_case ) except TypeError: raise ValueError(f'''invalid token: \'{token}\'''' ) def _lowerCamelCase ( self : str , __snake_case : int ): '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(__snake_case ) except TypeError: raise ValueError(f'''invalid id: {index}''' ) def _lowerCamelCase ( self : Tuple , __snake_case : Dict ): '''simple docstring''' return "".join(__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Any = [self.cls_token_id] UpperCAmelCase_ : Union[str, Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) UpperCAmelCase_ : int = [1] + ([0] * len(__snake_case )) + [1] if token_ids_a is not None: result += ([0] * len(__snake_case )) + [1] return result def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] UpperCAmelCase_ : List[Any] = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' return ()
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
from collections.abc import Callable class lowerCAmelCase__: '''simple docstring''' def __init__( self : Tuple , __snake_case : Callable | None = None ): '''simple docstring''' # Stores actual heap items. UpperCAmelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. UpperCAmelCase_ : dict = {} # Stores current size of heap. UpperCAmelCase_ : Optional[int] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCAmelCase_ : List[str] = key or (lambda __snake_case : x) def _lowerCamelCase ( self : List[Any] , __snake_case : int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = int(2 * i + 1 ) return left if 0 < left < self.size else None def _lowerCamelCase ( self : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Dict = int(2 * i + 2 ) return right if 0 < right < self.size else None def _lowerCamelCase ( self : List[Any] , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.arr[j], self.arr[i] def _lowerCamelCase ( self : int , __snake_case : int , __snake_case : int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def _lowerCamelCase ( self : Any , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self._left(__snake_case ) UpperCAmelCase_ : Optional[int] = self._right(__snake_case ) UpperCAmelCase_ : Any = i if left is not None and not self._cmp(__snake_case , __snake_case ): UpperCAmelCase_ : Tuple = left if right is not None and not self._cmp(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[int] = right return valid_parent def _lowerCamelCase ( self : Any , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = self._parent(__snake_case ) while parent is not None and not self._cmp(__snake_case , __snake_case ): self._swap(__snake_case , __snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = parent, self._parent(__snake_case ) def _lowerCamelCase ( self : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Tuple = self._get_valid_parent(__snake_case ) while valid_parent != index: self._swap(__snake_case , __snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = valid_parent, self._get_valid_parent(__snake_case ) def _lowerCamelCase ( self : str , __snake_case : int , __snake_case : int ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase_ : List[Any] = self.pos_map[item] UpperCAmelCase_ : Optional[Any] = [item, self.key(__snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(__snake_case ) self._heapify_down(__snake_case ) def _lowerCamelCase ( self : Dict , __snake_case : int ): '''simple docstring''' if item not in self.pos_map: return UpperCAmelCase_ : List[Any] = self.pos_map[item] del self.pos_map[item] UpperCAmelCase_ : Union[str, Any] = self.arr[self.size - 1] UpperCAmelCase_ : Optional[int] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(__snake_case ) self._heapify_down(__snake_case ) def _lowerCamelCase ( self : int , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(__snake_case )] ) else: UpperCAmelCase_ : List[Any] = [item, self.key(__snake_case )] UpperCAmelCase_ : int = self.size self.size += 1 self._heapify_up(self.size - 1 ) def _lowerCamelCase ( self : int ): '''simple docstring''' return self.arr[0] if self.size else None def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def snake_case_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
import numpy as np def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_ : Tuple = np.zeros((n + 1,) ) UpperCAmelCase_ : int = ya UpperCAmelCase_ : Tuple = xa for k in range(__lowercase ): UpperCAmelCase_ : int = f(__lowercase , y[k] ) UpperCAmelCase_ : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_ : Optional[Any] = f(x + h , y[k] + h * ka ) UpperCAmelCase_ : Union[str, Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
def snake_case_ ( __lowercase ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __UpperCamelCase : Optional[int] = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Optional[Any] , *__snake_case : Optional[int] , **__snake_case : Union[str, Any] ): '''simple docstring''' warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def snake_case_ ( __lowercase , __lowercase , __lowercase = 1_0**-1_0 ): UpperCAmelCase_ : Optional[Any] = a while True: UpperCAmelCase_ : Any = Decimal(__lowercase ) - ( Decimal(eval(__lowercase ) ) / Decimal(eval(str(diff(__lowercase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(__lowercase ) ) < precision: # noqa: S307 return float(__lowercase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = checkpoint UpperCAmelCase_ : Union[str, Any] = {} UpperCAmelCase_ : Dict = vae_state_dict['''encoder.conv_in.weight'''] UpperCAmelCase_ : Optional[Any] = vae_state_dict['''encoder.conv_in.bias'''] UpperCAmelCase_ : Dict = vae_state_dict['''encoder.conv_out.weight'''] UpperCAmelCase_ : List[str] = vae_state_dict['''encoder.conv_out.bias'''] UpperCAmelCase_ : Any = vae_state_dict['''encoder.norm_out.weight'''] UpperCAmelCase_ : Optional[Any] = vae_state_dict['''encoder.norm_out.bias'''] UpperCAmelCase_ : str = vae_state_dict['''decoder.conv_in.weight'''] UpperCAmelCase_ : Tuple = vae_state_dict['''decoder.conv_in.bias'''] UpperCAmelCase_ : Union[str, Any] = vae_state_dict['''decoder.conv_out.weight'''] UpperCAmelCase_ : Tuple = vae_state_dict['''decoder.conv_out.bias'''] UpperCAmelCase_ : int = vae_state_dict['''decoder.norm_out.weight'''] UpperCAmelCase_ : List[str] = vae_state_dict['''decoder.norm_out.bias'''] UpperCAmelCase_ : Any = vae_state_dict['''quant_conv.weight'''] UpperCAmelCase_ : Optional[Any] = vae_state_dict['''quant_conv.bias'''] UpperCAmelCase_ : Dict = vae_state_dict['''post_quant_conv.weight'''] UpperCAmelCase_ : Dict = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) UpperCAmelCase_ : Any = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(__lowercase ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ : Any = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) UpperCAmelCase_ : Any = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(__lowercase ) } for i in range(__lowercase ): UpperCAmelCase_ : List[str] = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: UpperCAmelCase_ : Any = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) UpperCAmelCase_ : List[str] = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) UpperCAmelCase_ : Tuple = renew_vae_resnet_paths(__lowercase ) UpperCAmelCase_ : Any = {'''old''': F'''down.{i}.block''', '''new''': F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) UpperCAmelCase_ : Tuple = [key for key in vae_state_dict if '''encoder.mid.block''' in key] UpperCAmelCase_ : Union[str, Any] = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ : Tuple = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] UpperCAmelCase_ : Optional[Any] = renew_vae_resnet_paths(__lowercase ) UpperCAmelCase_ : int = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) UpperCAmelCase_ : int = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] UpperCAmelCase_ : List[str] = renew_vae_attention_paths(__lowercase ) UpperCAmelCase_ : Any = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) conv_attn_to_linear(__lowercase ) for i in range(__lowercase ): UpperCAmelCase_ : List[str] = num_up_blocks - 1 - i UpperCAmelCase_ : str = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: UpperCAmelCase_ : Dict = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] UpperCAmelCase_ : Optional[Any] = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] UpperCAmelCase_ : Any = renew_vae_resnet_paths(__lowercase ) UpperCAmelCase_ : Any = {'''old''': F'''up.{block_id}.block''', '''new''': F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) UpperCAmelCase_ : str = [key for key in vae_state_dict if '''decoder.mid.block''' in key] UpperCAmelCase_ : int = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ : List[str] = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] UpperCAmelCase_ : List[str] = renew_vae_resnet_paths(__lowercase ) UpperCAmelCase_ : Dict = {'''old''': F'''mid.block_{i}''', '''new''': F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) UpperCAmelCase_ : str = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] UpperCAmelCase_ : List[Any] = renew_vae_attention_paths(__lowercase ) UpperCAmelCase_ : int = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(__lowercase , __lowercase , __lowercase , additional_replacements=[meta_path] , config=__lowercase ) conv_attn_to_linear(__lowercase ) return new_checkpoint def snake_case_ ( __lowercase , __lowercase , ): # Only support V1 UpperCAmelCase_ : Optional[Any] = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) UpperCAmelCase_ : Any = io.BytesIO(r.content ) UpperCAmelCase_ : Any = OmegaConf.load(__lowercase ) UpperCAmelCase_ : List[Any] = 5_1_2 UpperCAmelCase_ : str = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open UpperCAmelCase_ : Dict = {} with safe_open(__lowercase , framework='''pt''' , device='''cpu''' ) as f: for key in f.keys(): UpperCAmelCase_ : int = f.get_tensor(__lowercase ) else: UpperCAmelCase_ : Optional[int] = torch.load(__lowercase , map_location=__lowercase )['''state_dict'''] # Convert the VAE model. UpperCAmelCase_ : Optional[int] = create_vae_diffusers_config(__lowercase , image_size=__lowercase ) UpperCAmelCase_ : Union[str, Any] = custom_convert_ldm_vae_checkpoint(__lowercase , __lowercase ) UpperCAmelCase_ : Dict = AutoencoderKL(**__lowercase ) vae.load_state_dict(__lowercase ) vae.save_pretrained(__lowercase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') __UpperCamelCase : Any = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import os import sys __UpperCamelCase : List[Any] = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCamelCase : Dict = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoConfig.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoTokenizer.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModel.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModel.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForCausalLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForMaskedLM.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForSequenceClassification.from_pretrained(*__lowercase , **__lowercase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def snake_case_ ( *__lowercase , **__lowercase ): return AutoModelForQuestionAnswering.from_pretrained(*__lowercase , **__lowercase )
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __UpperCamelCase : int = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __UpperCamelCase : int = ( subprocess.check_output(F'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('utf-8').split() ) __UpperCamelCase : Optional[Any] = '|'.join(sys.argv[1:]) __UpperCamelCase : Union[str, Any] = re.compile(RF'^({joined_dirs}).*?\.py$') __UpperCamelCase : Union[str, Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Dict , *__snake_case : Any , __snake_case : Dict=None , __snake_case : List[str]=None , **__snake_case : int ): '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = eval_examples UpperCAmelCase_ : str = post_process_function def _lowerCamelCase ( self : Any , __snake_case : Optional[Dataset] = None , __snake_case : Optional[Any]=None , __snake_case : Optional[List[str]] = None , __snake_case : str = "eval" , **__snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : int = gen_kwargs.copy() UpperCAmelCase_ : int = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) UpperCAmelCase_ : Union[str, Any] = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) UpperCAmelCase_ : Optional[Any] = gen_kwargs UpperCAmelCase_ : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase_ : List[Any] = self.get_eval_dataloader(__snake_case ) UpperCAmelCase_ : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : Tuple = self.compute_metrics UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[str] = time.time() UpperCAmelCase_ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_ : Optional[int] = eval_loop( __snake_case , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , metric_key_prefix=__snake_case , ) finally: UpperCAmelCase_ : Optional[int] = compute_metrics UpperCAmelCase_ : List[str] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __snake_case , __snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase_ : Optional[Any] = self.post_process_function(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[Any] = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase_ : Tuple = metrics.pop(__snake_case ) metrics.update(output.metrics ) else: UpperCAmelCase_ : Optional[int] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__snake_case ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase_ : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , __snake_case ) return metrics def _lowerCamelCase ( self : str , __snake_case : Any , __snake_case : int , __snake_case : int=None , __snake_case : str = "test" , **__snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = gen_kwargs.copy() UpperCAmelCase_ : str = self.get_test_dataloader(__snake_case ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase_ : Any = self.compute_metrics UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Union[str, Any] = time.time() UpperCAmelCase_ : int = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase_ : Optional[Any] = eval_loop( __snake_case , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__snake_case , metric_key_prefix=__snake_case , ) finally: UpperCAmelCase_ : List[Any] = compute_metrics UpperCAmelCase_ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __snake_case , __snake_case , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase_ : Tuple = self.post_process_function(__snake_case , __snake_case , __snake_case , '''predict''' ) UpperCAmelCase_ : Optional[int] = self.compute_metrics(__snake_case ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase_ : List[str] = metrics.pop(__snake_case ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__snake_case )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = ['pixel_values'] def __init__( self : Dict , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PIL.Image.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , **__snake_case : Optional[Any] , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[Any] = size if size is not None else {'''height''': 256, '''width''': 256} UpperCAmelCase_ : Tuple = get_size_dict(__snake_case ) UpperCAmelCase_ : Tuple = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : List[Any] = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : Any = size UpperCAmelCase_ : Dict = resample UpperCAmelCase_ : List[Any] = do_center_crop UpperCAmelCase_ : Tuple = crop_size UpperCAmelCase_ : Union[str, Any] = do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor UpperCAmelCase_ : str = do_normalize UpperCAmelCase_ : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self : Any , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PIL.Image.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( __snake_case , size=(size['''height'''], size['''width''']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Dict , ): '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Any , ): '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : Dict=None , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : ChannelDimension = ChannelDimension.FIRST , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : str = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[str] = resample if resample is not None else self.resample UpperCAmelCase_ : Union[str, Any] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Any = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Any = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = size if size is not None else self.size UpperCAmelCase_ : Dict = get_size_dict(__snake_case ) UpperCAmelCase_ : str = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Dict = get_size_dict(__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ : Optional[Any] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : str = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ : Optional[int] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ : List[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase_ : int = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase_ : Dict = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase_ : Tuple = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ : Tuple = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'blip_text_model' def __init__( self : Optional[int] , __snake_case : Any=30_524 , __snake_case : str=768 , __snake_case : Dict=768 , __snake_case : Dict=3_072 , __snake_case : List[Any]=768 , __snake_case : Optional[Any]=12 , __snake_case : int=8 , __snake_case : Tuple=512 , __snake_case : Optional[int]="gelu" , __snake_case : List[str]=1E-12 , __snake_case : Union[str, Any]=0.0 , __snake_case : Dict=0.0 , __snake_case : List[str]=0.02 , __snake_case : Optional[Any]=30_522 , __snake_case : List[str]=2 , __snake_case : str=0 , __snake_case : Union[str, Any]=102 , __snake_case : Any=True , __snake_case : Tuple=True , **__snake_case : List[str] , ): '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = encoder_hidden_size UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : int = projection_dim UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Dict = layer_norm_eps UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Any = is_decoder UpperCAmelCase_ : int = use_cache @classmethod def _lowerCamelCase ( cls : Any , __snake_case : Union[str, os.PathLike] , **__snake_case : str ): '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = cls.get_config_dict(__snake_case , **__snake_case ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase_ : Optional[int] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'blip_vision_model' def __init__( self : Union[str, Any] , __snake_case : int=768 , __snake_case : str=3_072 , __snake_case : Dict=512 , __snake_case : Optional[Any]=12 , __snake_case : Any=12 , __snake_case : Union[str, Any]=384 , __snake_case : Tuple=16 , __snake_case : Union[str, Any]="gelu" , __snake_case : Tuple=1E-5 , __snake_case : List[Any]=0.0 , __snake_case : Dict=1E-10 , **__snake_case : Any , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : List[Any] = projection_dim UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : str = image_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = hidden_act @classmethod def _lowerCamelCase ( cls : int , __snake_case : Union[str, os.PathLike] , **__snake_case : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = cls.get_config_dict(__snake_case , **__snake_case ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": UpperCAmelCase_ : Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__snake_case , **__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Tuple = 'blip' A_ : List[Any] = True def __init__( self : List[str] , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=512 , __snake_case : Optional[int]=2.6_592 , __snake_case : Tuple=256 , **__snake_case : Optional[int] , ): '''simple docstring''' super().__init__(**__snake_case ) if text_config is None: UpperCAmelCase_ : Optional[int] = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: UpperCAmelCase_ : List[Any] = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) UpperCAmelCase_ : Tuple = BlipTextConfig(**__snake_case ) UpperCAmelCase_ : Tuple = BlipVisionConfig(**__snake_case ) UpperCAmelCase_ : Any = self.vision_config.hidden_size UpperCAmelCase_ : str = projection_dim UpperCAmelCase_ : str = logit_scale_init_value UpperCAmelCase_ : Optional[int] = 1.0 UpperCAmelCase_ : Dict = 0.02 UpperCAmelCase_ : List[str] = image_text_hidden_size @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : BlipTextConfig , __snake_case : BlipVisionConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : List[str] = self.text_config.to_dict() UpperCAmelCase_ : Tuple = self.vision_config.to_dict() UpperCAmelCase_ : List[str] = self.__class__.model_type return output
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = RoFormerTokenizer A_ : int = RoFormerTokenizerFast A_ : Dict = True A_ : Optional[Any] = True def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().setUp() def _lowerCamelCase ( self : int , **__snake_case : Any ): '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__snake_case ) def _lowerCamelCase ( self : List[str] , **__snake_case : str ): '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''永和服装饰品有限公司,今天天气非常好''' UpperCAmelCase_ : List[str] = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_tokenizer() UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.get_chinese_input_output_texts() UpperCAmelCase_ : int = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) UpperCAmelCase_ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase_ : Union[str, Any] = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_rust_tokenizer() UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.get_chinese_input_output_texts() UpperCAmelCase_ : List[str] = tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , output_text.split() ) UpperCAmelCase_ : str = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [22_943, 21_332, 34_431, 45_904, 117, 306, 1_231, 1_231, 2_653, 33_994, 1_266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' pass
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
import math from collections.abc import Iterator from itertools import takewhile def snake_case_ ( __lowercase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( ): UpperCAmelCase_ : str = 2 while True: if is_prime(__lowercase ): yield num num += 1 def snake_case_ ( __lowercase = 2_0_0_0_0_0_0 ): return sum(takewhile(lambda __lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
import numpy as np def snake_case_ ( __lowercase , __lowercase ): return np.where(vector > 0 , __lowercase , (alpha * (np.exp(__lowercase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
from math import pi def snake_case_ ( __lowercase , __lowercase ): return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) __UpperCamelCase : List[str] = 2_9979_2458 # Symbols __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Union[str, Any] = symbols('ct x y z') def snake_case_ ( __lowercase ): if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def snake_case_ ( __lowercase ): return 1 / sqrt(1 - beta(__lowercase ) ** 2 ) def snake_case_ ( __lowercase ): return np.array( [ [gamma(__lowercase ), -gamma(__lowercase ) * beta(__lowercase ), 0, 0], [-gamma(__lowercase ) * beta(__lowercase ), gamma(__lowercase ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def snake_case_ ( __lowercase , __lowercase = None ): # Ensure event is not empty if event is None: UpperCAmelCase_ : Optional[int] = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(__lowercase ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: __UpperCamelCase : List[Any] = transform(2997_9245) print('Example of four vector: ') print(F'ct\' = {four_vector[0]}') print(F'x\' = {four_vector[1]}') print(F'y\' = {four_vector[2]}') print(F'z\' = {four_vector[3]}') # Substitute symbols with numerical values __UpperCamelCase : Any = {ct: c, x: 1, y: 1, z: 1} __UpperCamelCase : List[str] = [four_vector[i].subs(sub_dict) for i in range(4)] print(F'\n{numerical_vector}')
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Tuple = {name: getattr(transformers, name + 'Fast') for name in SLOW_TO_FAST_CONVERTERS} def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: UpperCAmelCase_ : Optional[Any] = TOKENIZER_CLASSES else: UpperCAmelCase_ : Any = {tokenizer_name: getattr(__lowercase , tokenizer_name + '''Fast''' )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: UpperCAmelCase_ : str = TOKENIZER_CLASSES[tokenizer_name] UpperCAmelCase_ : str = True if checkpoint_name is None: UpperCAmelCase_ : int = list(tokenizer_class.max_model_input_sizes.keys() ) else: UpperCAmelCase_ : List[str] = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer UpperCAmelCase_ : List[str] = tokenizer_class.from_pretrained(__lowercase , force_download=__lowercase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = checkpoint.split('''/''' ) UpperCAmelCase_ : List[Any] = os.path.join(__lowercase , __lowercase ) elif add_prefix: UpperCAmelCase_ : Union[str, Any] = checkpoint UpperCAmelCase_ : Tuple = dump_path else: UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: UpperCAmelCase_ : Dict = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] UpperCAmelCase_ : Optional[Any] = file_path.split(__lowercase )[-1][0] if next_char == "/": UpperCAmelCase_ : Union[str, Any] = os.path.join(__lowercase , __lowercase ) UpperCAmelCase_ : Union[str, Any] = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) UpperCAmelCase_ : Optional[int] = tokenizer.save_pretrained( __lowercase , legacy_format=__lowercase , filename_prefix=__lowercase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('''tokenizer.json''' ): os.remove(__lowercase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output generated fast tokenizer files.' ) parser.add_argument( '--tokenizer_name', default=None, type=str, help=( F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' 'download and convert all the checkpoints from AWS.' ), ) parser.add_argument( '--checkpoint_name', default=None, type=str, help='Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.', ) parser.add_argument( '--force_download', action='store_true', help='Re-download checkpoints.', ) __UpperCamelCase : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : jnp.ndarray @flax_register_to_config class lowerCAmelCase__( nn.Module , snake_case__ , snake_case__ ): '''simple docstring''' A_ : int = 3_2 A_ : int = 4 A_ : int = 4 A_ : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) A_ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") A_ : Union[bool, Tuple[bool]] = False A_ : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) A_ : int = 2 A_ : Union[int, Tuple[int]] = 8 A_ : Optional[Union[int, Tuple[int]]] = None A_ : int = 1_2_8_0 A_ : float = 0.0 A_ : bool = False A_ : jnp.dtype = jnp.floataa A_ : bool = True A_ : int = 0 A_ : bool = False def _lowerCamelCase ( self : Tuple , __snake_case : jax.random.KeyArray ): '''simple docstring''' # init input tensors UpperCAmelCase_ : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ : Optional[int] = jnp.zeros(__snake_case , dtype=jnp.floataa ) UpperCAmelCase_ : int = jnp.ones((1,) , dtype=jnp.intaa ) UpperCAmelCase_ : Dict = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) UpperCAmelCase_ , UpperCAmelCase_ : int = jax.random.split(__snake_case ) UpperCAmelCase_ : Optional[Any] = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(__snake_case , __snake_case , __snake_case , __snake_case )["params"] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.block_out_channels UpperCAmelCase_ : Tuple = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ : Optional[int] = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ : int = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) UpperCAmelCase_ : Tuple = FlaxTimestepEmbedding(__snake_case , dtype=self.dtype ) UpperCAmelCase_ : Union[str, Any] = self.only_cross_attention if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : List[str] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase_ : Optional[int] = output_channel UpperCAmelCase_ : Union[str, Any] = block_out_channels[i] UpperCAmelCase_ : List[str] = i == len(__snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ : List[str] = FlaxCrossAttnDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ : List[Any] = FlaxDownBlockaD( in_channels=__snake_case , out_channels=__snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__snake_case ) UpperCAmelCase_ : Dict = down_blocks # mid UpperCAmelCase_ : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase_ : int = [] UpperCAmelCase_ : Dict = list(reversed(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = list(reversed(__snake_case ) ) UpperCAmelCase_ : Any = list(reversed(__snake_case ) ) UpperCAmelCase_ : Dict = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): UpperCAmelCase_ : List[str] = output_channel UpperCAmelCase_ : List[Any] = reversed_block_out_channels[i] UpperCAmelCase_ : Dict = reversed_block_out_channels[min(i + 1 , len(__snake_case ) - 1 )] UpperCAmelCase_ : int = i == len(__snake_case ) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase_ : List[str] = FlaxCrossAttnUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ : str = FlaxUpBlockaD( in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__snake_case ) UpperCAmelCase_ : Any = output_channel UpperCAmelCase_ : str = up_blocks # out UpperCAmelCase_ : Dict = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) UpperCAmelCase_ : Union[str, Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : List[Any] , __snake_case : str=None , __snake_case : List[Any]=None , __snake_case : bool = True , __snake_case : bool = False , ): '''simple docstring''' # 1. time if not isinstance(__snake_case , jnp.ndarray ): UpperCAmelCase_ : List[Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : Tuple = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase_ : List[str] = jnp.expand_dims(__snake_case , 0 ) UpperCAmelCase_ : int = self.time_proj(__snake_case ) UpperCAmelCase_ : Optional[Any] = self.time_embedding(__snake_case ) # 2. pre-process UpperCAmelCase_ : Optional[int] = jnp.transpose(__snake_case , (0, 2, 3, 1) ) UpperCAmelCase_ : List[str] = self.conv_in(__snake_case ) # 3. down UpperCAmelCase_ : Tuple = (sample,) for down_block in self.down_blocks: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = down_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) else: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = down_block(__snake_case , __snake_case , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase_ : Dict = () for down_block_res_sample, down_block_additional_residual in zip( __snake_case , __snake_case ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ : Tuple = new_down_block_res_samples # 4. mid UpperCAmelCase_ : Tuple = self.mid_block(__snake_case , __snake_case , __snake_case , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase_ : List[str] = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase_ : Optional[Any] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[int] = up_block( __snake_case , temb=__snake_case , encoder_hidden_states=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train , ) else: UpperCAmelCase_ : List[Any] = up_block(__snake_case , temb=__snake_case , res_hidden_states_tuple=__snake_case , deterministic=not train ) # 6. post-process UpperCAmelCase_ : int = self.conv_norm_out(__snake_case ) UpperCAmelCase_ : List[str] = nn.silu(__snake_case ) UpperCAmelCase_ : Optional[Any] = self.conv_out(__snake_case ) UpperCAmelCase_ : Any = jnp.transpose(__snake_case , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__snake_case )
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def snake_case_ ( __lowercase ): UpperCAmelCase_ : Any = filter(lambda __lowercase : p.requires_grad , model.parameters() ) UpperCAmelCase_ : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params __UpperCamelCase : Dict = logging.getLogger(__name__) def snake_case_ ( __lowercase , __lowercase ): if metric == "rouge2": UpperCAmelCase_ : List[Any] = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": UpperCAmelCase_ : str = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": UpperCAmelCase_ : Optional[Any] = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": UpperCAmelCase_ : Union[str, Any] = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) UpperCAmelCase_ : Optional[int] = ModelCheckpoint( dirpath=__lowercase , filename=__lowercase , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def snake_case_ ( __lowercase , __lowercase ): return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=__lowercase , verbose=__lowercase , ) class lowerCAmelCase__( pl.Callback ): '''simple docstring''' def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(__snake_case ) @rank_zero_only def _lowerCamelCase ( self : Tuple , __snake_case : pl.Trainer , __snake_case : pl.LightningModule , __snake_case : str , __snake_case : Optional[Any]=True ): '''simple docstring''' logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) UpperCAmelCase_ : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results UpperCAmelCase_ : int = Path(pl_module.hparams.output_dir ) if type_path == "test": UpperCAmelCase_ : Optional[Any] = od / '''test_results.txt''' UpperCAmelCase_ : Any = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCAmelCase_ : Tuple = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' UpperCAmelCase_ : Tuple = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=__snake_case ) generations_file.parent.mkdir(exist_ok=__snake_case ) with open(__snake_case , '''a+''' ) as writer: for key in sorted(__snake_case ): if key in ["log", "progress_bar", "preds"]: continue UpperCAmelCase_ : str = metrics[key] if isinstance(__snake_case , torch.Tensor ): UpperCAmelCase_ : Dict = val.item() UpperCAmelCase_ : Optional[int] = f'''{key}: {val:.6f}\n''' writer.write(__snake_case ) if not save_generations: return if "preds" in metrics: UpperCAmelCase_ : Union[str, Any] = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(__snake_case ) @rank_zero_only def _lowerCamelCase ( self : Any , __snake_case : Tuple , __snake_case : List[str] ): '''simple docstring''' try: UpperCAmelCase_ : List[str] = pl_module.model.model.num_parameters() except AttributeError: UpperCAmelCase_ : Union[str, Any] = pl_module.model.num_parameters() UpperCAmelCase_ : Tuple = count_trainable_parameters(__snake_case ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1E6, '''grad_mp''': n_trainable_pars / 1E6} ) @rank_zero_only def _lowerCamelCase ( self : List[str] , __snake_case : pl.Trainer , __snake_case : pl.LightningModule ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(__snake_case , __snake_case , '''test''' ) @rank_zero_only def _lowerCamelCase ( self : Any , __snake_case : pl.Trainer , __snake_case : Optional[int] ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
def snake_case_ ( __lowercase = 1_0_0_0_0_0_0 ): UpperCAmelCase_ : List[str] = limit + 1 UpperCAmelCase_ : Dict = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase_ : str = sum(1 for x in frequency[1:limit] if x == 1_0 ) return count if __name__ == "__main__": print(F'{solution() = }')
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Union[str, Any] = { 'configuration_funnel': ['FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FunnelConfig'], 'convert_funnel_original_tf_checkpoint_to_pytorch': [], 'tokenization_funnel': ['FunnelTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ['FunnelTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'FunnelBaseModel', 'FunnelForMaskedLM', 'FunnelForMultipleChoice', 'FunnelForPreTraining', 'FunnelForQuestionAnswering', 'FunnelForSequenceClassification', 'FunnelForTokenClassification', 'FunnelModel', 'FunnelPreTrainedModel', 'load_tf_weights_in_funnel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFFunnelBaseModel', 'TFFunnelForMaskedLM', 'TFFunnelForMultipleChoice', 'TFFunnelForPreTraining', 'TFFunnelForQuestionAnswering', 'TFFunnelForSequenceClassification', 'TFFunnelForTokenClassification', 'TFFunnelModel', 'TFFunnelPreTrainedModel', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case_ ( __lowercase ): UpperCAmelCase_ : Any = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: UpperCAmelCase_ : Union[str, Any] = s_dict.pop(__lowercase ) elif "subsample" in key: UpperCAmelCase_ : List[Any] = s_dict.pop(__lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : Dict = emb.weight.shape UpperCAmelCase_ : Union[str, Any] = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) UpperCAmelCase_ : List[Any] = emb.weight.data return lin_layer def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : int = mam_aaa['''args'''] UpperCAmelCase_ : Dict = mam_aaa['''model'''] UpperCAmelCase_ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__lowercase ) rename_keys(__lowercase ) UpperCAmelCase_ : int = state_dict['''decoder.embed_tokens.weight'''].shape[0] UpperCAmelCase_ : Optional[Any] = args.share_decoder_input_output_embed UpperCAmelCase_ : str = [int(__lowercase ) for i in args.conv_kernel_sizes.split(''',''' )] UpperCAmelCase_ : List[Any] = SpeechaTextConfig( vocab_size=__lowercase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__lowercase ) , conv_channels=args.conv_channels , conv_kernel_sizes=__lowercase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__lowercase , num_beams=5 , max_length=2_0_0 , use_cache=__lowercase , decoder_start_token_id=2 , early_stopping=__lowercase , ) UpperCAmelCase_ : Tuple = SpeechaTextForConditionalGeneration(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model.model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0 and not set(__lowercase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: UpperCAmelCase_ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: UpperCAmelCase_ : List[Any] = lm_head_weights model.save_pretrained(__lowercase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __UpperCamelCase : Tuple = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __UpperCamelCase : List[str] = None __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Dict = { 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', }, 'tokenizer_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json', }, } __UpperCamelCase : str = { 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __UpperCamelCase : Optional[int] = '▁' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Dict = AlbertTokenizer def __init__( self : List[str] , __snake_case : Dict=None , __snake_case : List[Any]=None , __snake_case : Dict=True , __snake_case : Tuple=True , __snake_case : List[Any]=False , __snake_case : Union[str, Any]="[CLS]" , __snake_case : Any="[SEP]" , __snake_case : Optional[int]="<unk>" , __snake_case : Any="[SEP]" , __snake_case : int="<pad>" , __snake_case : Dict="[CLS]" , __snake_case : str="[MASK]" , **__snake_case : List[Any] , ): '''simple docstring''' # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. UpperCAmelCase_ : List[str] = ( AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case , normalized=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token ) super().__init__( __snake_case , tokenizer_file=__snake_case , do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , **__snake_case , ) UpperCAmelCase_ : Union[str, Any] = do_lower_case UpperCAmelCase_ : Any = remove_space UpperCAmelCase_ : Optional[int] = keep_accents UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : Tuple = False if not self.vocab_file else True def _lowerCamelCase ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.sep_token_id] UpperCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Optional[int] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) return (out_vocab_file,)
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig __UpperCamelCase : Dict = logging.get_logger(__name__) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = question_encoder UpperCAmelCase_ : Dict = generator UpperCAmelCase_ : List[Any] = self.question_encoder def _lowerCamelCase ( self : Optional[int] , __snake_case : int ): '''simple docstring''' if os.path.isfile(__snake_case ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__snake_case , exist_ok=__snake_case ) UpperCAmelCase_ : Dict = os.path.join(__snake_case , '''question_encoder_tokenizer''' ) UpperCAmelCase_ : Any = os.path.join(__snake_case , '''generator_tokenizer''' ) self.question_encoder.save_pretrained(__snake_case ) self.generator.save_pretrained(__snake_case ) @classmethod def _lowerCamelCase ( cls : List[Any] , __snake_case : Optional[int] , **__snake_case : int ): '''simple docstring''' # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer UpperCAmelCase_ : str = kwargs.pop('''config''' , __snake_case ) if config is None: UpperCAmelCase_ : Tuple = RagConfig.from_pretrained(__snake_case ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( __snake_case , config=config.question_encoder , subfolder='''question_encoder_tokenizer''' ) UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( __snake_case , config=config.generator , subfolder='''generator_tokenizer''' ) return cls(question_encoder=__snake_case , generator=__snake_case ) def __call__( self : Optional[int] , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' return self.current_tokenizer(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : int , *__snake_case : str , **__snake_case : List[Any] ): '''simple docstring''' return self.generator.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[Any] , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.generator.decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = self.question_encoder def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.generator def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : Optional[List[str]] = None , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "longest" , __snake_case : str = None , __snake_case : bool = True , **__snake_case : Any , ): '''simple docstring''' warnings.warn( '''`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ''' '''regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ''' '''context manager to prepare your targets. See the documentation of your specific tokenizer for more ''' '''details''' , __snake_case , ) if max_length is None: UpperCAmelCase_ : Optional[int] = self.current_tokenizer.model_max_length UpperCAmelCase_ : Any = self( __snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , max_length=__snake_case , padding=__snake_case , truncation=__snake_case , **__snake_case , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCAmelCase_ : Optional[Any] = self.current_tokenizer.model_max_length UpperCAmelCase_ : int = self( text_target=__snake_case , add_special_tokens=__snake_case , return_tensors=__snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , **__snake_case , ) UpperCAmelCase_ : List[str] = labels['''input_ids'''] return model_inputs
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __UpperCamelCase : Union[str, Any] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCamelCase ( cls : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = TOKEN HfFolder.save_token(__snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[int] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : Any = FlaxBertModel(__snake_case ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) UpperCAmelCase_ : Optional[int] = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCAmelCase_ : str = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : List[str] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase_ : Tuple = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) UpperCAmelCase_ : Dict = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Dict = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) UpperCAmelCase_ : int = FlaxBertModel(__snake_case ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : Any = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : str = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Tuple = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( __snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) UpperCAmelCase_ : int = flatten_dict(unfreeze(model.params ) ) UpperCAmelCase_ : List[str] = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): UpperCAmelCase_ : Optional[Any] = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(__snake_case , 1E-3 , msg=f'''{key} not identical''' ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) UpperCAmelCase_ : Union[str, Any] = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: UpperCAmelCase_ : List[str] = False return models_are_equal @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : Any = FlaxBertModel(__snake_case ) UpperCAmelCase_ : Tuple = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) UpperCAmelCase_ : List[Any] = FlaxBertModel(__snake_case ) UpperCAmelCase_ : List[str] = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : str = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertTrue(check_models_equal(__snake_case , __snake_case ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''bert''' UpperCAmelCase_ : Tuple = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase_ : Dict = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''bert''' UpperCAmelCase_ : Any = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(__snake_case ): UpperCAmelCase_ : List[str] = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Any = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case ) self.assertIsNotNone(__snake_case )
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __UpperCamelCase : List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : str ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[str] = torchvision.models.resnetaaa(pretrained=__snake_case ) UpperCAmelCase_ : Union[str, Any] = list(model.children() )[:-2] UpperCAmelCase_ : Optional[Any] = nn.Sequential(*__snake_case ) UpperCAmelCase_ : Tuple = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _lowerCamelCase ( self : Optional[int] , __snake_case : List[str] ): '''simple docstring''' # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase_ : List[Any] = self.pool(self.model(__snake_case ) ) UpperCAmelCase_ : Dict = torch.flatten(__snake_case , start_dim=2 ) UpperCAmelCase_ : List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = [json.loads(__snake_case ) for l in open(__snake_case )] UpperCAmelCase_ : List[Any] = os.path.dirname(__snake_case ) UpperCAmelCase_ : int = tokenizer UpperCAmelCase_ : str = labels UpperCAmelCase_ : int = len(__snake_case ) UpperCAmelCase_ : List[str] = max_seq_length UpperCAmelCase_ : List[Any] = transforms def __len__( self : Any ): '''simple docstring''' return len(self.data ) def __getitem__( self : Dict , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=__snake_case ) ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase_ : int = sentence[: self.max_seq_length] UpperCAmelCase_ : int = torch.zeros(self.n_classes ) UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Any = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' ) UpperCAmelCase_ : Optional[Any] = self.transforms(__snake_case ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Counter() for row in self.data: label_freqs.update(row['''label'''] ) return label_freqs def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = [len(row['''sentence'''] ) for row in batch] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = len(__lowercase ), max(__lowercase ) UpperCAmelCase_ : List[Any] = torch.zeros(__lowercase , __lowercase , dtype=torch.long ) UpperCAmelCase_ : Tuple = torch.zeros(__lowercase , __lowercase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowercase , __lowercase ) ): UpperCAmelCase_ : List[str] = input_row['''sentence'''] UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : str = torch.stack([row['''image'''] for row in batch] ) UpperCAmelCase_ : Any = torch.stack([row['''label'''] for row in batch] ) UpperCAmelCase_ : Optional[Any] = torch.stack([row['''image_start_token'''] for row in batch] ) UpperCAmelCase_ : int = torch.stack([row['''image_end_token'''] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def snake_case_ ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def snake_case_ ( ): return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7] , std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9] , ), ] )
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = len(__lowercase ) while cur > 1: # Find the maximum number in arr UpperCAmelCase_ : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi UpperCAmelCase_ : Optional[int] = arr[mi::-1] + arr[mi + 1 : len(__lowercase )] # Reverse whole list UpperCAmelCase_ : int = arr[cur - 1 :: -1] + arr[cur : len(__lowercase )] cur -= 1 return arr if __name__ == "__main__": __UpperCamelCase : Any = input('Enter numbers separated by a comma:\n').strip() __UpperCamelCase : Tuple = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __UpperCamelCase : List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def snake_case_ ( __lowercase , __lowercase , __lowercase = 1_6_0_0_0 ): UpperCAmelCase_ : Optional[Any] = int(round(sample_rate * max_length ) ) if len(__lowercase ) <= sample_length: return wav UpperCAmelCase_ : int = randint(0 , len(__lowercase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : Optional[str] = field(default=snake_case__ , metadata={'help': 'Name of a dataset from the datasets package'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'A file containing the training audio paths and labels.'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'A file containing the validation audio paths and labels.'} ) A_ : str = field( default='train' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) A_ : str = field( default='validation' , metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } , ) A_ : str = field( default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , ) A_ : str = field( default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) A_ : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=snake_case__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A_ : float = field( default=2_0 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : str = field( default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) A_ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ : Optional[str] = field( default=snake_case__ , metadata={'help': 'Name or path of preprocessor config.'} ) A_ : bool = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) A_ : bool = field( default=snake_case__ , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) A_ : bool = field( default=snake_case__ , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) A_ : Optional[bool] = field( default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) A_ : bool = field( default=snake_case__ , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''will be removed in a future version. Use `--freeze_feature_encoder`''' '''instead. Setting `freeze_feature_encoder==True`.''' , __snake_case , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( '''The argument `--freeze_feature_extractor` is deprecated and ''' '''should not be used in combination with `--freeze_feature_encoder`.''' '''Only make use of `--freeze_feature_encoder`.''' ) def snake_case_ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_audio_classification''' , __lowercase , __lowercase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase_ : Optional[Any] = training_args.get_process_log_level() logger.setLevel(__lowercase ) transformers.utils.logging.set_verbosity(__lowercase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. UpperCAmelCase_ : List[Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to train from scratch.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Initialize our dataset and prepare it for the audio classification task. UpperCAmelCase_ : Optional[int] = DatasetDict() UpperCAmelCase_ : Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ : Optional[int] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--audio_column_name` to the correct audio column - one of ''' F'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' '''Make sure to set `--label_column_name` to the correct text column - one of ''' F'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy UpperCAmelCase_ : str = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. UpperCAmelCase_ : List[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) UpperCAmelCase_ : Optional[Any] = feature_extractor.model_input_names[0] def train_transforms(__lowercase ): UpperCAmelCase_ : List[Any] = [] for audio in batch[data_args.audio_column_name]: UpperCAmelCase_ : Any = random_subsample( audio['''array'''] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowercase ) UpperCAmelCase_ : Optional[Any] = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase_ : Union[str, Any] = {model_input_name: inputs.get(__lowercase )} UpperCAmelCase_ : Dict = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowercase ): UpperCAmelCase_ : Optional[int] = [audio['''array'''] for audio in batch[data_args.audio_column_name]] UpperCAmelCase_ : List[Any] = feature_extractor(__lowercase , sampling_rate=feature_extractor.sampling_rate ) UpperCAmelCase_ : str = {model_input_name: inputs.get(__lowercase )} UpperCAmelCase_ : Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCAmelCase_ : Tuple = raw_datasets['''train'''].features[data_args.label_column_name].names UpperCAmelCase_ , UpperCAmelCase_ : List[str] = {}, {} for i, label in enumerate(__lowercase ): UpperCAmelCase_ : Union[str, Any] = str(__lowercase ) UpperCAmelCase_ : Tuple = label # Load the accuracy metric from the datasets package UpperCAmelCase_ : Optional[Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowercase ): UpperCAmelCase_ : int = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowercase , references=eval_pred.label_ids ) UpperCAmelCase_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task='''audio-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCAmelCase_ : List[str] = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: UpperCAmelCase_ : Tuple = ( raw_datasets['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowercase , output_all_columns=__lowercase ) if training_args.do_eval: if data_args.max_eval_samples is not None: UpperCAmelCase_ : List[str] = ( raw_datasets['''eval'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowercase , output_all_columns=__lowercase ) # Initialize our trainer UpperCAmelCase_ : Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=raw_datasets['''train'''] if training_args.do_train else None , eval_dataset=raw_datasets['''eval'''] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , ) # Training if training_args.do_train: UpperCAmelCase_ : Dict = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Optional[int] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Dict = last_checkpoint UpperCAmelCase_ : int = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase_ : Any = trainer.evaluate() trainer.log_metrics('''eval''' , __lowercase ) trainer.save_metrics('''eval''' , __lowercase ) # Write model card and (optionally) push to hub UpperCAmelCase_ : Tuple = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''audio-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''audio-classification'''], } if training_args.push_to_hub: trainer.push_to_hub(**__lowercase ) else: trainer.create_model_card(**__lowercase ) if __name__ == "__main__": main()
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
__UpperCamelCase : Optional[Any] = { 'Pillow': 'Pillow', 'accelerate': 'accelerate>=0.11.0', 'compel': 'compel==0.1.8', 'black': 'black~=23.1', 'datasets': 'datasets', 'filelock': 'filelock', 'flax': 'flax>=0.4.1', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.13.2', 'requests-mock': 'requests-mock==1.10.0', 'importlib_metadata': 'importlib_metadata', 'invisible-watermark': 'invisible-watermark', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2', 'jaxlib': 'jaxlib>=0.1.65', 'Jinja2': 'Jinja2', 'k-diffusion': 'k-diffusion>=0.0.12', 'torchsde': 'torchsde', 'note_seq': 'note_seq', 'librosa': 'librosa', 'numpy': 'numpy', 'omegaconf': 'omegaconf', 'parameterized': 'parameterized', 'protobuf': 'protobuf>=3.20.3,<4', 'pytest': 'pytest', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'ruff': 'ruff>=0.0.241', 'safetensors': 'safetensors', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'scipy': 'scipy', 'onnx': 'onnx', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'tensorboard': 'tensorboard', 'torch': 'torch>=1.4', 'torchvision': 'torchvision', 'transformers': 'transformers>=4.25.1', 'urllib3': 'urllib3<=2.0.0', }
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __UpperCamelCase : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece_with_bytefallback.model') @require_sentencepiece @require_tokenizers class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = GPTSwaTokenizer A_ : Dict = False A_ : str = True A_ : Optional[Any] = False def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase_ : int = GPTSwaTokenizer(__snake_case , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self : str , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''This is a test''' UpperCAmelCase_ : Optional[int] = '''This is a test''' return input_text, output_text def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = '''<s>''' UpperCAmelCase_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(__snake_case ) , 2_000 ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = GPTSwaTokenizer(__snake_case ) UpperCAmelCase_ : Dict = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [465, 287, 265, 631, 842] ) UpperCAmelCase_ : Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( __snake_case , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on UpperCAmelCase_ : List[str] = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) UpperCAmelCase_ : Optional[Any] = tokenizer.convert_ids_to_tokens(__snake_case ) # fmt: off self.assertListEqual( __snake_case , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[str] = GPTSwaTokenizer(__snake_case ) UpperCAmelCase_ : str = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] UpperCAmelCase_ : List[str] = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__snake_case , __snake_case ): self.assertListEqual(tokenizer.encode_fast(__snake_case ) , __snake_case ) # Test that decode_fast returns the input text for text, token_ids in zip(__snake_case , __snake_case ): self.assertEqual(tokenizer.decode_fast(__snake_case ) , __snake_case ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : str = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off UpperCAmelCase_ : Any = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=__snake_case , )
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __UpperCamelCase : Tuple = numpy.array([0, 0]) __UpperCamelCase : Dict = numpy.array([0.5, 0.8_660_254]) __UpperCamelCase : Optional[Any] = numpy.array([1, 0]) __UpperCamelCase : List[Any] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = initial_vectors for _ in range(__lowercase ): UpperCAmelCase_ : Optional[int] = iteration_step(__lowercase ) return vectors def snake_case_ ( __lowercase ): UpperCAmelCase_ : Any = [] for i, start_vector in enumerate(vectors[:-1] ): UpperCAmelCase_ : List[str] = vectors[i + 1] new_vectors.append(__lowercase ) UpperCAmelCase_ : Union[str, Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3 ) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 6_0 ) ) new_vectors.append(start_vector + difference_vector * 2 / 3 ) new_vectors.append(vectors[-1] ) return new_vectors def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = numpy.radians(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = numpy.cos(__lowercase ), numpy.sin(__lowercase ) UpperCAmelCase_ : List[str] = numpy.array(((c, -s), (s, c)) ) return numpy.dot(__lowercase , __lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = plt.gca() axes.set_aspect('''equal''' ) # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() UpperCAmelCase_ , UpperCAmelCase_ : str = zip(*__lowercase ) plt.plot(__lowercase , __lowercase ) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Dict = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml __UpperCamelCase : Optional[int] = logging.get_logger(__name__) def snake_case_ ( __lowercase , __lowercase ): def run_func(__lowercase ): @wraps(__lowercase ) def run_in_eager_mode(*__lowercase , **__lowercase ): return func(*__lowercase , **__lowercase ) @wraps(__lowercase ) @tf.function(experimental_compile=__lowercase ) def run_in_graph_mode(*__lowercase , **__lowercase ): return func(*__lowercase , **__lowercase ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = random.Random() UpperCAmelCase_ : str = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(__lowercase , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : TensorFlowBenchmarkArguments A_ : PretrainedConfig A_ : str = "TensorFlow" @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return tf.__version__ def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : int , __snake_case : int ): '''simple docstring''' # initialize GPU on separate process UpperCAmelCase_ : Optional[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCAmelCase_ : int = self._prepare_inference_func(__snake_case , __snake_case , __snake_case ) return self._measure_speed(_inference ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Dict = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCAmelCase_ : int = self._prepare_train_func(__snake_case , __snake_case , __snake_case ) return self._measure_speed(_train ) def _lowerCamelCase ( self : Any , __snake_case : str , __snake_case : int , __snake_case : int ): '''simple docstring''' # initialize GPU on separate process if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __snake_case ) UpperCAmelCase_ : str = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCAmelCase_ : Tuple = self._prepare_inference_func(__snake_case , __snake_case , __snake_case ) return self._measure_memory(_inference ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : int , __snake_case : int ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , __snake_case ) UpperCAmelCase_ : Union[str, Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) UpperCAmelCase_ : Union[str, Any] = self._prepare_train_func(__snake_case , __snake_case , __snake_case ) return self._measure_memory(_train ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCAmelCase_ : Optional[int] = ( hasattr(__snake_case , '''architectures''' ) and isinstance(config.architectures , __snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ : Optional[Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ : Optional[Any] = __import__('''transformers''' , fromlist=[model_class] ) UpperCAmelCase_ : Optional[Any] = getattr(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = model_cls(__snake_case ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCAmelCase_ : List[Any] = TF_MODEL_MAPPING[config.__class__](__snake_case ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ : Union[str, Any] = config.vocab_size if hasattr(__snake_case , '''vocab_size''' ) else config.encoder.vocab_size UpperCAmelCase_ : List[str] = random_input_ids(__snake_case , __snake_case , __snake_case ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(__snake_case , decoder_input_ids=__snake_case , training=__snake_case ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(__snake_case , training=__snake_case ) UpperCAmelCase_ : Union[str, Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : str = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) UpperCAmelCase_ : Any = ( hasattr(__snake_case , '''architectures''' ) and isinstance(config.architectures , __snake_case ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: UpperCAmelCase_ : Optional[Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model UpperCAmelCase_ : int = __import__('''transformers''' , fromlist=[model_class] ) UpperCAmelCase_ : List[Any] = getattr(__snake_case , __snake_case ) UpperCAmelCase_ : Optional[int] = model_cls(__snake_case ) except ImportError: raise ImportError( f'''{model_class} does not exist. If you just want to test the pretrained model, you might want to''' ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: UpperCAmelCase_ : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](__snake_case ) # encoder-decoder has vocab size saved differently UpperCAmelCase_ : Union[str, Any] = config.vocab_size if hasattr(__snake_case , '''vocab_size''' ) else config.encoder.vocab_size UpperCAmelCase_ : Union[str, Any] = random_input_ids(__snake_case , __snake_case , __snake_case ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): UpperCAmelCase_ : Optional[int] = model(__snake_case , decoder_input_ids=__snake_case , labels=__snake_case , training=__snake_case )[0] UpperCAmelCase_ : List[Any] = tf.gradients(__snake_case , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): UpperCAmelCase_ : Optional[Any] = model(__snake_case , labels=__snake_case , training=__snake_case )[0] UpperCAmelCase_ : Any = tf.gradients(__snake_case , model.trainable_variables ) return gradients UpperCAmelCase_ : Dict = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(__snake_case , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average UpperCAmelCase_ : Tuple = timeit.repeat( __snake_case , repeat=self.args.repeat , number=10 , ) return min(__snake_case ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) def _lowerCamelCase ( self : Dict , __snake_case : Callable[[], None] ): '''simple docstring''' logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) UpperCAmelCase_ : Optional[int] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) UpperCAmelCase_ : Any = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() UpperCAmelCase_ : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) UpperCAmelCase_ : Union[str, Any] = nvml.nvmlDeviceGetMemoryInfo(__snake_case ) UpperCAmelCase_ : Optional[int] = meminfo.used UpperCAmelCase_ : Union[str, Any] = Memory(__snake_case ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) UpperCAmelCase_ : str = None else: UpperCAmelCase_ : Optional[Any] = measure_peak_memory_cpu(__snake_case ) UpperCAmelCase_ : Any = Memory(__snake_case ) if isinstance(__snake_case , __snake_case ) else memory_bytes if self.args.trace_memory_line_by_line: UpperCAmelCase_ : Optional[int] = stop_memory_tracing(__snake_case ) if memory is None: UpperCAmelCase_ : Tuple = summary.total else: UpperCAmelCase_ : Dict = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f'''Doesn\'t fit on GPU. {e}''' ) return "N/A", None
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Any = ['pixel_values'] def __init__( self : Optional[int] , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : Union[str, Any] , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : Any = get_size_dict(__snake_case , default_to_square=__snake_case ) UpperCAmelCase_ : Optional[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : int = get_size_dict(__snake_case , default_to_square=__snake_case , param_name='''crop_size''' ) UpperCAmelCase_ : Dict = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : List[str] = resample UpperCAmelCase_ : List[Any] = do_center_crop UpperCAmelCase_ : Dict = crop_size UpperCAmelCase_ : int = do_rescale UpperCAmelCase_ : List[str] = rescale_factor UpperCAmelCase_ : int = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : List[Any] = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : Optional[int] = do_convert_rgb def _lowerCamelCase ( self : str , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : str = get_size_dict(__snake_case , default_to_square=__snake_case ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Union[str, Any] = get_resize_output_image_size(__snake_case , size=size['''shortest_edge'''] , default_to_square=__snake_case ) return resize(__snake_case , size=__snake_case , resample=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : List[str] , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Any = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__snake_case , size=(size['''height'''], size['''width''']) , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Tuple , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ): '''simple docstring''' return rescale(__snake_case , scale=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Optional[Any] , ): '''simple docstring''' return normalize(__snake_case , mean=__snake_case , std=__snake_case , data_format=__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : Tuple = size if size is not None else self.size UpperCAmelCase_ : Any = get_size_dict(__snake_case , param_name='''size''' , default_to_square=__snake_case ) UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Any = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Dict = get_size_dict(__snake_case , param_name='''crop_size''' , default_to_square=__snake_case ) UpperCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : int = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : str = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : int = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : Optional[int] = [convert_to_rgb(__snake_case ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Dict = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ : Optional[int] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_center_crop: UpperCAmelCase_ : List[Any] = [self.center_crop(image=__snake_case , size=__snake_case ) for image in images] if do_rescale: UpperCAmelCase_ : Union[str, Any] = [self.rescale(image=__snake_case , scale=__snake_case ) for image in images] if do_normalize: UpperCAmelCase_ : Union[str, Any] = [self.normalize(image=__snake_case , mean=__snake_case , std=__snake_case ) for image in images] UpperCAmelCase_ : str = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import qiskit def snake_case_ ( __lowercase = 2 ): UpperCAmelCase_ : Union[str, Any] = qubits # Using Aer's simulator UpperCAmelCase_ : Tuple = qiskit.Aer.get_backend('''aer_simulator''' ) # Creating a Quantum Circuit acting on the q register UpperCAmelCase_ : Any = qiskit.QuantumCircuit(__lowercase , __lowercase ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , __lowercase ): # Adding CX (CNOT) gate circuit.cx(i - 1 , __lowercase ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(__lowercase ) ) , list(range(__lowercase ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total count for various states are: {quantum_entanglement(3)}')
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCamelCase : str = logging.get_logger('transformers.models.speecht5') def snake_case_ ( __lowercase , __lowercase , __lowercase ): hf_model.apply_weight_norm() UpperCAmelCase_ : str = checkpoint['''input_conv.weight_g'''] UpperCAmelCase_ : Tuple = checkpoint['''input_conv.weight_v'''] UpperCAmelCase_ : Union[str, Any] = checkpoint['''input_conv.bias'''] for i in range(len(config.upsample_rates ) ): UpperCAmelCase_ : Union[str, Any] = checkpoint[F'''upsamples.{i}.1.weight_g'''] UpperCAmelCase_ : Any = checkpoint[F'''upsamples.{i}.1.weight_v'''] UpperCAmelCase_ : int = checkpoint[F'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): UpperCAmelCase_ : Optional[Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_g'''] UpperCAmelCase_ : Any = checkpoint[F'''blocks.{i}.convs1.{j}.1.weight_v'''] UpperCAmelCase_ : List[Any] = checkpoint[F'''blocks.{i}.convs1.{j}.1.bias'''] UpperCAmelCase_ : str = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_g'''] UpperCAmelCase_ : Optional[Any] = checkpoint[F'''blocks.{i}.convs2.{j}.1.weight_v'''] UpperCAmelCase_ : Tuple = checkpoint[F'''blocks.{i}.convs2.{j}.1.bias'''] UpperCAmelCase_ : Optional[int] = checkpoint['''output_conv.1.weight_g'''] UpperCAmelCase_ : Dict = checkpoint['''output_conv.1.weight_v'''] UpperCAmelCase_ : Any = checkpoint['''output_conv.1.bias'''] hf_model.remove_weight_norm() @torch.no_grad() def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , ): if config_path is not None: UpperCAmelCase_ : Any = SpeechTaHifiGanConfig.from_pretrained(__lowercase ) else: UpperCAmelCase_ : Optional[int] = SpeechTaHifiGanConfig() UpperCAmelCase_ : str = SpeechTaHifiGan(__lowercase ) UpperCAmelCase_ : List[Any] = torch.load(__lowercase ) load_weights(orig_checkpoint['''model''']['''generator'''] , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = np.load(__lowercase ) UpperCAmelCase_ : Any = stats[0].reshape(-1 ) UpperCAmelCase_ : Dict = stats[1].reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.from_numpy(__lowercase ).float() UpperCAmelCase_ : int = torch.from_numpy(__lowercase ).float() model.save_pretrained(__lowercase ) if repo_id: print('''Pushing to the hub...''' ) model.push_to_hub(__lowercase ) if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCamelCase : Optional[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path __UpperCamelCase : List[Any] = [ {'dataset': 'wikipedia', 'config_name': '20220301.de'}, {'dataset': 'wikipedia', 'config_name': '20220301.en'}, {'dataset': 'wikipedia', 'config_name': '20220301.fr'}, {'dataset': 'wikipedia', 'config_name': '20220301.frr'}, {'dataset': 'wikipedia', 'config_name': '20220301.it'}, {'dataset': 'wikipedia', 'config_name': '20220301.simple'}, {'dataset': 'snli', 'config_name': 'plain_text'}, {'dataset': 'eli5', 'config_name': 'LFQA_reddit'}, {'dataset': 'wiki40b', 'config_name': 'en'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'}, {'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'}, {'dataset': 'natural_questions', 'config_name': 'default'}, ] def snake_case_ ( __lowercase=True ): if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=snake_case__ ) ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = None A_ : Union[str, Any] = None def _lowerCamelCase ( self : Tuple , __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Optional[int] = dataset_module_factory(__snake_case , cache_dir=__snake_case ) UpperCAmelCase_ : List[Any] = import_main_class(dataset_module.module_path , dataset=__snake_case ) UpperCAmelCase_ : DatasetBuilder = builder_cls( cache_dir=__snake_case , config_name=__snake_case , hash=dataset_module.hash , ) UpperCAmelCase_ : List[Any] = '''/'''.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__snake_case ).replace(os.sep , '''/''' ), config.DATASET_INFO_FILENAME, ] ) UpperCAmelCase_ : List[str] = cached_path(__snake_case , cache_dir=__snake_case ) self.assertTrue(os.path.exists(__snake_case ) ) @pytest.mark.integration def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple''' UpperCAmelCase_ : List[str] = dataset_module_factory('''wikipedia''' , cache_dir=__lowercase ) UpperCAmelCase_ : int = import_main_class(dataset_module.module_path ) UpperCAmelCase_ : DatasetBuilder = builder_cls( cache_dir=__lowercase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam UpperCAmelCase_ : List[Any] = None builder_instance.download_and_prepare() UpperCAmelCase_ : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = dataset_module_factory('''wikipedia''' , cache_dir=__lowercase ) UpperCAmelCase_ : Dict = import_main_class(dataset_module.module_path , dataset=__lowercase ) UpperCAmelCase_ : DatasetBuilder = builder_cls( cache_dir=__lowercase , config_name='''20220301.frr''' , hash=dataset_module.hash , ) UpperCAmelCase_ : List[Any] = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowercase , __lowercase ) assert "train" in ds assert isinstance(ds['''train'''] , __lowercase ) assert next(iter(ds['''train'''] ) )
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ : Tuple = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Union[str, Any] = 4_8 UpperCAmelCase_ : Any = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ : Any = [6, 6, 6, 6] UpperCAmelCase_ : int = 6_0 UpperCAmelCase_ : int = [6, 6, 6, 6] UpperCAmelCase_ : Any = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : Any = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Any = 1_2_6 UpperCAmelCase_ : Tuple = 7 UpperCAmelCase_ : Tuple = 2_5_5.0 UpperCAmelCase_ : Optional[Any] = '''''' return config def snake_case_ ( __lowercase , __lowercase ): if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase_ : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCAmelCase_ : List[str] = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: UpperCAmelCase_ : int = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: UpperCAmelCase_ : List[str] = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: UpperCAmelCase_ : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase_ : Any = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase_ : Tuple = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase_ : Dict = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase_ : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase_ : Any = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: UpperCAmelCase_ : Any = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: UpperCAmelCase_ : str = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: UpperCAmelCase_ : Optional[Any] = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: UpperCAmelCase_ : List[str] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: UpperCAmelCase_ : Optional[int] = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": UpperCAmelCase_ : int = '''layernorm.weight''' if name == "norm.bias": UpperCAmelCase_ : int = '''layernorm.bias''' if "conv_first" in name: UpperCAmelCase_ : Tuple = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase_ : Optional[int] = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase_ : Union[str, Any] = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: UpperCAmelCase_ : Tuple = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: UpperCAmelCase_ : Any = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) UpperCAmelCase_ : Dict = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase_ : Tuple = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) UpperCAmelCase_ : str = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: UpperCAmelCase_ : List[Any] = '''swin2sr.''' + name return name def snake_case_ ( __lowercase , __lowercase ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : List[Any] = orig_state_dict.pop(__lowercase ) if "qkv" in key: UpperCAmelCase_ : str = key.split('''.''' ) UpperCAmelCase_ : Dict = int(key_split[1] ) UpperCAmelCase_ : List[Any] = int(key_split[4] ) UpperCAmelCase_ : List[Any] = config.embed_dim if "weight" in key: UpperCAmelCase_ : Union[str, Any] = val[:dim, :] UpperCAmelCase_ : Union[str, Any] = val[dim : dim * 2, :] UpperCAmelCase_ : Dict = val[-dim:, :] else: UpperCAmelCase_ : Optional[int] = val[:dim] UpperCAmelCase_ : int = val[dim : dim * 2] UpperCAmelCase_ : List[Any] = val[-dim:] pass else: UpperCAmelCase_ : List[Any] = val return orig_state_dict def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = get_config(__lowercase ) UpperCAmelCase_ : Optional[int] = SwinaSRForImageSuperResolution(__lowercase ) model.eval() UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Tuple = convert_state_dict(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model.load_state_dict(__lowercase , strict=__lowercase ) if len(__lowercase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(__lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values UpperCAmelCase_ : List[Any] = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) UpperCAmelCase_ : Optional[int] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase_ : List[Any] = 1_2_6 if '''Jpeg''' in checkpoint_url else 2_5_6 UpperCAmelCase_ : int = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) UpperCAmelCase_ : Tuple = transforms(__lowercase ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase_ : Optional[int] = pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase_ : List[Any] = model(__lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase_ : List[Any] = torch.Size([1, 3, 5_1_2, 5_1_2] ) UpperCAmelCase_ : int = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_ : Optional[Any] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) UpperCAmelCase_ : Union[str, Any] = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase_ : int = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) UpperCAmelCase_ : Any = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_ : Optional[int] = torch.Size([1, 3, 5_1_2, 5_1_2] ) UpperCAmelCase_ : Tuple = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_ : Optional[Any] = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] ) UpperCAmelCase_ : Dict = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __lowercase , atol=1e-3 ) print('''Looks ok!''' ) UpperCAmelCase_ : Any = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } UpperCAmelCase_ : List[Any] = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') __UpperCamelCase : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
__UpperCamelCase : str = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if index == number_of_items: return 0 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = knapsack(__lowercase , __lowercase , __lowercase , __lowercase , index + 1 ) if weights[index] <= max_weight: UpperCAmelCase_ : Any = values[index] + knapsack( __lowercase , __lowercase , __lowercase , max_weight - weights[index] , index + 1 ) return max(__lowercase , __lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets __UpperCamelCase : Optional[int] = '\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n' __UpperCamelCase : Tuple = '\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n' __UpperCamelCase : int = '\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def snake_case_ ( __lowercase , __lowercase ): return float((preds == labels).mean() ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = simple_accuracy(__lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Any = float(pearsonr(__lowercase , __lowercase )[0] ) UpperCAmelCase_ : Union[str, Any] = float(spearmanr(__lowercase , __lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : Any ): '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''stsb''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__snake_case , __snake_case )} elif self.config_name == "stsb": return pearson_and_spearman(__snake_case , __snake_case ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__snake_case , __snake_case ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__snake_case , __snake_case )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["sst2", "mnli", "mnli_mismatched", "mnli_matched", ''' '''"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]''' )
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1