code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) UpperCamelCase__ = logging.getLogger(__name__) UpperCamelCase__ = {'facebook/bart-base': BartForConditionalGeneration} UpperCamelCase__ = {'facebook/bart-base': BartTokenizer} def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Union[str, Any] = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=_UpperCamelCase , default=_UpperCamelCase , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=_UpperCamelCase , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=_UpperCamelCase , default=_UpperCamelCase , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=_UpperCamelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_UpperCamelCase , ) parser.add_argument( "--config_name" , type=_UpperCamelCase , default=_UpperCamelCase , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=_UpperCamelCase , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=_UpperCamelCase , default=_UpperCamelCase , help="Where to store the final ONNX file." ) lowercase_ : int = parser.parse_args() return args def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase="cpu" ): """simple docstring""" lowercase_ : Dict = model_dict[model_name].from_pretrained(_UpperCamelCase ).to(_UpperCamelCase ) lowercase_ : Tuple = tokenizer_dict[model_name].from_pretrained(_UpperCamelCase ) if model_name in ["facebook/bart-base"]: lowercase_ : int = 0 lowercase_ : List[str] = None lowercase_ : Tuple = 0 return huggingface_model, tokenizer def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" model.eval() lowercase_ : int = None lowercase_ : str = torch.jit.script(BARTBeamSearchGenerator(_UpperCamelCase ) ) with torch.no_grad(): lowercase_ : str = "My friends are cool but they eat too many carbs." lowercase_ : Optional[int] = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device ) lowercase_ : Optional[Any] = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_UpperCamelCase , max_length=_UpperCamelCase , early_stopping=_UpperCamelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _UpperCamelCase , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , _UpperCamelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=_UpperCamelCase , ) logger.info("Model exported to {}".format(_UpperCamelCase ) ) lowercase_ : Tuple = remove_dup_initializers(os.path.abspath(_UpperCamelCase ) ) logger.info("Deduplicated and optimized model written to {}".format(_UpperCamelCase ) ) lowercase_ : str = onnxruntime.InferenceSession(_UpperCamelCase ) lowercase_ : Tuple = ort_sess.run( _UpperCamelCase , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(_UpperCamelCase ), "max_length": np.array(_UpperCamelCase ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = parse_args() lowercase_ : Dict = 5 lowercase_ : Optional[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() lowercase_ : int = torch.device(args.device ) lowercase_ : int = load_model_tokenizer(args.model_name_or_path , _UpperCamelCase ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(_UpperCamelCase ) if args.max_length: lowercase_ : Dict = args.max_length if args.num_beams: lowercase_ : Optional[int] = args.num_beams if args.output_file_path: lowercase_ : List[Any] = args.output_file_path else: lowercase_ : int = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
716
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
717
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
0
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Dict = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] lowercase_ : str = [2, 4, 6, 8, 1_0, 1_2] lowercase_ : Union[str, Any] = 1_0_0 self.assertEqual(kp.calc_profit(a , a , a ) , 2_1_0 ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertRaisesRegex(a , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertRaisesRegex(a , "Weight can not be negative." ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertRaisesRegex(a , "Profit can not be negative." ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.assertRaisesRegex(a , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.assertRaisesRegex( a , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
718
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset UpperCamelCase__ = 'bert-base-cased' UpperCamelCase__ = 'google/pegasus-xsum' UpperCamelCase__ = [' Sam ate lunch today.', 'Sams lunch ingredients.'] UpperCamelCase__ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] UpperCamelCase__ = 'patrickvonplaten/t5-tiny-random' UpperCamelCase__ = 'sshleifer/bart-tiny-random' UpperCamelCase__ = 'sshleifer/tiny-mbart' UpperCamelCase__ = 'sshleifer/tiny-marian-en-de' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = "\n".join(_UpperCamelCase ) Path(_UpperCamelCase ).open("w" ).writelines(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_UpperCamelCase , F"""{split}.source""" ) , _UpperCamelCase ) _dump_articles(os.path.join(_UpperCamelCase , F"""{split}.target""" ) , _UpperCamelCase ) return tmp_dir class _UpperCAmelCase ( snake_case ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict ): '''simple docstring''' lowercase_ : Tuple = AutoTokenizer.from_pretrained(a ) lowercase_ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase_ : Dict = max(len(tokenizer.encode(a ) ) for a in ARTICLES ) lowercase_ : Any = max(len(tokenizer.encode(a ) ) for a in SUMMARIES ) lowercase_ : Optional[Any] = 4 lowercase_ : int = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase_ : int = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowercase_ : Union[str, Any] = SeqaSeqDataset( a , data_dir=a , type_path="train" , max_source_length=a , max_target_length=a , src_lang=a , tgt_lang=a , ) lowercase_ : Optional[Any] = DataLoader(a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(a , a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase_ : Optional[int] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowerCAmelCase__ ( self : Union[str, Any] , a : Any ): '''simple docstring''' lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained(a ) lowercase_ : Optional[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase_ : Any = max(len(tokenizer.encode(a ) ) for a in ARTICLES ) lowercase_ : Optional[Any] = max(len(tokenizer.encode(a ) ) for a in SUMMARIES ) lowercase_ : Any = 4 lowercase_ : Tuple = LegacySeqaSeqDataset( a , data_dir=a , type_path="train" , max_source_length=2_0 , max_target_length=a , ) lowercase_ : str = DataLoader(a , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Dict = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowercase_ : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase_ : Optional[Any] = tmp_dir.joinpath("train.source" ).open().readlines() lowercase_ : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(a , a , 1_2_8 , a ) lowercase_ : str = {x.name for x in tmp_dir.iterdir()} lowercase_ : Optional[int] = {x.name for x in save_dir.iterdir()} lowercase_ : str = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(a ) < len(a ) assert len(a ) == 1 assert len(packed_examples[0] ) == sum(len(a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return lowercase_ : List[str] = self._get_dataset(max_len=6_4 ) lowercase_ : Union[str, Any] = 6_4 lowercase_ : str = ds.make_dynamic_sampler(a , required_batch_size_multiple=a ) lowercase_ : Any = [len(a ) for x in batch_sampler] assert len(set(a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(a ) == len(a ) # no dropped or added examples lowercase_ : Dict = DataLoader(a , batch_sampler=a , collate_fn=ds.collate_fn , num_workers=2 ) lowercase_ : Any = [] lowercase_ : Tuple = [] for batch in data_loader: lowercase_ : List[str] = batch["input_ids"].shape lowercase_ : int = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase_ : Optional[Any] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(a ) if num_src_tokens > (max_tokens * 1.1): failures.append(a ) assert num_src_per_batch[0] == max(a ) if failures: raise AssertionError(f"""too many tokens in {len(a )} batches""" ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : str = self._get_dataset(max_len=5_1_2 ) lowercase_ : Optional[Any] = 2 lowercase_ : str = ds.make_sortish_sampler(a , shuffle=a ) lowercase_ : Any = DataLoader(a , batch_size=a , collate_fn=ds.collate_fn , num_workers=2 ) lowercase_ : Dict = DataLoader(a , batch_size=a , collate_fn=ds.collate_fn , num_workers=2 , sampler=a ) lowercase_ : int = tokenizer.pad_token_id def count_pad_tokens(a : Dict , a : Tuple="input_ids" ): return [batch[k].eq(a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(a , k="labels" ) ) < sum(count_pad_tokens(a , k="labels" ) ) assert sum(count_pad_tokens(a ) ) < sum(count_pad_tokens(a ) ) assert len(a ) == len(a ) def lowerCAmelCase__ ( self : List[Any] , a : Optional[int]=1_0_0_0 , a : Dict=1_2_8 ): '''simple docstring''' if os.getenv("USE_REAL_DATA" , a ): lowercase_ : Optional[int] = "examples/seq2seq/wmt_en_ro" lowercase_ : List[str] = max_len * 2 * 6_4 if not Path(a ).joinpath("train.len" ).exists(): save_len_file(a , a ) else: lowercase_ : str = "examples/seq2seq/test_data/wmt_en_ro" lowercase_ : Optional[Any] = max_len * 4 save_len_file(a , a ) lowercase_ : List[Any] = AutoTokenizer.from_pretrained(a ) lowercase_ : Optional[int] = SeqaSeqDataset( a , data_dir=a , type_path="train" , max_source_length=a , max_target_length=a , n_obs=a , ) return ds, max_tokens, tokenizer def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = self._get_dataset() lowercase_ : int = set(DistributedSortishSampler(a , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=a ) ) lowercase_ : List[Any] = set(DistributedSortishSampler(a , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=a ) ) assert idsa.intersection(a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowerCAmelCase__ ( self : Tuple , a : Tuple ): '''simple docstring''' lowercase_ : List[Any] = AutoTokenizer.from_pretrained(a , use_fast=a ) if tok_name == MBART_TINY: lowercase_ : List[Any] = SeqaSeqDataset( a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowercase_ : Tuple = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase_ : List[str] = SeqaSeqDataset( a , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowercase_ : List[Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(a ) == 1 if tok_name == BART_TINY else len(a ) == 0
720
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
0
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } UpperCamelCase__ = { 'Salesforce/codegen-350M-mono': 2048, } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase: Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: Tuple = ['input_ids', 'attention_mask'] __lowerCamelCase: Tuple = CodeGenTokenizer def __init__( self : Dict , a : Optional[Any]=None , a : Any=None , a : List[Any]=None , a : int="<|endoftext|>" , a : Optional[Any]="<|endoftext|>" , a : Union[str, Any]="<|endoftext|>" , a : Any=False , **a : Union[str, Any] , ): '''simple docstring''' super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , add_prefix_space=a , **a , ) if kwargs.pop("add_bos_token" , a ): lowercase_ : int = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) lowercase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a ) != add_prefix_space: lowercase_ : List[Any] = getattr(a , pre_tok_state.pop("type" ) ) lowercase_ : Any = add_prefix_space lowercase_ : List[Any] = pre_tok_class(**a ) lowercase_ : int = add_prefix_space def lowerCAmelCase__ ( self : Tuple , *a : List[str] , **a : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = kwargs.get("is_split_into_words" , a ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a , **a ) def lowerCAmelCase__ ( self : Dict , *a : Optional[Any] , **a : Union[str, Any] ): '''simple docstring''' lowercase_ : Dict = kwargs.get("is_split_into_words" , a ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a , **a ) def lowerCAmelCase__ ( self : Optional[Any] , a : str , a : Optional[str] = None ): '''simple docstring''' lowercase_ : Optional[Any] = self._tokenizer.model.save(a , name=a ) return tuple(a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , a : bool = False , a : bool = None , a : Optional[List[str]] = None , **a : Optional[Any] , ): '''simple docstring''' lowercase_ : Optional[Any] = super().decode( token_ids=a , skip_special_tokens=a , clean_up_tokenization_spaces=a , **a , ) if truncate_before_pattern is not None and len(a ) > 0: lowercase_ : Optional[Any] = self.truncate(a , a ) return decoded_text def lowerCAmelCase__ ( self : Optional[int] , a : str , a : List[Any] ): '''simple docstring''' def find_re(a : Tuple , a : List[str] , a : Optional[int] ): lowercase_ : List[Any] = pattern.search(a , a ) return m.start() if m else -1 lowercase_ : Tuple = [re.compile(a , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase_ : int = list(re.finditer("^print" , a , re.MULTILINE ) ) if len(a ) > 1: lowercase_ : Dict = completion[: prints[1].start()] lowercase_ : Union[str, Any] = list(re.finditer("^def" , a , re.MULTILINE ) ) if len(a ) > 1: lowercase_ : Optional[Any] = completion[: defs[1].start()] lowercase_ : Optional[int] = 0 lowercase_ : Union[str, Any] = [ pos for pos in [find_re(a , a , a ) for terminal in terminals] if pos != -1 ] if len(a ) > 0: return completion[: min(a )] else: return completion
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Dict = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase_ : Dict = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(a ) from datasets import load_dataset lowercase_ : List[Any] = load_dataset("nielsr/rvlcdip-demo" ) lowercase_ : Optional[int] = dataset["train"][0]["image"].convert("RGB" ) lowercase_ : Dict = image_processor(a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**a ) lowercase_ : Optional[Any] = outputs.logits lowercase_ : Optional[int] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase_ : str = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
700
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
0
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets UpperCamelCase__ = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' UpperCamelCase__ = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' UpperCamelCase__ = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = simple_accuracy(_UpperCamelCase , _UpperCamelCase ) lowercase_ : str = float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = np.array(_UpperCamelCase ) lowercase_ : int = np.array(_UpperCamelCase ) lowercase_ : Union[str, Any] = en_sentvecs.shape[0] # mean centering lowercase_ : Optional[Any] = en_sentvecs - np.mean(_UpperCamelCase , axis=0 ) lowercase_ : List[Any] = in_sentvecs - np.mean(_UpperCamelCase , axis=0 ) lowercase_ : Optional[int] = cdist(_UpperCamelCase , _UpperCamelCase , "cosine" ) lowercase_ : List[Any] = np.array(range(_UpperCamelCase ) ) lowercase_ : int = sim.argsort(axis=1 )[:, :10] lowercase_ : Dict = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def lowerCAmelCase__ ( self : str , a : str , a : Optional[int] ): '''simple docstring''' if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(a , a )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(a , a ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(a , a )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _UpperCAmelCase : __lowerCamelCase: List[Any] = BlenderbotConfig __lowerCamelCase: Dict = {} __lowerCamelCase: int = 'gelu' def __init__( self : Optional[Any] , a : Union[str, Any] , a : List[Any]=1_3 , a : Dict=7 , a : Dict=True , a : Optional[int]=False , a : int=9_9 , a : List[str]=3_2 , a : int=2 , a : Tuple=4 , a : Optional[Any]=3_7 , a : str=0.1 , a : Dict=0.1 , a : Optional[int]=2_0 , a : str=2 , a : int=1 , a : int=0 , ): '''simple docstring''' lowercase_ : Optional[int] = parent lowercase_ : Optional[int] = batch_size lowercase_ : int = seq_length lowercase_ : Dict = is_training lowercase_ : List[str] = use_labels lowercase_ : Union[str, Any] = vocab_size lowercase_ : int = hidden_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : str = num_attention_heads lowercase_ : List[Any] = intermediate_size lowercase_ : Optional[int] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : Dict = eos_token_id lowercase_ : List[Any] = pad_token_id lowercase_ : Optional[Any] = bos_token_id def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ : int = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ : Union[str, Any] = prepare_blenderbot_inputs_dict(a , a , a ) return config, inputs_dict def lowerCAmelCase__ ( self : List[Any] , a : Any , a : List[Any] ): '''simple docstring''' lowercase_ : Any = TFBlenderbotModel(config=a ).get_decoder() lowercase_ : List[str] = inputs_dict["input_ids"] lowercase_ : List[Any] = input_ids[:1, :] lowercase_ : int = inputs_dict["attention_mask"][:1, :] lowercase_ : Any = inputs_dict["head_mask"] lowercase_ : List[Any] = 1 # first forward pass lowercase_ : Optional[Any] = model(a , attention_mask=a , head_mask=a , use_cache=a ) lowercase_ : int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase_ : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase_ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase_ : List[Any] = model(a , attention_mask=a )[0] lowercase_ : Union[str, Any] = model(a , attention_mask=a , past_key_values=a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase_ : List[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase_ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] lowercase_ : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a , a , rtol=1e-3 ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): """simple docstring""" if attention_mask is None: lowercase_ : Dict = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase_ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: Union[str, Any] = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () __lowerCamelCase: Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase: Any = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase: Dict = True __lowerCamelCase: List[str] = False __lowerCamelCase: int = False def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[Any] = TFBlenderbotModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self , config_class=a ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a ) @require_tokenizers @require_tf class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: Any = ['My friends are cool but they eat too many carbs.'] __lowerCamelCase: Tuple = 'facebook/blenderbot-400M-distill' @cached_property def lowerCAmelCase__ ( self : int ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer(self.src_text , return_tensors="tf" ) lowercase_ : Dict = self.model.generate( model_inputs.input_ids , ) lowercase_ : List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=a )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
702
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
0
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__ = '\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n' UpperCamelCase__ = '\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n' UpperCamelCase__ = '\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the SQuAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{\'prediction_text\': \'1976\', \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> references = [{\'answers\': {\'answer_start\': [97], \'text\': [\'1976\']}, \'id\': \'56e10a3be3433e1400422b22\'}]\n >>> squad_metric = datasets.load_metric("squad")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCAmelCase__ ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def lowerCAmelCase__ ( self : Optional[int] , a : Any , a : Union[str, Any] ): '''simple docstring''' lowercase_ : List[str] = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowercase_ : List[str] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowercase_ : List[str] = evaluate(dataset=a , predictions=a ) return score
703
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
0
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase="cosine" , ): """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCamelCase ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCamelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase_ : Union[str, Any] = [] for i in range(_UpperCamelCase ): lowercase_ : Any = i / num_diffusion_timesteps lowercase_ : int = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCamelCase ) / alpha_bar_fn(_UpperCamelCase ) , _UpperCamelCase ) ) return torch.tensor(_UpperCamelCase , dtype=torch.floataa ) class _UpperCAmelCase ( snake_case , snake_case ): __lowerCamelCase: Dict = [e.name for e in KarrasDiffusionSchedulers] __lowerCamelCase: Optional[Any] = 2 @register_to_config def __init__( self : Dict , a : int = 1_0_0_0 , a : float = 0.0_0085 , a : float = 0.012 , a : str = "linear" , a : Optional[Union[np.ndarray, List[float]]] = None , a : str = "epsilon" , a : str = "linspace" , a : int = 0 , ): '''simple docstring''' if trained_betas is not None: lowercase_ : Tuple = torch.tensor(a , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase_ : Optional[int] = torch.linspace(a , a , a , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : str = betas_for_alpha_bar(a ) else: raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" ) lowercase_ : int = 1.0 - self.betas lowercase_ : Tuple = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(a , a , a ) def lowerCAmelCase__ ( self : Dict , a : List[Any] , a : Optional[Any]=None ): '''simple docstring''' if schedule_timesteps is None: lowercase_ : Union[str, Any] = self.timesteps lowercase_ : Tuple = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase_ : str = 1 if len(a ) > 1 else 0 else: lowercase_ : Tuple = timestep.cpu().item() if torch.is_tensor(a ) else timestep lowercase_ : Any = self._index_counter[timestep_int] return indices[pos].item() @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowerCAmelCase__ ( self : Tuple , a : torch.FloatTensor , a : Union[float, torch.FloatTensor] , ): '''simple docstring''' lowercase_ : Any = self.index_for_timestep(a ) if self.state_in_first_order: lowercase_ : List[Any] = self.sigmas[step_index] else: lowercase_ : Union[str, Any] = self.sigmas_interpol[step_index] lowercase_ : List[Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowerCAmelCase__ ( self : List[str] , a : int , a : Union[str, torch.device] = None , a : Optional[int] = None , ): '''simple docstring''' lowercase_ : str = num_inference_steps lowercase_ : Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase_ : List[str] = np.linspace(0 , num_train_timesteps - 1 , a , dtype=a )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase_ : List[str] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ : List[Any] = (np.arange(0 , a ) * step_ratio).round()[::-1].copy().astype(a ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase_ : Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ : Optional[Any] = (np.arange(a , 0 , -step_ratio )).round().copy().astype(a ) timesteps -= 1 else: raise ValueError( f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) lowercase_ : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase_ : List[str] = torch.from_numpy(np.log(a ) ).to(a ) lowercase_ : Union[str, Any] = np.interp(a , np.arange(0 , len(a ) ) , a ) lowercase_ : Any = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase_ : List[Any] = torch.from_numpy(a ).to(device=a ) # interpolate sigmas lowercase_ : str = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() lowercase_ : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) lowercase_ : Tuple = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(a ).startswith("mps" ): # mps does not support float64 lowercase_ : List[Any] = torch.from_numpy(a ).to(a , dtype=torch.floataa ) else: lowercase_ : Any = torch.from_numpy(a ).to(a ) # interpolate timesteps lowercase_ : List[str] = self.sigma_to_t(a ).to(a , dtype=timesteps.dtype ) lowercase_ : Tuple = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() lowercase_ : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) lowercase_ : int = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase_ : Optional[int] = defaultdict(a ) def lowerCAmelCase__ ( self : Dict , a : int ): '''simple docstring''' lowercase_ : Any = sigma.log() # get distribution lowercase_ : Dict = log_sigma - self.log_sigmas[:, None] # get sigmas range lowercase_ : Union[str, Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) lowercase_ : int = low_idx + 1 lowercase_ : Optional[int] = self.log_sigmas[low_idx] lowercase_ : List[str] = self.log_sigmas[high_idx] # interpolate sigmas lowercase_ : Union[str, Any] = (low - log_sigma) / (low - high) lowercase_ : int = w.clamp(0 , 1 ) # transform interpolation to time range lowercase_ : Union[str, Any] = (1 - w) * low_idx + w * high_idx lowercase_ : int = t.view(sigma.shape ) return t @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.sample is None def lowerCAmelCase__ ( self : Tuple , a : Union[torch.FloatTensor, np.ndarray] , a : Union[float, torch.FloatTensor] , a : Union[torch.FloatTensor, np.ndarray] , a : bool = True , ): '''simple docstring''' lowercase_ : str = self.index_for_timestep(a ) # advance index counter by 1 lowercase_ : List[str] = timestep.cpu().item() if torch.is_tensor(a ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase_ : List[str] = self.sigmas[step_index] lowercase_ : int = self.sigmas_interpol[step_index + 1] lowercase_ : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method lowercase_ : List[Any] = self.sigmas[step_index - 1] lowercase_ : Tuple = self.sigmas_interpol[step_index] lowercase_ : Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase_ : Optional[int] = 0 lowercase_ : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase_ : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase_ : str = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase_ : Optional[int] = sigma_hat if self.state_in_first_order else sigma_interpol lowercase_ : Union[str, Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample" ) else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase_ : Tuple = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase_ : str = sigma_interpol - sigma_hat # store for 2nd order step lowercase_ : str = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order lowercase_ : Optional[int] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep lowercase_ : Union[str, Any] = sigma_next - sigma_hat lowercase_ : int = self.sample lowercase_ : Any = None lowercase_ : Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=a ) def lowerCAmelCase__ ( self : str , a : torch.FloatTensor , a : torch.FloatTensor , a : torch.FloatTensor , ): '''simple docstring''' lowercase_ : str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(a ): # mps does not support float64 lowercase_ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase_ : int = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase_ : Union[str, Any] = self.timesteps.to(original_samples.device ) lowercase_ : Tuple = timesteps.to(original_samples.device ) lowercase_ : Union[str, Any] = [self.index_for_timestep(a , a ) for t in timesteps] lowercase_ : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase_ : Tuple = sigma.unsqueeze(-1 ) lowercase_ : Any = original_samples + noise * sigma return noisy_samples def __len__( self : List[str] ): '''simple docstring''' return self.config.num_train_timesteps
704
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
705
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
640
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Union[str, Any] = MobileBertConfig.from_json_file(_UpperCamelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase_ : str = MobileBertForPreTraining(_UpperCamelCase ) # Load weights from tf checkpoint lowercase_ : Any = load_tf_weights_in_mobilebert(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
706
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MultilingualCLIP , a : XLMRobertaTokenizer , a : UNetaDConditionModel , a : Union[DDIMScheduler, DDPMScheduler] , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=a , tokenizer=a , unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] , a : str , a : Tuple , a : List[str] ): '''simple docstring''' if latents is None: lowercase_ : List[str] = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : str = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Union[str, Any] , a : str , a : Tuple=None , ): '''simple docstring''' lowercase_ : Tuple = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( a , padding="max_length" , truncation=a , max_length=7_7 , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : Union[str, Any] = text_inputs.input_ids lowercase_ : Tuple = self.tokenizer(a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a , a ): lowercase_ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase_ : List[str] = text_input_ids.to(a ) lowercase_ : int = text_inputs.attention_mask.to(a ) lowercase_ , lowercase_ : Optional[int] = self.text_encoder( input_ids=a , attention_mask=a ) lowercase_ : str = prompt_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(a , dim=0 ) lowercase_ : int = text_mask.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] if negative_prompt is None: lowercase_ : int = [""] * batch_size elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase_ : Tuple = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: lowercase_ : Dict = negative_prompt lowercase_ : str = self.tokenizer( a , padding="max_length" , max_length=7_7 , truncation=a , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : List[Any] = uncond_input.input_ids.to(a ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(a ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=a , attention_mask=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : List[str] = negative_prompt_embeds.shape[1] lowercase_ : Dict = negative_prompt_embeds.repeat(1 , a ) lowercase_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , a , 1 ) lowercase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , a , -1 ) lowercase_ : List[Any] = uncond_text_mask.repeat_interleave(a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self : Tuple , a : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(a , a , prev_module_hook=a ) if self.safety_checker is not None: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(self.safety_checker , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[str, List[str]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Optional[Union[str, List[str]]] = None , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , a ): lowercase_ : List[str] = 1 elif isinstance(a , a ): lowercase_ : int = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) lowercase_ : Tuple = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : List[str] = self._encode_prompt( a , a , a , a , a ) if isinstance(a , a ): lowercase_ : Optional[int] = torch.cat(a , dim=0 ) if isinstance(a , a ): lowercase_ : int = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[int] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) lowercase_ : List[str] = self.scheduler.timesteps lowercase_ : str = self.unet.config.in_channels lowercase_ , lowercase_ : int = get_new_h_w(a , a , self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( a , a , a , generator=a , ).prev_sample # post-processing lowercase_ : Union[str, Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Optional[int] = image.clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowercase_ : str = (low + high) // 2 lowercase_ : List[Any] = max_subarray(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Union[str, Any] = max_subarray(_UpperCamelCase , mid + 1 , _UpperCamelCase ) lowercase_ : str = max_cross_sum(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : int = float("-inf" ), -1 lowercase_ : Dict = float("-inf" ), -1 lowercase_ : int | float = 0 for i in range(_UpperCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowercase_ : int = summ lowercase_ : Union[str, Any] = i lowercase_ : Tuple = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowercase_ : Dict = summ lowercase_ : str = i return max_left, max_right, (left_sum + right_sum) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = [randint(1 , _UpperCamelCase ) for _ in range(_UpperCamelCase )] lowercase_ : List[str] = time.time() max_subarray(_UpperCamelCase , 0 , input_size - 1 ) lowercase_ : Optional[int] = time.time() return end - start def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] lowercase_ : Tuple = [time_max_subarray(_UpperCamelCase ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(_UpperCamelCase , _UpperCamelCase ): print(_UpperCamelCase , "\t\t" , _UpperCamelCase ) plt.plot(_UpperCamelCase , _UpperCamelCase ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') UpperCamelCase__ = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : __lowerCamelCase: Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) __lowerCamelCase: Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) __lowerCamelCase: int = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase: bool = field( default=snake_case , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) __lowerCamelCase: bool = field( default=snake_case , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) __lowerCamelCase: Optional[int] = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) __lowerCamelCase: Optional[int] = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) __lowerCamelCase: Optional[int] = field( default=snake_case , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'A csv or a json file containing the training data.'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'A csv or a json file containing the validation data.'} ) __lowerCamelCase: Optional[str] = field(default=snake_case , metadata={'help': 'A csv or a json file containing the test data.'} ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: lowercase_ : str = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowercase_ : Optional[int] = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : __lowerCamelCase: str = field( default=snake_case , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) __lowerCamelCase: bool = field( default=snake_case , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) __lowerCamelCase: str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) __lowerCamelCase: bool = field( default=snake_case , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ : List[str] = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ : Tuple = training_args.get_process_log_level() logger.setLevel(_UpperCamelCase ) datasets.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.set_verbosity(_UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowercase_ : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowercase_ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowercase_ : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowercase_ : Optional[int] = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowercase_ : Any = data_args.train_file.split("." )[-1] lowercase_ : int = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowercase_ : int = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files lowercase_ : Union[str, Any] = load_dataset("csv" , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowercase_ : Dict = load_dataset("json" , data_files=_UpperCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowercase_ : Dict = raw_datasets["train"].features["label"].names lowercase_ : Optional[Any] = len(_UpperCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowercase_ : Tuple = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_UpperCamelCase , ) lowercase_ : Optional[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowercase_ : str = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowercase_ : Dict = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowercase_ : Dict = {"Refused": 0, "Entailed": 1} lowercase_ : Optional[int] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowercase_ : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_UpperCamelCase ): # Tokenize the texts def _convert_table_text_to_pandas(_UpperCamelCase ): lowercase_ : str = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] lowercase_ : Optional[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowercase_ : Tuple = examples["statement"] lowercase_ : Any = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) lowercase_ : Union[str, Any] = tokenizer(_UpperCamelCase , _UpperCamelCase , padding=_UpperCamelCase , max_length=_UpperCamelCase , truncation=_UpperCamelCase ) lowercase_ : Dict = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): lowercase_ : Any = raw_datasets.map( _UpperCamelCase , batched=_UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowercase_ : Tuple = raw_datasets["train"] if data_args.max_train_samples is not None: lowercase_ : Optional[int] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowercase_ : List[Any] = raw_datasets["validation"] if data_args.max_eval_samples is not None: lowercase_ : List[Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) lowercase_ : Union[str, Any] = raw_datasets["test"] if data_args.max_predict_samples is not None: lowercase_ : Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_UpperCamelCase ) ) , 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_UpperCamelCase ): lowercase_ : List[str] = p.predictions[0] if isinstance(p.predictions , _UpperCamelCase ) else p.predictions lowercase_ : Optional[int] = np.argmax(_UpperCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowercase_ : List[str] = default_data_collator elif training_args.fpaa: lowercase_ : Any = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) else: lowercase_ : Union[str, Any] = None # Initialize our Trainer lowercase_ : List[str] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_UpperCamelCase , tokenizer=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: lowercase_ : int = None if training_args.resume_from_checkpoint is not None: lowercase_ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowercase_ : Dict = last_checkpoint lowercase_ : Tuple = trainer.train(resume_from_checkpoint=_UpperCamelCase ) lowercase_ : List[str] = train_result.metrics lowercase_ : Optional[int] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_UpperCamelCase ) ) lowercase_ : Union[str, Any] = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _UpperCamelCase ) trainer.save_metrics("train" , _UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase_ : Any = trainer.evaluate(eval_dataset=_UpperCamelCase ) lowercase_ : List[str] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_UpperCamelCase ) lowercase_ : Tuple = min(_UpperCamelCase , len(_UpperCamelCase ) ) trainer.log_metrics("eval" , _UpperCamelCase ) trainer.save_metrics("eval" , _UpperCamelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowercase_ : Dict = predict_dataset.remove_columns("label" ) lowercase_ : Any = trainer.predict(_UpperCamelCase , metric_key_prefix="predict" ).predictions lowercase_ : int = np.argmax(_UpperCamelCase , axis=1 ) lowercase_ : Any = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(_UpperCamelCase ): lowercase_ : Optional[Any] = label_list[item] writer.write(F"""{index}\t{item}\n""" ) lowercase_ : Any = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**_UpperCamelCase ) else: trainer.create_model_card(**_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
708
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = ['image_processor', 'tokenizer'] __lowerCamelCase: Dict = 'Pix2StructImageProcessor' __lowerCamelCase: Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : str , a : Dict , a : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = False super().__init__(a , a ) def __call__( self : Tuple , a : int=None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : Optional[int] = 2_0_4_8 , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase_ : Dict = self.tokenizer lowercase_ : Tuple = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase_ : Optional[int] = self.image_processor( a , return_tensors=a , max_patches=a , **a ) else: # add pixel_values and bbox lowercase_ : Any = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a ) if text is not None and not self.image_processor.is_vqa: lowercase_ : int = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: lowercase_ : str = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase_ : Dict = text_encoding.pop("input_ids" ) else: lowercase_ : str = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def lowerCAmelCase__ ( self : Any , *a : str , **a : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def lowerCAmelCase__ ( self : str , *a : Optional[int] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
640
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if "img_encoder.pos_embed" in name: lowercase_ : Optional[int] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowercase_ : List[str] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowercase_ : Optional[Any] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowercase_ : Any = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowercase_ : Dict = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowercase_ : Any = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase_ : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowercase_ : List[Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowercase_ : Union[str, Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowercase_ : str = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowercase_ : Optional[Any] = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowercase_ : List[Any] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowercase_ : List[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowercase_ : List[Any] = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowercase_ : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowercase_ : int = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowercase_ : Dict = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowercase_ : Optional[Any] = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowercase_ : int = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowercase_ : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowercase_ : str = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowercase_ : Optional[int] = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowercase_ : List[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowercase_ : Dict = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase_ : List[Any] = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ : Optional[int] = key.split("." ) lowercase_ : int = int(key_split[2] ), int(key_split[4] ) lowercase_ : Tuple = config.vision_config.hidden_size if "weight" in key: lowercase_ : Union[str, Any] = val[:dim, :] lowercase_ : Union[str, Any] = val[dim : dim * 2, :] lowercase_ : Tuple = val[-dim:, :] else: lowercase_ : int = val[:dim] lowercase_ : Optional[int] = val[dim : dim * 2] lowercase_ : List[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ : List[str] = key.split("." ) lowercase_ : str = int(key_split[3] ) lowercase_ : Union[str, Any] = config.text_config.hidden_size if "weight" in key: lowercase_ : List[str] = val[:dim, :] lowercase_ : Any = val[ dim : dim * 2, : ] lowercase_ : Dict = val[-dim:, :] else: lowercase_ : Union[str, Any] = val[:dim] lowercase_ : Dict = val[dim : dim * 2] lowercase_ : int = val[-dim:] else: lowercase_ : Optional[Any] = rename_key(_UpperCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase_ : int = val.squeeze_() else: lowercase_ : Dict = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ : int = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="groupvit-gcc-yfcc" , _UpperCamelCase=False ): """simple docstring""" lowercase_ : Union[str, Any] = GroupViTConfig() lowercase_ : Tuple = GroupViTModel(_UpperCamelCase ).eval() lowercase_ : int = torch.load(_UpperCamelCase , map_location="cpu" )["model"] lowercase_ : Tuple = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Tuple = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_UpperCamelCase ) == 0) # verify result lowercase_ : Tuple = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowercase_ : List[Any] = prepare_img() lowercase_ : List[str] = processor(text=["a photo of a cat", "a photo of a dog"] , images=_UpperCamelCase , padding=_UpperCamelCase , return_tensors="pt" ) with torch.no_grad(): lowercase_ : int = model(**_UpperCamelCase ) if model_name == "groupvit-gcc-yfcc": lowercase_ : List[Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase_ : Optional[Any] = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , _UpperCamelCase , atol=1e-3 ) processor.save_pretrained(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print("Successfully saved processor and model to" , _UpperCamelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_UpperCamelCase , organization="nielsr" ) model.push_to_hub(_UpperCamelCase , organization="nielsr" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCamelCase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
'''simple docstring''' from cva import destroyAllWindows, imread, imshow, waitKey def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): lowercase_ : Any = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image UpperCamelCase__ = imread('image_data/lena.jpg', 1) # convert to its negative UpperCamelCase__ = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
710
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Optional[Any] , a : Any ): '''simple docstring''' lowercase_ : List[Any] = str(id_ ) lowercase_ : List[str] = None lowercase_ : Tuple = None lowercase_ : Dict = [] lowercase_ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : Optional[Any] , a : int ): '''simple docstring''' return self.key < other.key def __repr__( self : Union[str, Any] ): '''simple docstring''' return self.id def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[int] ): '''simple docstring''' self.neighbors.append(a ) def lowerCAmelCase__ ( self : Dict , a : int , a : Optional[int] ): '''simple docstring''' lowercase_ : int = weight def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = [] for u in graph: lowercase_ : List[Any] = math.inf lowercase_ : str = None lowercase_ : Tuple = 0 lowercase_ : Tuple = graph[:] while q: lowercase_ : List[Any] = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase_ : Optional[int] = u lowercase_ : Union[str, Any] = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for u in graph: lowercase_ : str = math.inf lowercase_ : int = None lowercase_ : List[Any] = 0 lowercase_ : str = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: lowercase_ : List[Any] = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase_ : str = u lowercase_ : Optional[int] = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
640
0
from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
713
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Any = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
640
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : __lowerCamelCase: str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase: Optional[str] = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase: bool = field(default=snake_case , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class _UpperCAmelCase : __lowerCamelCase: str = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) __lowerCamelCase: Optional[str] = field( default=snake_case , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) __lowerCamelCase: int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase: bool = field( default=snake_case , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase_ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase_ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) lowercase_ : Optional[int] = import_module("tasks" ) try: lowercase_ : int = getattr(_UpperCamelCase , model_args.task_type ) lowercase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase_ : Union[str, Any] = token_classification_task.get_labels(data_args.labels ) lowercase_ : Dict[int, str] = dict(enumerate(_UpperCamelCase ) ) lowercase_ : Optional[Any] = len(_UpperCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , idalabel=_UpperCamelCase , labelaid={label: i for i, label in enumerate(_UpperCamelCase )} , cache_dir=model_args.cache_dir , ) lowercase_ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase_ : List[str] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase_ : List[str] = ( TokenClassificationDataset( token_classification_task=_UpperCamelCase , data_dir=data_args.data_dir , tokenizer=_UpperCamelCase , labels=_UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase_ : Tuple = ( TokenClassificationDataset( token_classification_task=_UpperCamelCase , data_dir=data_args.data_dir , tokenizer=_UpperCamelCase , labels=_UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_UpperCamelCase , _UpperCamelCase ) -> Tuple[List[int], List[int]]: lowercase_ : int = np.argmax(_UpperCamelCase , axis=2 ) lowercase_ : List[Any] = preds.shape lowercase_ : Union[str, Any] = [[] for _ in range(_UpperCamelCase )] lowercase_ : int = [[] for _ in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_UpperCamelCase ) -> Dict: lowercase_ : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_UpperCamelCase , _UpperCamelCase ), "precision": precision_score(_UpperCamelCase , _UpperCamelCase ), "recall": recall_score(_UpperCamelCase , _UpperCamelCase ), "f1": fa_score(_UpperCamelCase , _UpperCamelCase ), } # Data collator lowercase_ : Union[str, Any] = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase_ : List[Any] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , compute_metrics=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase_ : Any = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase_ : int = trainer.evaluate() lowercase_ : Any = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _UpperCamelCase , _UpperCamelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(_UpperCamelCase ) # Predict if training_args.do_predict: lowercase_ : List[str] = TokenClassificationDataset( token_classification_task=_UpperCamelCase , data_dir=data_args.data_dir , tokenizer=_UpperCamelCase , labels=_UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase_ : List[Any] = trainer.predict(_UpperCamelCase ) lowercase_ : Union[str, Any] = align_predictions(_UpperCamelCase , _UpperCamelCase ) lowercase_ : List[Any] = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , _UpperCamelCase , _UpperCamelCase ) writer.write("%s = %s\n" % (key, value) ) # Save predictions lowercase_ : Optional[int] = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(_UpperCamelCase , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return results def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase__ = get_tests_dir('fixtures') class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = mock.Mock() lowercase_ : Optional[int] = 5_0_0 lowercase_ : Union[str, Any] = {} lowercase_ : Optional[int] = HTTPError lowercase_ : Dict = {} # Download this model to make sure it's in the cache. lowercase_ : Optional[Any] = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("requests.Session.request" , return_value=a ) as mock_head: lowercase_ : Any = ViTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-vit" ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = ViTImageProcessor.from_pretrained( "https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json" ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' with self.assertRaises(a ): # config is in subfolder, the following should not work without specifying the subfolder lowercase_ : int = AutoImageProcessor.from_pretrained("hf-internal-testing/stable-diffusion-all-variants" ) lowercase_ : Optional[Any] = AutoImageProcessor.from_pretrained( "hf-internal-testing/stable-diffusion-all-variants" , subfolder="feature_extractor" ) self.assertIsNotNone(a ) @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = TOKEN HfFolder.save_token(a ) @classmethod def lowerCAmelCase__ ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-image-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-image-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-image-processor" ) except HTTPError: pass def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : int = ViTImageProcessor.from_pretrained(a ) image_processor.push_to_hub("test-image-processor" , use_auth_token=self._token ) lowercase_ : Optional[int] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a , repo_id="test-image-processor" , push_to_hub=a , use_auth_token=self._token ) lowercase_ : str = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = ViTImageProcessor.from_pretrained(a ) image_processor.push_to_hub("valid_org/test-image-processor" , use_auth_token=self._token ) lowercase_ : Any = ViTImageProcessor.from_pretrained("valid_org/test-image-processor" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-image-processor" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( a , repo_id="valid_org/test-image-processor-org" , push_to_hub=a , use_auth_token=self._token ) lowercase_ : Dict = ViTImageProcessor.from_pretrained("valid_org/test-image-processor-org" ) for k, v in image_processor.__dict__.items(): self.assertEqual(a , getattr(a , a ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' CustomImageProcessor.register_for_auto_class() lowercase_ : List[str] = CustomImageProcessor.from_pretrained(a ) image_processor.push_to_hub("test-dynamic-image-processor" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"AutoImageProcessor": "custom_image_processing.CustomImageProcessor"} , ) lowercase_ : Union[str, Any] = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=a ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , "CustomImageProcessor" )
715
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ = 'scheduler_config.json' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: int = 1 __lowerCamelCase: List[Any] = 2 __lowerCamelCase: Optional[Any] = 3 __lowerCamelCase: int = 4 __lowerCamelCase: Optional[int] = 5 @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: jnp.ndarray class _UpperCAmelCase : __lowerCamelCase: List[str] = SCHEDULER_CONFIG_NAME __lowerCamelCase: Optional[int] = ['dtype'] __lowerCamelCase: int = [] __lowerCamelCase: Dict = True @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Dict[str, Any] = None , a : Optional[str] = None , a : Union[str, Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ , lowercase_ : Any = cls.load_config( pretrained_model_name_or_path=a , subfolder=a , return_unused_kwargs=a , **a , ) lowercase_ , lowercase_ : Union[str, Any] = cls.from_config(a , return_unused_kwargs=a , **a ) if hasattr(a , "create_state" ) and getattr(a , "has_state" , a ): lowercase_ : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : int , a : Union[str, os.PathLike] , a : bool = False , **a : int ): '''simple docstring''' self.save_config(save_directory=a , push_to_hub=a , **a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase_ : str = importlib.import_module(__name__.split("." )[0] ) lowercase_ : Optional[Any] = [ getattr(a , a ) for c in compatible_classes_str if hasattr(a , a ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowercase_ : int = [] for i in range(_UpperCamelCase ): lowercase_ : Union[str, Any] = i / num_diffusion_timesteps lowercase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class _UpperCAmelCase : __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Optional[int] ): '''simple docstring''' lowercase_ : Any = scheduler.config if config.trained_betas is not None: lowercase_ : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase_ : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase_ : str = 1.0 - betas lowercase_ : Dict = jnp.cumprod(a , axis=0 ) return cls( alphas=a , betas=a , alphas_cumprod=a , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = state.alphas_cumprod lowercase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase_ : int = sqrt_alpha_prod.flatten() lowercase_ : Union[str, Any] = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) lowercase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() lowercase_ : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
640
0
'''simple docstring''' import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 UpperCamelCase__ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=None , _UpperCamelCase=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_UpperCamelCase ) @dataclass class _UpperCAmelCase : __lowerCamelCase: int __lowerCamelCase: float __lowerCamelCase: str __lowerCamelCase: bool @dataclass class _UpperCAmelCase : __lowerCamelCase: int = 42 __lowerCamelCase: str = field(default='toto' , metadata={'help': 'help message'} ) @dataclass class _UpperCAmelCase : __lowerCamelCase: bool = False __lowerCamelCase: bool = True __lowerCamelCase: Optional[bool] = None class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'titi' __lowerCamelCase: Optional[Any] = 'toto' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'titi' __lowerCamelCase: List[str] = 'toto' __lowerCamelCase: Tuple = 42 @dataclass class _UpperCAmelCase : __lowerCamelCase: BasicEnum = "toto" def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[Any] = BasicEnum(self.foo ) @dataclass class _UpperCAmelCase : __lowerCamelCase: MixedTypeEnum = "toto" def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[str] = MixedTypeEnum(self.foo ) @dataclass class _UpperCAmelCase : __lowerCamelCase: Optional[int] = None __lowerCamelCase: Optional[float] = field(default=snake_case , metadata={'help': 'help message'} ) __lowerCamelCase: Optional[str] = None __lowerCamelCase: Optional[List[str]] = list_field(default=[] ) __lowerCamelCase: Optional[List[int]] = list_field(default=[] ) @dataclass class _UpperCAmelCase : __lowerCamelCase: List[int] = list_field(default=[] ) __lowerCamelCase: List[int] = list_field(default=[1, 2, 3] ) __lowerCamelCase: List[str] = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) __lowerCamelCase: List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class _UpperCAmelCase : __lowerCamelCase: List[int] = field() __lowerCamelCase: str = field() __lowerCamelCase: BasicEnum = field() def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[Any] = BasicEnum(self.required_enum ) @dataclass class _UpperCAmelCase : __lowerCamelCase: int __lowerCamelCase: "BasicEnum" = field() __lowerCamelCase: "Optional[bool]" = None __lowerCamelCase: "str" = field(default='toto' , metadata={'help': 'help message'} ) __lowerCamelCase: "List[str]" = list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class _UpperCAmelCase : __lowerCamelCase: bool = False __lowerCamelCase: bool = True __lowerCamelCase: bool | None = None @dataclass class _UpperCAmelCase : __lowerCamelCase: int | None = None __lowerCamelCase: float | None = field(default=snake_case , metadata={'help': 'help message'} ) __lowerCamelCase: str | None = None __lowerCamelCase: list[str] | None = list_field(default=[] ) __lowerCamelCase: list[int] | None = list_field(default=[] ) class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Any , a : argparse.ArgumentParser , a : argparse.ArgumentParser ): '''simple docstring''' self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): lowercase_ : str = {k: v for k, v in vars(a ).items() if k != "container"} lowercase_ : List[Any] = {k: v for k, v in vars(a ).items() if k != "container"} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" , a ) and yy.get("choices" , a ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](a ) , yy["type"](a ) ) del xx["type"], yy["type"] self.assertEqual(a , a ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : str = HfArgumentParser(a ) lowercase_ : Any = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , required=a ) expected.add_argument("--bar" , type=a , required=a ) expected.add_argument("--baz" , type=a , required=a ) expected.add_argument("--flag" , type=a , default=a , const=a , nargs="?" ) self.argparsersEqual(a , a ) lowercase_ : Tuple = ["--foo", "1", "--baz", "quux", "--bar", "0.5"] (lowercase_ ) : List[str] = parser.parse_args_into_dataclasses(a , look_for_args_file=a ) self.assertFalse(example.flag ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = HfArgumentParser(a ) lowercase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo" , default=4_2 , type=a ) expected.add_argument("--baz" , default="toto" , type=a , help="help message" ) self.argparsersEqual(a , a ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Optional[int] = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , default=a , const=a , nargs="?" ) expected.add_argument("--baz" , type=a , default=a , const=a , nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" , action="store_false" , default=a , dest="baz" ) expected.add_argument("--opt" , type=a , default=a ) lowercase_ : str = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(a ) for dataclass_type in dataclass_types: lowercase_ : Tuple = HfArgumentParser(a ) self.argparsersEqual(a , a ) lowercase_ : str = parser.parse_args([] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) lowercase_ : Union[str, Any] = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) lowercase_ : Tuple = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) lowercase_ : Dict = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) lowercase_ : Tuple = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(a , Namespace(foo=a , baz=a , opt=a ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : List[Any] = HfArgumentParser(a ) lowercase_ : str = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=["titi", "toto", 4_2] , type=make_choice_type_function(["titi", "toto", 4_2] ) , ) self.argparsersEqual(a , a ) lowercase_ : List[Any] = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase_ : Union[str, Any] = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) lowercase_ : Tuple = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase_ : Any = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) lowercase_ : Any = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 4_2 ) lowercase_ : str = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' @dataclass class _UpperCAmelCase : __lowerCamelCase: Literal["titi", "toto", 42] = "toto" lowercase_ : int = HfArgumentParser(a ) lowercase_ : List[Any] = argparse.ArgumentParser() expected.add_argument( "--foo" , default="toto" , choices=("titi", "toto", 4_2) , type=make_choice_type_function(["titi", "toto", 4_2] ) , ) self.argparsersEqual(a , a ) lowercase_ : Any = parser.parse_args([] ) self.assertEqual(args.foo , "toto" ) lowercase_ : List[Any] = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo , "titi" ) lowercase_ : str = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo , 4_2 ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[Any] = HfArgumentParser(a ) lowercase_ : List[str] = argparse.ArgumentParser() expected.add_argument("--foo_int" , nargs="+" , default=[] , type=a ) expected.add_argument("--bar_int" , nargs="+" , default=[1, 2, 3] , type=a ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a ) expected.add_argument("--foo_float" , nargs="+" , default=[0.1, 0.2, 0.3] , type=a ) self.argparsersEqual(a , a ) lowercase_ : Dict = parser.parse_args([] ) self.assertEqual( a , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=["Hallo", "Bonjour", "Hello"] , foo_float=[0.1, 0.2, 0.3] ) , ) lowercase_ : Union[str, Any] = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(a , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=["a", "b", "c"] , foo_float=[0.1, 0.7] ) ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[Any] = argparse.ArgumentParser() expected.add_argument("--foo" , default=a , type=a ) expected.add_argument("--bar" , default=a , type=a , help="help message" ) expected.add_argument("--baz" , default=a , type=a ) expected.add_argument("--ces" , nargs="+" , default=[] , type=a ) expected.add_argument("--des" , nargs="+" , default=[] , type=a ) lowercase_ : int = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(a ) for dataclass_type in dataclass_types: lowercase_ : Optional[Any] = HfArgumentParser(a ) self.argparsersEqual(a , a ) lowercase_ : Any = parser.parse_args([] ) self.assertEqual(a , Namespace(foo=a , bar=a , baz=a , ces=[] , des=[] ) ) lowercase_ : Optional[int] = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(a , Namespace(foo=1_2 , bar=3.14 , baz="42" , ces=["a", "b", "c"] , des=[1, 2, 3] ) ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : List[str] = HfArgumentParser(a ) lowercase_ : Any = argparse.ArgumentParser() expected.add_argument("--required_list" , nargs="+" , type=a , required=a ) expected.add_argument("--required_str" , type=a , required=a ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , ) self.argparsersEqual(a , a ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = HfArgumentParser(a ) lowercase_ : str = argparse.ArgumentParser() expected.add_argument("--foo" , type=a , required=a ) expected.add_argument( "--required_enum" , type=make_choice_type_function(["titi", "toto"] ) , choices=["titi", "toto"] , required=a , ) expected.add_argument("--opt" , type=a , default=a ) expected.add_argument("--baz" , default="toto" , type=a , help="help message" ) expected.add_argument("--foo_str" , nargs="+" , default=["Hallo", "Bonjour", "Hello"] , type=a ) self.argparsersEqual(a , a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Tuple = HfArgumentParser(a ) lowercase_ : Any = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } lowercase_ : Dict = parser.parse_dict(a )[0] lowercase_ : Optional[Any] = BasicExample(**a ) self.assertEqual(a , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = HfArgumentParser(a ) lowercase_ : Union[str, Any] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, "extra": 4_2, } self.assertRaises(a , parser.parse_dict , a , allow_extra_keys=a ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[Any] = HfArgumentParser(a ) lowercase_ : Optional[Any] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : str = os.path.join(a , "temp_json" ) os.mkdir(a ) with open(temp_local_path + ".json" , "w+" ) as f: json.dump(a , a ) lowercase_ : int = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] lowercase_ : Union[str, Any] = BasicExample(**a ) self.assertEqual(a , a ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Tuple = HfArgumentParser(a ) lowercase_ : Optional[int] = { "foo": 1_2, "bar": 3.14, "baz": "42", "flag": True, } with tempfile.TemporaryDirectory() as tmp_dir: lowercase_ : int = os.path.join(a , "temp_yaml" ) os.mkdir(a ) with open(temp_local_path + ".yaml" , "w+" ) as f: yaml.dump(a , a ) lowercase_ : Optional[int] = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] lowercase_ : List[Any] = BasicExample(**a ) self.assertEqual(a , a ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = HfArgumentParser(a ) self.assertIsNotNone(a )
716
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = F"""{sampling_rate}""" lowercase_ : Tuple = "1" lowercase_ : Optional[Any] = "f32le" lowercase_ : Union[str, Any] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(_UpperCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowercase_ : Tuple = ffmpeg_process.communicate(_UpperCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error lowercase_ : Optional[int] = output_stream[0] lowercase_ : List[str] = np.frombuffer(_UpperCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = "f32le" , ): """simple docstring""" lowercase_ : List[str] = F"""{sampling_rate}""" lowercase_ : Any = "1" if format_for_conversion == "s16le": lowercase_ : Dict = 2 elif format_for_conversion == "f32le": lowercase_ : Any = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) lowercase_ : str = platform.system() if system == "Linux": lowercase_ : str = "alsa" lowercase_ : Optional[Any] = "default" elif system == "Darwin": lowercase_ : str = "avfoundation" lowercase_ : Dict = ":0" elif system == "Windows": lowercase_ : Tuple = "dshow" lowercase_ : Any = "default" lowercase_ : Any = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] lowercase_ : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowercase_ : List[Any] = _ffmpeg_stream(_UpperCamelCase , _UpperCamelCase ) for item in iterator: yield item def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: lowercase_ : List[str] = stream_chunk_s else: lowercase_ : List[Any] = chunk_length_s lowercase_ : Tuple = ffmpeg_microphone(_UpperCamelCase , _UpperCamelCase , format_for_conversion=_UpperCamelCase ) if format_for_conversion == "s16le": lowercase_ : Optional[Any] = np.intaa lowercase_ : int = 2 elif format_for_conversion == "f32le": lowercase_ : Optional[int] = np.floataa lowercase_ : Union[str, Any] = 4 else: raise ValueError(F"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: lowercase_ : int = chunk_length_s / 6 lowercase_ : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_UpperCamelCase , (int, float) ): lowercase_ : str = [stride_length_s, stride_length_s] lowercase_ : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowercase_ : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowercase_ : str = datetime.datetime.now() lowercase_ : Any = datetime.timedelta(seconds=_UpperCamelCase ) for item in chunk_bytes_iter(_UpperCamelCase , _UpperCamelCase , stride=(stride_left, stride_right) , stream=_UpperCamelCase ): # Put everything back in numpy scale lowercase_ : Dict = np.frombuffer(item["raw"] , dtype=_UpperCamelCase ) lowercase_ : Tuple = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) lowercase_ : Dict = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = False ): """simple docstring""" lowercase_ : List[Any] = b"" lowercase_ : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( F"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) lowercase_ : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(_UpperCamelCase ) < chunk_len: lowercase_ : Any = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_UpperCamelCase ) >= chunk_len: # We are flushing the accumulator lowercase_ : Dict = (_stride_left, stride_right) lowercase_ : Optional[Any] = {"raw": acc[:chunk_len], "stride": stride} if stream: lowercase_ : Any = False yield item lowercase_ : Optional[int] = stride_left lowercase_ : Dict = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_UpperCamelCase ) > stride_left: lowercase_ : Dict = {"raw": acc, "stride": (_stride_left, 0)} if stream: lowercase_ : int = False yield item def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = 2**24 # 16Mo try: with subprocess.Popen(_UpperCamelCase , stdout=subprocess.PIPE , bufsize=_UpperCamelCase ) as ffmpeg_process: while True: lowercase_ : str = ffmpeg_process.stdout.read(_UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
717
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
0
'''simple docstring''' from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCamelCase__ = 1.054571817e-34 # unit of ℏ : J * s UpperCamelCase__ = 3e8 # unit of c : m * s^-1 def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if force < 0: raise ValueError("Magnitude of force can not be negative" ) if distance < 0: raise ValueError("Distance can not be negative" ) if area < 0: raise ValueError("Area can not be negative" ) if force == 0: lowercase_ : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 240 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase_ : Optional[int] = (240 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase_ : str = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("One and only one argument must be 0" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
718
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'tokenizer_file': 'tokenizer.json'} UpperCamelCase__ = { 'tokenizer_file': { 'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json', 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json', }, } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: int = ['input_ids', 'attention_mask'] __lowerCamelCase: Tuple = None def __init__( self : List[str] , a : Tuple=None , a : Dict=None , a : Union[str, Any]=None , a : List[Any]="<unk>" , a : Tuple="<s>" , a : str="</s>" , a : List[str]="<pad>" , a : int=False , a : int=False , **a : Optional[int] , ): '''simple docstring''' super().__init__( a , a , tokenizer_file=a , unk_token=a , bos_token=a , eos_token=a , pad_token=a , add_prefix_space=a , clean_up_tokenization_spaces=a , **a , ) lowercase_ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , a ) != add_prefix_space: lowercase_ : Union[str, Any] = getattr(a , pre_tok_state.pop("type" ) ) lowercase_ : List[Any] = add_prefix_space lowercase_ : List[str] = pre_tok_class(**a ) lowercase_ : int = add_prefix_space def lowerCAmelCase__ ( self : Optional[Any] , *a : str , **a : Union[str, Any] ): '''simple docstring''' lowercase_ : str = kwargs.get("is_split_into_words" , a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._batch_encode_plus(*a , **a ) def lowerCAmelCase__ ( self : Optional[Any] , *a : Union[str, Any] , **a : Tuple ): '''simple docstring''' lowercase_ : str = kwargs.get("is_split_into_words" , a ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._encode_plus(*a , **a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : str , a : Optional[str] = None ): '''simple docstring''' lowercase_ : Union[str, Any] = self._tokenizer.model.save(a , name=a ) return tuple(a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : "Conversation" ): '''simple docstring''' lowercase_ : int = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a , add_special_tokens=a ) + [self.eos_token_id] ) if len(a ) > self.model_max_length: lowercase_ : Optional[int] = input_ids[-self.model_max_length :] return input_ids
719
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import sys UpperCamelCase__ = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = N ): """simple docstring""" lowercase_ : str = -sys.maxsize - 1 for i in range(len(_UpperCamelCase ) - 12 ): lowercase_ : List[str] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase_ : int = product return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
720
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
0
'''simple docstring''' UpperCamelCase__ = [ (1000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def __SCREAMING_SNAKE_CASE ( lowerCamelCase ): """simple docstring""" lowercase_ : List[Any] = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1000} lowercase_ : str = 0 lowercase_ : List[str] = 0 while place < len(_UpperCamelCase ): if (place + 1 < len(_UpperCamelCase )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def __SCREAMING_SNAKE_CASE ( lowerCamelCase ): """simple docstring""" lowercase_ : Tuple = [] for arabic, roman in ROMAN: (lowercase_) : Union[str, Any] = divmod(_UpperCamelCase , _UpperCamelCase ) result.append(roman * factor ) if number == 0: break return "".join(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : int = {'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self._create_example_records() UpperCAmelCase_ : Optional[Any] = Dataset.from_list(__snake_case ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(__snake_case ): self.assertDictEqual(__snake_case , example_records[i] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self._create_example_records() UpperCAmelCase_ : List[Any] = Dataset.from_list(__snake_case ) UpperCAmelCase_ : Optional[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def _lowerCamelCase ( self : Optional[int] ): # checks what happens with missing columns '''simple docstring''' UpperCAmelCase_ : Any = [{'''col_1''': 1}, {'''col_2''': '''x'''}] UpperCAmelCase_ : Any = Dataset.from_list(__snake_case ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def _lowerCamelCase ( self : Any ): # checks if the type can be inferred from the second record '''simple docstring''' UpperCAmelCase_ : int = [{'''col_1''': []}, {'''col_1''': [1, 2]}] UpperCAmelCase_ : Optional[Any] = Dataset.from_list(__snake_case ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = Dataset.from_list([] ) self.assertEqual(len(__snake_case ) , 0 ) self.assertListEqual(dset.column_names , [] )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
def snake_case_ ( __lowercase , __lowercase ): print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(__lowercase ): for j in range(__lowercase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = [[float('''inf''' ) for _ in range(__lowercase )] for _ in range(__lowercase )] for i in range(__lowercase ): for j in range(__lowercase ): UpperCAmelCase_ : Optional[Any] = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(__lowercase ): # looping through rows of graph array for i in range(__lowercase ): # looping through columns of graph array for j in range(__lowercase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): UpperCAmelCase_ : int = dist[i][k] + dist[k][j] _print_dist(__lowercase , __lowercase ) return dist, v if __name__ == "__main__": __UpperCamelCase : Dict = int(input('Enter number of vertices: ')) __UpperCamelCase : Any = int(input('Enter number of edges: ')) __UpperCamelCase : Optional[Any] = [[float('inf') for i in range(v)] for j in range(v)] for i in range(v): __UpperCamelCase : str = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('\nEdge ', i + 1) __UpperCamelCase : List[str] = int(input('Enter source:')) __UpperCamelCase : str = int(input('Enter destination:')) __UpperCamelCase : List[Any] = float(input('Enter weight:')) __UpperCamelCase : Tuple = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
from __future__ import annotations from math import pi, sqrt def snake_case_ ( __lowercase , __lowercase ): if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Dict = len(__lowercase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ : int = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowercase ): return None UpperCAmelCase_ : Optional[Any] = sorted_collection[point] if current_item == item: return point else: if point < left: UpperCAmelCase_ : List[str] = left UpperCAmelCase_ : int = point elif point > right: UpperCAmelCase_ : int = right UpperCAmelCase_ : Dict = point else: if item < current_item: UpperCAmelCase_ : List[Any] = point - 1 else: UpperCAmelCase_ : List[Any] = point + 1 return None def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None UpperCAmelCase_ : Union[str, Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowercase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__lowercase , __lowercase , __lowercase , __lowercase ) elif point > right: return interpolation_search_by_recursion(__lowercase , __lowercase , __lowercase , __lowercase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __lowercase , __lowercase , __lowercase , point - 1 ) else: return interpolation_search_by_recursion( __lowercase , __lowercase , point + 1 , __lowercase ) def snake_case_ ( __lowercase ): if collection != sorted(__lowercase ): raise ValueError('''Collection must be ascending sorted''' ) return True if __name__ == "__main__": import sys __UpperCamelCase : str = 0 if debug == 1: __UpperCamelCase : List[Any] = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') __UpperCamelCase : Tuple = 67 __UpperCamelCase : Dict = interpolation_search(collection, target) if result is not None: print(F'{target} found at positions: {result}') else: print('Not found')
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
import operator def snake_case_ ( __lowercase , __lowercase = False , __lowercase = None ): UpperCAmelCase_ : Any = operator.lt if reverse else operator.gt UpperCAmelCase_ : Optional[int] = solution or [] if not arr: return solution UpperCAmelCase_ : Union[str, Any] = [arr.pop(0 )] for i, item in enumerate(__lowercase ): if _operator(__lowercase , sublist[-1] ): sublist.append(__lowercase ) arr.pop(__lowercase ) # merging sublist into solution list if not solution: solution.extend(__lowercase ) else: while sublist: UpperCAmelCase_ : Any = sublist.pop(0 ) for i, xx in enumerate(__lowercase ): if not _operator(__lowercase , __lowercase ): solution.insert(__lowercase , __lowercase ) break else: solution.append(__lowercase ) strand_sort(__lowercase , __lowercase , __lowercase ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __UpperCamelCase : List[Any] = { 'sample_size': 32, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': 1000, 'block_out_channels': [32, 64], 'attention_head_dim': 8, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : str = { 'sample_size': 64, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 3, 'num_class_embeds': 1000, 'block_out_channels': [192, 192 * 2, 192 * 3, 192 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'scale_shift', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : List[str] = { 'sample_size': 256, 'in_channels': 3, 'out_channels': 3, 'layers_per_block': 2, 'num_class_embeds': None, 'block_out_channels': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], 'attention_head_dim': 64, 'down_block_types': [ 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'ResnetDownsampleBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', 'AttnDownBlock2D', ], 'up_block_types': [ 'AttnUpBlock2D', 'AttnUpBlock2D', 'AttnUpBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', 'ResnetUpsampleBlock2D', ], 'resnet_time_scale_shift': 'default', 'upsample_type': 'resnet', 'downsample_type': 'resnet', } __UpperCamelCase : str = { 'num_train_timesteps': 40, 'sigma_min': 0.002, 'sigma_max': 80.0, } __UpperCamelCase : Union[str, Any] = { 'num_train_timesteps': 201, 'sigma_min': 0.002, 'sigma_max': 80.0, } __UpperCamelCase : Optional[Any] = { 'num_train_timesteps': 151, 'sigma_min': 0.002, 'sigma_max': 80.0, } def snake_case_ ( __lowercase ): if isinstance(__lowercase , __lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False ): UpperCAmelCase_ : Dict = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] UpperCAmelCase_ : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] UpperCAmelCase_ : List[Any] = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] UpperCAmelCase_ : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] UpperCAmelCase_ : Any = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] UpperCAmelCase_ : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] UpperCAmelCase_ : int = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.skip_connection.weight'''] UpperCAmelCase_ : int = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) UpperCAmelCase_ : List[Any] = checkpoint[F'''{old_prefix}.norm.weight'''] UpperCAmelCase_ : Tuple = checkpoint[F'''{old_prefix}.norm.bias'''] UpperCAmelCase_ : Any = weight_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : str = weight_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Union[str, Any] = weight_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : Optional[int] = bias_v.squeeze(-1 ).squeeze(-1 ) UpperCAmelCase_ : str = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) UpperCAmelCase_ : Any = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : int = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = {} UpperCAmelCase_ : Optional[int] = checkpoint['''time_embed.0.weight'''] UpperCAmelCase_ : Any = checkpoint['''time_embed.0.bias'''] UpperCAmelCase_ : int = checkpoint['''time_embed.2.weight'''] UpperCAmelCase_ : str = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: UpperCAmelCase_ : Any = checkpoint['''label_emb.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''input_blocks.0.0.weight'''] UpperCAmelCase_ : List[Any] = checkpoint['''input_blocks.0.0.bias'''] UpperCAmelCase_ : List[Any] = unet_config['''down_block_types'''] UpperCAmelCase_ : Tuple = unet_config['''layers_per_block'''] UpperCAmelCase_ : int = unet_config['''attention_head_dim'''] UpperCAmelCase_ : List[Any] = unet_config['''block_out_channels'''] UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Union[str, Any] = channels_list[0] for i, layer_type in enumerate(__lowercase ): UpperCAmelCase_ : Optional[int] = channels_list[i] UpperCAmelCase_ : Optional[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowercase ): UpperCAmelCase_ : List[Any] = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : Tuple = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : int = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Any = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowercase ): UpperCAmelCase_ : Dict = F'''down_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : int = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[int] = True if j == 0 and downsample_block_has_skip else False UpperCAmelCase_ : Tuple = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) UpperCAmelCase_ : Optional[Any] = F'''down_blocks.{i}.attentions.{j}''' UpperCAmelCase_ : Optional[Any] = F'''input_blocks.{current_layer}.1''' UpperCAmelCase_ : List[Any] = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : Any = F'''down_blocks.{i}.downsamplers.0''' UpperCAmelCase_ : str = F'''input_blocks.{current_layer}.0''' UpperCAmelCase_ : List[str] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 UpperCAmelCase_ : str = current_channels # hardcoded the mid-block for now UpperCAmelCase_ : Optional[int] = '''mid_block.resnets.0''' UpperCAmelCase_ : List[str] = '''middle_block.0''' UpperCAmelCase_ : List[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = '''mid_block.attentions.0''' UpperCAmelCase_ : int = '''middle_block.1''' UpperCAmelCase_ : List[Any] = convert_attention(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = '''mid_block.resnets.1''' UpperCAmelCase_ : Union[str, Any] = '''middle_block.2''' UpperCAmelCase_ : Optional[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : int = 0 UpperCAmelCase_ : List[Any] = unet_config['''up_block_types'''] for i, layer_type in enumerate(__lowercase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : List[str] = F'''output_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[int] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : Optional[Any] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer-1}.1''' UpperCAmelCase_ : Tuple = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): UpperCAmelCase_ : Tuple = F'''up_blocks.{i}.resnets.{j}''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer}.0''' UpperCAmelCase_ : Optional[Any] = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) UpperCAmelCase_ : Optional[Any] = F'''up_blocks.{i}.attentions.{j}''' UpperCAmelCase_ : Union[str, Any] = F'''output_blocks.{current_layer}.1''' UpperCAmelCase_ : Union[str, Any] = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: UpperCAmelCase_ : List[Any] = F'''up_blocks.{i}.upsamplers.0''' UpperCAmelCase_ : Tuple = F'''output_blocks.{current_layer-1}.2''' UpperCAmelCase_ : Dict = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : str = checkpoint['''out.0.weight'''] UpperCAmelCase_ : Optional[Any] = checkpoint['''out.0.bias'''] UpperCAmelCase_ : Union[str, Any] = checkpoint['''out.2.weight'''] UpperCAmelCase_ : int = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--unet_path', default=None, type=str, required=True, help='Path to the unet.pt to convert.') parser.add_argument( '--dump_path', default=None, type=str, required=True, help='Path to output the converted UNet model.' ) parser.add_argument('--class_cond', default=True, type=str, help='Whether the model is class-conditional.') __UpperCamelCase : str = parser.parse_args() __UpperCamelCase : Optional[Any] = strabool(args.class_cond) __UpperCamelCase : Optional[Any] = os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __UpperCamelCase : Dict = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCamelCase : Optional[Any] = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __UpperCamelCase : Optional[Any] = TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __UpperCamelCase : List[Any] = None __UpperCamelCase : Optional[Any] = con_pt_to_diffuser(args.unet_path, unet_config) __UpperCamelCase : Optional[int] = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __UpperCamelCase : Optional[Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __UpperCamelCase : List[str] = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCamelCase : Optional[Any] = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') __UpperCamelCase : List[str] = CMStochasticIterativeScheduler(**scheduler_config) __UpperCamelCase : List[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): if isinstance(__lowercase , __lowercase ) and isinstance(__lowercase , __lowercase ): UpperCAmelCase_ : Tuple = len(set_a.intersection(__lowercase ) ) if alternative_union: UpperCAmelCase_ : List[Any] = len(__lowercase ) + len(__lowercase ) else: UpperCAmelCase_ : Tuple = len(set_a.union(__lowercase ) ) return intersection / union if isinstance(__lowercase , (list, tuple) ) and isinstance(__lowercase , (list, tuple) ): UpperCAmelCase_ : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: UpperCAmelCase_ : Tuple = len(__lowercase ) + len(__lowercase ) return len(__lowercase ) / union else: UpperCAmelCase_ : Union[str, Any] = set_a + [element for element in set_b if element not in set_a] return len(__lowercase ) / len(__lowercase ) return len(__lowercase ) / len(__lowercase ) return None if __name__ == "__main__": __UpperCamelCase : Optional[int] = {'a', 'b', 'c', 'd', 'e'} __UpperCamelCase : Optional[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
import os import string import sys __UpperCamelCase : Optional[Any] = 1 << 8 __UpperCamelCase : Any = { 'tab': ord('\t'), 'newline': ord('\r'), 'esc': 27, 'up': 65 + ARROW_KEY_FLAG, 'down': 66 + ARROW_KEY_FLAG, 'right': 67 + ARROW_KEY_FLAG, 'left': 68 + ARROW_KEY_FLAG, 'mod_int': 91, 'undefined': sys.maxsize, 'interrupt': 3, 'insert': 50, 'delete': 51, 'pg_up': 53, 'pg_down': 54, } __UpperCamelCase : int = KEYMAP['up'] __UpperCamelCase : str = KEYMAP['left'] if sys.platform == "win32": __UpperCamelCase : List[Any] = [] __UpperCamelCase : Any = { b'\xe0H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\x00H': KEYMAP['up'] - ARROW_KEY_FLAG, b'\xe0P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\x00P': KEYMAP['down'] - ARROW_KEY_FLAG, b'\xe0M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\x00M': KEYMAP['right'] - ARROW_KEY_FLAG, b'\xe0K': KEYMAP['left'] - ARROW_KEY_FLAG, b'\x00K': KEYMAP['left'] - ARROW_KEY_FLAG, } for i in range(10): __UpperCamelCase : List[str] = ord(str(i)) def snake_case_ ( ): if os.name == "nt": import msvcrt UpperCAmelCase_ : List[Any] = '''mbcs''' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(__lowercase ) == 0: # Read the keystroke UpperCAmelCase_ : Optional[Any] = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): UpperCAmelCase_ : str = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: UpperCAmelCase_ : List[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['''mod_int'''] ) ) WIN_CH_BUFFER.append(__lowercase ) if ord(__lowercase ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) UpperCAmelCase_ : str = chr(KEYMAP['''esc'''] ) except KeyError: UpperCAmelCase_ : int = cha[1] else: UpperCAmelCase_ : List[Any] = ch.decode(__lowercase ) else: UpperCAmelCase_ : str = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty UpperCAmelCase_ : List[Any] = sys.stdin.fileno() UpperCAmelCase_ : Union[str, Any] = termios.tcgetattr(__lowercase ) try: tty.setraw(__lowercase ) UpperCAmelCase_ : List[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(__lowercase , termios.TCSADRAIN , __lowercase ) return ch def snake_case_ ( ): UpperCAmelCase_ : Dict = get_raw_chars() if ord(__lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(__lowercase ) == KEYMAP["esc"]: UpperCAmelCase_ : Optional[Any] = get_raw_chars() if ord(__lowercase ) == KEYMAP["mod_int"]: UpperCAmelCase_ : Optional[int] = get_raw_chars() if ord(__lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(__lowercase ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
from math import factorial, pi def snake_case_ ( __lowercase , __lowercase = 3_0 ): if not isinstance(__lowercase , (int, float) ): raise ValueError('''maclaurin_sin() requires either an int or float for theta''' ) if not isinstance(__lowercase , __lowercase ) or accuracy <= 0: raise ValueError('''maclaurin_sin() requires a positive int for accuracy''' ) UpperCAmelCase_ : Dict = float(__lowercase ) UpperCAmelCase_ : str = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__lowercase ) ) def snake_case_ ( __lowercase , __lowercase = 3_0 ): if not isinstance(__lowercase , (int, float) ): raise ValueError('''maclaurin_cos() requires either an int or float for theta''' ) if not isinstance(__lowercase , __lowercase ) or accuracy <= 0: raise ValueError('''maclaurin_cos() requires a positive int for accuracy''' ) UpperCAmelCase_ : int = float(__lowercase ) UpperCAmelCase_ : List[str] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = 1 UpperCAmelCase_ : List[Any] = 2 while i * i <= n: UpperCAmelCase_ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def snake_case_ ( ): UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(__lowercase ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = StableDiffusionXLImgaImgPipeline A_ : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'} A_ : Dict = PipelineTesterMixin.required_optional_params - {'latents'} A_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS A_ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCAmelCase_ : List[str] = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=32 , ) UpperCAmelCase_ : Any = CLIPTextModel(__snake_case ) UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__snake_case ) UpperCAmelCase_ : Any = CLIPTextModelWithProjection(__snake_case ) UpperCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__snake_case ) UpperCAmelCase_ : Tuple = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Any=0 ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__snake_case ) ).to(__snake_case ) UpperCAmelCase_ : str = image / 2 + 0.5 if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase_ : Tuple = torch.manual_seed(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase_ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Optional[Any] = StableDiffusionXLImgaImgPipeline(**__snake_case ) UpperCAmelCase_ : Dict = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : int = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : str = sd_pipe(**__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.get_dummy_components() UpperCAmelCase_ : List[str] = StableDiffusionXLImgaImgPipeline(**__snake_case ) UpperCAmelCase_ : List[str] = sd_pipe.to(__snake_case ) UpperCAmelCase_ : List[str] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) # forward without prompt embeds UpperCAmelCase_ : str = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : List[Any] = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ : str = negative_prompt UpperCAmelCase_ : Union[str, Any] = 3 * [inputs['''prompt''']] UpperCAmelCase_ : int = sd_pipe(**__snake_case ) UpperCAmelCase_ : List[Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : str = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ : str = 3 * [inputs.pop('''prompt''' )] ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Dict = sd_pipe.encode_prompt(__snake_case , negative_prompt=__snake_case ) UpperCAmelCase_ : Any = sd_pipe( **__snake_case , prompt_embeds=__snake_case , negative_prompt_embeds=__snake_case , pooled_prompt_embeds=__snake_case , negative_pooled_prompt_embeds=__snake_case , ) UpperCAmelCase_ : Tuple = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Any , __snake_case : Tuple , __snake_case : List[str]="cpu" , __snake_case : List[Any]=torch.floataa , __snake_case : Tuple=0 ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase_ : Tuple = np.random.RandomState(__snake_case ).standard_normal((1, 4, 64, 64) ) UpperCAmelCase_ : List[str] = torch.from_numpy(__snake_case ).to(device=__snake_case , dtype=__snake_case ) UpperCAmelCase_ : Dict = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Dict = self.get_inputs(__snake_case ) UpperCAmelCase_ : Dict = pipe(**__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __UpperCamelCase : Dict = 'bert-base-cased' __UpperCamelCase : Any = 'fp16' __UpperCamelCase : List[str] = 'bf16' __UpperCamelCase : Any = [FPaa, BFaa] @require_fsdp @require_cuda class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().setUp() UpperCAmelCase_ : int = dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def _lowerCamelCase ( self : int ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__snake_case ): UpperCAmelCase_ : Optional[int] = self.dist_env.copy() UpperCAmelCase_ : str = f'''{i + 1}''' UpperCAmelCase_ : Any = strategy with mockenv_context(**__snake_case ): UpperCAmelCase_ : Dict = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__snake_case ): UpperCAmelCase_ : int = self.dist_env.copy() UpperCAmelCase_ : Union[str, Any] = prefetch_policy with mockenv_context(**__snake_case ): UpperCAmelCase_ : List[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__snake_case ): UpperCAmelCase_ : Dict = self.dist_env.copy() UpperCAmelCase_ : Tuple = state_dict_type with mockenv_context(**__snake_case ): UpperCAmelCase_ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = AutoModel.from_pretrained(__snake_case ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCAmelCase_ : Optional[int] = self.dist_env.copy() UpperCAmelCase_ : Tuple = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCAmelCase_ : List[str] = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": UpperCAmelCase_ : Tuple = '''2000''' with mockenv_context(**__snake_case ): UpperCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__snake_case ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCAmelCase_ : List[Any] = self.dist_env.copy() UpperCAmelCase_ : Any = '''TRANSFORMER_BASED_WRAP''' UpperCAmelCase_ : Dict = '''T5Layer''' with mockenv_context(**__snake_case ): UpperCAmelCase_ : Dict = FullyShardedDataParallelPlugin() with self.assertRaises(__snake_case ) as cm: fsdp_plugin.set_auto_wrap_policy(__snake_case ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) UpperCAmelCase_ : Dict = self.dist_env.copy() UpperCAmelCase_ : int = '''SIZE_BASED_WRAP''' UpperCAmelCase_ : Any = '''0''' with mockenv_context(**__snake_case ): UpperCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__snake_case ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCAmelCase_ : Tuple = self.dist_env.copy() UpperCAmelCase_ : str = mp_dtype with mockenv_context(**__snake_case ): UpperCAmelCase_ : List[Any] = Accelerator() if mp_dtype == "fp16": UpperCAmelCase_ : str = torch.floataa elif mp_dtype == "bf16": UpperCAmelCase_ : Tuple = torch.bfloataa UpperCAmelCase_ : List[Any] = MixedPrecision(param_dtype=__snake_case , reduce_dtype=__snake_case , buffer_dtype=__snake_case ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __snake_case ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __snake_case ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCAmelCase_ : Tuple = self.dist_env.copy() UpperCAmelCase_ : str = str(__snake_case ).lower() with mockenv_context(**__snake_case ): UpperCAmelCase_ : List[str] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__snake_case ) ) @require_fsdp @require_multi_gpu @slow class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' super().setUp() UpperCAmelCase_ : Dict = 0.82 UpperCAmelCase_ : str = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] UpperCAmelCase_ : List[Any] = { '''multi_gpu_fp16''': 3_200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCAmelCase_ : Optional[int] = 160 UpperCAmelCase_ : str = 160 UpperCAmelCase_ : Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = os.path.join(self.test_scripts_folder , '''test_performance.py''' ) UpperCAmelCase_ : Optional[int] = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: UpperCAmelCase_ : Tuple = cmd.copy() for i, strategy in enumerate(__snake_case ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) UpperCAmelCase_ : Optional[Any] = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__snake_case ): UpperCAmelCase_ : Union[str, Any] = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue UpperCAmelCase_ : List[str] = len(__snake_case ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCAmelCase_ : List[str] = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) UpperCAmelCase_ : List[Any] = cmd_config[:-1] UpperCAmelCase_ : str = os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) UpperCAmelCase_ : int = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCAmelCase_ : Optional[Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__snake_case ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__snake_case , env=os.environ.copy() )
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCamelCase : Any = { 'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'], 'tokenization_m2m_100': ['M2M100Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST', 'M2M100ForConditionalGeneration', 'M2M100Model', 'M2M100PreTrainedModel', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger() @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : nn.Module A_ : List[nn.Module] = field(default_factory=snake_case__ ) A_ : list = field(default_factory=snake_case__ ) def _lowerCamelCase ( self : List[Any] , __snake_case : Any , __snake_case : Tensor , __snake_case : Tensor ): '''simple docstring''' UpperCAmelCase_ : Any = len(list(m.modules() ) ) == 1 or isinstance(__snake_case , nn.Convad ) or isinstance(__snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self : Union[str, Any] , __snake_case : Tensor ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : nn.Module A_ : nn.Module A_ : int = 1 A_ : List = field(default_factory=snake_case__ ) A_ : List = field(default_factory=snake_case__ ) A_ : bool = True def __call__( self : Tuple , __snake_case : Tensor ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Tracker(self.dest )(__snake_case ).parametrized UpperCAmelCase_ : Union[str, Any] = Tracker(self.src )(__snake_case ).parametrized UpperCAmelCase_ : List[Any] = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip , __snake_case ) ) UpperCAmelCase_ : int = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip , __snake_case ) ) if len(__snake_case ) != len(__snake_case ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__snake_case )} operations while''' f''' destination module has {len(__snake_case )}.''' ) for dest_m, src_m in zip(__snake_case , __snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : nn.Module ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f'''Unexpected layer name {k}''' UpperCAmelCase_ : Union[str, Any] = len(__snake_case ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) UpperCAmelCase_ : List[Any] = nn.ModuleDict(__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Tensor ): '''simple docstring''' return get_trunk_forward_outputs( __snake_case , out_feat_keys=__snake_case , feature_blocks=self._feature_blocks , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Tuple , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : str = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[Any] , __snake_case : str ): '''simple docstring''' # default to timm! if x not in self: UpperCAmelCase_ : Optional[Any] = self.convert_name_to_timm(__snake_case ) UpperCAmelCase_ : str = partial(lambda: (timm.create_model(__snake_case , pretrained=__snake_case ).eval(), None) ) else: UpperCAmelCase_ : List[Any] = super().__getitem__(__snake_case ) return val class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __getitem__( self : int , __snake_case : str ): '''simple docstring''' if "seer" in x and "in1k" not in x: UpperCAmelCase_ : List[str] = RegNetModel else: UpperCAmelCase_ : int = RegNetForImageClassification return val def snake_case_ ( __lowercase , __lowercase , __lowercase ): for from_key, to_key in keys: UpperCAmelCase_ : Dict = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ): print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : int = from_model_func() UpperCAmelCase_ : Tuple = our_model_func(__lowercase ).eval() UpperCAmelCase_ : Any = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) UpperCAmelCase_ : Union[str, Any] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowercase ) if from_state_dict is not None: UpperCAmelCase_ : List[Any] = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : Union[str, Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] UpperCAmelCase_ : Dict = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) UpperCAmelCase_ : Any = our_model(__lowercase , output_hidden_states=__lowercase ) UpperCAmelCase_ : List[Any] = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Tuple = from_model(__lowercase ) UpperCAmelCase_ : Optional[Any] = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Optional[int] = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__lowercase , ) UpperCAmelCase_ : Tuple = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one UpperCAmelCase_ : Tuple = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , ) print(F'''Pushed {name}''' ) def snake_case_ ( __lowercase , __lowercase = None , __lowercase = True ): UpperCAmelCase_ : Optional[Any] = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : int = 1_0_0_0 UpperCAmelCase_ : Union[str, Any] = (1, num_labels) UpperCAmelCase_ : str = '''huggingface/label-files''' UpperCAmelCase_ : List[Any] = num_labels UpperCAmelCase_ : Optional[int] = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase_ : Any = {int(__lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = idalabel UpperCAmelCase_ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Dict = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) UpperCAmelCase_ : Any = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } UpperCAmelCase_ : List[Any] = NameToOurModelFuncMap() UpperCAmelCase_ : Optional[int] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase , __lowercase ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : str = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location='''cpu''' ) UpperCAmelCase_ : Tuple = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Tuple = files['''classy_state_dict''']['''base_model''']['''model'''] UpperCAmelCase_ : Optional[int] = model_state_dict['''trunk'''] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Union[str, Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : str = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : int = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : List[Any] = partial( __lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __UpperCamelCase : Optional[Any] = parser.parse_args() __UpperCamelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
import string from math import logaa def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = document.translate( str.maketrans('''''' , '''''' , string.punctuation ) ).replace('''\n''' , '''''' ) UpperCAmelCase_ : Optional[Any] = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Dict = corpus.lower().translate( str.maketrans('''''' , '''''' , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCAmelCase_ : str = corpus_without_punctuation.split('''\n''' ) UpperCAmelCase_ : Optional[Any] = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowercase )) def snake_case_ ( __lowercase , __lowercase , __lowercase=False ): if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) , 3 ) def snake_case_ ( __lowercase , __lowercase ): return round(tf * idf , 3 )
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
from __future__ import annotations import math from collections.abc import Callable def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase = 1_0_0 , ): UpperCAmelCase_ : Optional[int] = x_start UpperCAmelCase_ : List[str] = fnc(__lowercase ) UpperCAmelCase_ : List[str] = 0.0 for _ in range(__lowercase ): # Approximates curve as a sequence of linear lines and sums their length UpperCAmelCase_ : List[Any] = (x_end - x_start) / steps + xa UpperCAmelCase_ : str = fnc(__lowercase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step UpperCAmelCase_ : str = xa UpperCAmelCase_ : Any = fxa return length if __name__ == "__main__": def snake_case_ ( __lowercase ): return math.sin(1_0 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') __UpperCamelCase : Optional[Any] = 10 while i <= 10_0000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
from __future__ import annotations def snake_case_ ( __lowercase ): return [ord(__lowercase ) - 9_6 for elem in plain] def snake_case_ ( __lowercase ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def snake_case_ ( ): UpperCAmelCase_ : List[Any] = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __lowercase ) print('''Decoded:''' , decode(__lowercase ) ) if __name__ == "__main__": main()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[str]=13 , __snake_case : Tuple=3 , __snake_case : List[str]=True , __snake_case : List[str]=True , __snake_case : Tuple=0.1 , __snake_case : Dict=0.1 , __snake_case : List[str]=224 , __snake_case : Union[str, Any]=1_000 , __snake_case : List[Any]=[3, 3, 6, 4] , __snake_case : Union[str, Any]=[48, 56, 112, 220] , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : Union[str, Any] = num_channels UpperCAmelCase_ : Tuple = is_training UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : List[Any] = layer_depths UpperCAmelCase_ : Union[str, Any] = embed_dims def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__snake_case , layer_scale_init_value=1E-5 , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = SwiftFormerModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _lowerCamelCase ( self : Any , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) UpperCAmelCase_ : Any = SwiftFormerForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : int ): '''simple docstring''' ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () A_ : Union[str, Any] = ( {'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification} if is_torch_available() else {} ) A_ : List[str] = False A_ : Optional[Any] = False A_ : List[Any] = False A_ : str = False A_ : int = False def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = SwiftFormerModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester( self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(__snake_case ) UpperCAmelCase_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(__snake_case ) UpperCAmelCase_ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = SwiftFormerModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''SwiftFormer does not output attentions''' ) def _lowerCamelCase ( self : Any ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' def check_hidden_states_output(__snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] ): UpperCAmelCase_ : int = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ : Union[str, Any] = outputs.hidden_states UpperCAmelCase_ : List[Any] = 8 self.assertEqual(len(__snake_case ) , __snake_case ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(__snake_case ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : List[str] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' def _config_zero_init(__snake_case : Optional[Any] ): UpperCAmelCase_ : str = copy.deepcopy(__snake_case ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(__snake_case , __snake_case , 1E-10 ) if isinstance(getattr(__snake_case , __snake_case , __snake_case ) , __snake_case ): UpperCAmelCase_ : List[Any] = _config_zero_init(getattr(__snake_case , __snake_case ) ) setattr(__snake_case , __snake_case , __snake_case ) return configs_no_init UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = model_class(config=__snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass def snake_case_ ( ): UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : int ): '''simple docstring''' return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(__snake_case ) UpperCAmelCase_ : List[str] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Any = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**__snake_case ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ : Tuple = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def snake_case_ ( __lowercase , __lowercase=0.9_9_9 , __lowercase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowercase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowercase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase_ : str = [] for i in range(__lowercase ): UpperCAmelCase_ : str = i / num_diffusion_timesteps UpperCAmelCase_ : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowercase ) / alpha_bar_fn(__lowercase ) , __lowercase ) ) return torch.tensor(__lowercase , dtype=torch.floataa ) class lowerCAmelCase__( snake_case__ , snake_case__ ): '''simple docstring''' A_ : Tuple = [e.name for e in KarrasDiffusionSchedulers] A_ : int = 2 @register_to_config def __init__( self : Any , __snake_case : int = 1_000 , __snake_case : float = 0.00_085 , __snake_case : float = 0.012 , __snake_case : str = "linear" , __snake_case : Optional[Union[np.ndarray, List[float]]] = None , __snake_case : str = "epsilon" , __snake_case : str = "linspace" , __snake_case : int = 0 , ): '''simple docstring''' if trained_betas is not None: UpperCAmelCase_ : Optional[Any] = torch.tensor(__snake_case , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ : Dict = torch.linspace(__snake_case , __snake_case , __snake_case , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ : List[str] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , __snake_case , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ : Optional[Any] = betas_for_alpha_bar(__snake_case ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCAmelCase_ : Tuple = 1.0 - self.betas UpperCAmelCase_ : int = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : Dict , __snake_case : Optional[Any] , __snake_case : List[Any]=None ): '''simple docstring''' if schedule_timesteps is None: UpperCAmelCase_ : Any = self.timesteps UpperCAmelCase_ : Optional[Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCAmelCase_ : Optional[int] = 1 if len(__snake_case ) > 1 else 0 else: UpperCAmelCase_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(__snake_case ) else timestep UpperCAmelCase_ : str = self._index_counter[timestep_int] return indices[pos].item() @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowerCamelCase ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : Union[float, torch.FloatTensor] , ): '''simple docstring''' UpperCAmelCase_ : str = self.index_for_timestep(__snake_case ) if self.state_in_first_order: UpperCAmelCase_ : str = self.sigmas[step_index] else: UpperCAmelCase_ : Optional[int] = self.sigmas_interpol[step_index] UpperCAmelCase_ : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Union[str, torch.device] = None , __snake_case : Optional[int] = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = num_inference_steps UpperCAmelCase_ : List[str] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCAmelCase_ : Tuple = np.linspace(0 , num_train_timesteps - 1 , __snake_case , dtype=__snake_case )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCAmelCase_ : Union[str, Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ : Tuple = (np.arange(0 , __snake_case ) * step_ratio).round()[::-1].copy().astype(__snake_case ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCAmelCase_ : Optional[Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ : List[str] = (np.arange(__snake_case , 0 , -step_ratio )).round().copy().astype(__snake_case ) timesteps -= 1 else: raise ValueError( f'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' ) UpperCAmelCase_ : Any = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCAmelCase_ : Dict = torch.from_numpy(np.log(__snake_case ) ).to(__snake_case ) UpperCAmelCase_ : Optional[Any] = np.interp(__snake_case , np.arange(0 , len(__snake_case ) ) , __snake_case ) UpperCAmelCase_ : Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCAmelCase_ : int = torch.from_numpy(__snake_case ).to(device=__snake_case ) # interpolate sigmas UpperCAmelCase_ : Optional[int] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() UpperCAmelCase_ : str = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCAmelCase_ : Optional[int] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(__snake_case ).startswith('''mps''' ): # mps does not support float64 UpperCAmelCase_ : Union[str, Any] = torch.from_numpy(__snake_case ).to(__snake_case , dtype=torch.floataa ) else: UpperCAmelCase_ : str = torch.from_numpy(__snake_case ).to(__snake_case ) # interpolate timesteps UpperCAmelCase_ : int = self.sigma_to_t(__snake_case ).to(__snake_case , dtype=timesteps.dtype ) UpperCAmelCase_ : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() UpperCAmelCase_ : Any = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCAmelCase_ : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCAmelCase_ : str = defaultdict(__snake_case ) def _lowerCamelCase ( self : int , __snake_case : str ): '''simple docstring''' # get log sigma UpperCAmelCase_ : Optional[Any] = sigma.log() # get distribution UpperCAmelCase_ : List[Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCAmelCase_ : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCAmelCase_ : Optional[int] = low_idx + 1 UpperCAmelCase_ : Any = self.log_sigmas[low_idx] UpperCAmelCase_ : Union[str, Any] = self.log_sigmas[high_idx] # interpolate sigmas UpperCAmelCase_ : Optional[int] = (low - log_sigma) / (low - high) UpperCAmelCase_ : Union[str, Any] = w.clamp(0 , 1 ) # transform interpolation to time range UpperCAmelCase_ : int = (1 - w) * low_idx + w * high_idx UpperCAmelCase_ : Union[str, Any] = t.view(sigma.shape ) return t @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return self.sample is None def _lowerCamelCase ( self : Any , __snake_case : Union[torch.FloatTensor, np.ndarray] , __snake_case : Union[float, torch.FloatTensor] , __snake_case : Union[torch.FloatTensor, np.ndarray] , __snake_case : bool = True , ): '''simple docstring''' UpperCAmelCase_ : Any = self.index_for_timestep(__snake_case ) # advance index counter by 1 UpperCAmelCase_ : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(__snake_case ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCAmelCase_ : Optional[Any] = self.sigmas[step_index] UpperCAmelCase_ : Optional[Any] = self.sigmas_interpol[step_index + 1] UpperCAmelCase_ : int = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCAmelCase_ : Dict = self.sigmas[step_index - 1] UpperCAmelCase_ : Dict = self.sigmas_interpol[step_index] UpperCAmelCase_ : Union[str, Any] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCAmelCase_ : List[Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase_ : Optional[int] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCAmelCase_ : List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('''prediction_type not implemented yet: sample''' ) else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCAmelCase_ : Optional[Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCAmelCase_ : List[Any] = sigma_interpol - sigma_hat # store for 2nd order step UpperCAmelCase_ : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCAmelCase_ : str = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCAmelCase_ : List[str] = sigma_next - sigma_hat UpperCAmelCase_ : Union[str, Any] = self.sample UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[str] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , ): '''simple docstring''' # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCAmelCase_ : str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(__snake_case ): # mps does not support float64 UpperCAmelCase_ : Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) UpperCAmelCase_ : Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: UpperCAmelCase_ : Tuple = self.timesteps.to(original_samples.device ) UpperCAmelCase_ : List[str] = timesteps.to(original_samples.device ) UpperCAmelCase_ : Tuple = [self.index_for_timestep(__snake_case , __snake_case ) for t in timesteps] UpperCAmelCase_ : int = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCAmelCase_ : Any = sigma.unsqueeze(-1 ) UpperCAmelCase_ : Dict = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): '''simple docstring''' return self.config.num_train_timesteps
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Tuple = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = 'rwkv' A_ : List[str] = {'max_position_embeddings': 'context_length'} def __init__( self : Union[str, Any] , __snake_case : Dict=50_277 , __snake_case : Any=1_024 , __snake_case : Optional[Any]=4_096 , __snake_case : Tuple=32 , __snake_case : Any=None , __snake_case : str=None , __snake_case : Tuple=1E-5 , __snake_case : Union[str, Any]=0 , __snake_case : List[Any]=0 , __snake_case : Optional[Any]=6 , __snake_case : str=False , __snake_case : int=True , **__snake_case : str , ): '''simple docstring''' UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Tuple = context_length UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : Optional[int] = attention_hidden_size if attention_hidden_size is not None else hidden_size UpperCAmelCase_ : int = intermediate_size if intermediate_size is not None else 4 * hidden_size UpperCAmelCase_ : List[Any] = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = rescale_every UpperCAmelCase_ : Tuple = use_cache UpperCAmelCase_ : Optional[int] = bos_token_id UpperCAmelCase_ : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __UpperCamelCase : int = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCamelCase : Optional[Any] = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n' __UpperCamelCase : Optional[Any] = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[ '''https://github.com/m-popovic/chrF''', ] , ) def _lowerCamelCase ( self : Dict , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : int = CHRF.CHAR_ORDER , __snake_case : int = CHRF.WORD_ORDER , __snake_case : int = CHRF.BETA , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , ): '''simple docstring''' UpperCAmelCase_ : str = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) UpperCAmelCase_ : Optional[int] = [[refs[i] for refs in references] for i in range(__snake_case )] UpperCAmelCase_ : Any = CHRF(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Union[str, Any] = sb_chrf.corpus_score(__snake_case , __snake_case ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration __UpperCamelCase : Tuple = 50_0000 __UpperCamelCase , __UpperCamelCase : int = os.path.split(__file__) __UpperCamelCase : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def snake_case_ ( __lowercase , **__lowercase ): UpperCAmelCase_ : Dict = dataset.map(**__lowercase ) @get_duration def snake_case_ ( __lowercase , **__lowercase ): UpperCAmelCase_ : str = dataset.filter(**__lowercase ) def snake_case_ ( ): UpperCAmelCase_ : str = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase_ : Union[str, Any] = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) UpperCAmelCase_ : str = generate_example_dataset( os.path.join(__lowercase , '''dataset.arrow''' ) , __lowercase , num_examples=__lowercase ) UpperCAmelCase_ : Optional[int] = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowercase ) def tokenize(__lowercase ): return tokenizer(examples['''text'''] ) UpperCAmelCase_ : Union[str, Any] = map(__lowercase ) UpperCAmelCase_ : Dict = map(__lowercase , batched=__lowercase ) UpperCAmelCase_ : List[Any] = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''numpy''' ): UpperCAmelCase_ : int = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''pandas''' ): UpperCAmelCase_ : List[str] = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): UpperCAmelCase_ : Optional[int] = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): UpperCAmelCase_ : Tuple = map(__lowercase , function=lambda __lowercase : None , batched=__lowercase ) UpperCAmelCase_ : Optional[Any] = map(__lowercase , function=__lowercase , batched=__lowercase ) UpperCAmelCase_ : Optional[int] = filter(__lowercase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(__lowercase , '''wb''' ) as f: f.write(json.dumps(__lowercase ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
def snake_case_ ( __lowercase ): return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Any = len(__lowercase ) # No of vertices in graph UpperCAmelCase_ : Optional[int] = [0] * n UpperCAmelCase_ : List[str] = [False] * n def dfs(__lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : int = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__lowercase , __lowercase , __lowercase , id_ ) UpperCAmelCase_ : Optional[int] = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge UpperCAmelCase_ : str = min(low[at] , low[to] ) UpperCAmelCase_ : list[tuple[int, int]] = [] for i in range(__lowercase ): if not visited[i]: dfs(__lowercase , -1 , __lowercase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
import warnings from functools import wraps from typing import Callable def snake_case_ ( __lowercase ): @wraps(__lowercase ) def _inner_fn(*__lowercase , **__lowercase ): warnings.warn( (F'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , __lowercase , ) return fn(*__lowercase , **__lowercase ) return _inner_fn
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'gpt_neox' def __init__( self : Tuple , __snake_case : Optional[int]=50_432 , __snake_case : int=6_144 , __snake_case : str=44 , __snake_case : int=64 , __snake_case : str=24_576 , __snake_case : Union[str, Any]="gelu" , __snake_case : Tuple=0.25 , __snake_case : Tuple=10_000 , __snake_case : str=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : List[Any]=0.1 , __snake_case : str=2_048 , __snake_case : List[Any]=0.02 , __snake_case : Optional[int]=1E-5 , __snake_case : str=True , __snake_case : int=0 , __snake_case : Tuple=2 , __snake_case : Tuple=False , __snake_case : Optional[int]=True , __snake_case : Tuple=None , **__snake_case : Any , ): '''simple docstring''' super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Dict = rotary_pct UpperCAmelCase_ : Optional[int] = rotary_emb_base UpperCAmelCase_ : str = attention_dropout UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : str = classifier_dropout UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : Any = use_cache UpperCAmelCase_ : str = tie_word_embeddings UpperCAmelCase_ : Dict = use_parallel_residual UpperCAmelCase_ : Any = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) UpperCAmelCase_ : int = self.rope_scaling.get('''type''' , __snake_case ) UpperCAmelCase_ : Any = self.rope_scaling.get('''factor''' , __snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__snake_case , __snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : str , __snake_case : int , __snake_case : List[str] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM UpperCAmelCase_ : str = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : float = 0.0 , __snake_case : int = 50 , __snake_case : Optional[bool] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ): '''simple docstring''' # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __snake_case ): UpperCAmelCase_ : Dict = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: UpperCAmelCase_ : List[str] = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__snake_case )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) UpperCAmelCase_ : Dict = randn_tensor(__snake_case , generator=__snake_case , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output UpperCAmelCase_ : Optional[Any] = self.unet(__snake_case , __snake_case ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step( __snake_case , __snake_case , __snake_case , eta=__snake_case , use_clipped_model_output=__snake_case , generator=__snake_case ).prev_sample UpperCAmelCase_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case )
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
from random import randint from tempfile import TemporaryFile import numpy as np def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = 0 if start < end: UpperCAmelCase_ : Union[str, Any] = randint(__lowercase , __lowercase ) UpperCAmelCase_ : List[str] = a[end] UpperCAmelCase_ : Optional[Any] = a[pivot] UpperCAmelCase_ : int = temp UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = _in_place_partition(__lowercase , __lowercase , __lowercase ) count += _in_place_quick_sort(__lowercase , __lowercase , p - 1 ) count += _in_place_quick_sort(__lowercase , p + 1 , __lowercase ) return count def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Any = randint(__lowercase , __lowercase ) UpperCAmelCase_ : List[str] = a[end] UpperCAmelCase_ : str = a[pivot] UpperCAmelCase_ : Optional[Any] = temp UpperCAmelCase_ : List[str] = start - 1 for index in range(__lowercase , __lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ : Union[str, Any] = new_pivot_index + 1 UpperCAmelCase_ : int = a[new_pivot_index] UpperCAmelCase_ : int = a[index] UpperCAmelCase_ : Tuple = temp UpperCAmelCase_ : Dict = a[new_pivot_index + 1] UpperCAmelCase_ : Any = a[end] UpperCAmelCase_ : Dict = temp return new_pivot_index + 1, count __UpperCamelCase : str = TemporaryFile() __UpperCamelCase : int = 100 # 1000 elements are to be sorted __UpperCamelCase , __UpperCamelCase : Any = 0, 1 # mean and standard deviation __UpperCamelCase : Dict = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __UpperCamelCase : Optional[int] = np.load(outfile) __UpperCamelCase : Dict = len(M) - 1 __UpperCamelCase : List[Any] = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCAmelCase__: '''simple docstring''' @staticmethod def _lowerCamelCase ( *__snake_case : Any , **__snake_case : Tuple ): '''simple docstring''' pass @is_pipeline_test @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @require_torch def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase_ : Any = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) UpperCAmelCase_ : int = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], ] , ) @require_tf def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : int = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) UpperCAmelCase_ : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase_ : int = image_classifier(__snake_case , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) UpperCAmelCase_ : str = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], [ {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, {'''score''': 0.333, '''label''': ANY(__snake_case )}, ], ] , ) @slow @require_torch def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase_ : Any = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) UpperCAmelCase_ : int = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCAmelCase_ : List[Any] = image_classifier(__snake_case , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) UpperCAmelCase_ : Tuple = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Any = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.dummy_uncond_unet UpperCAmelCase_ : Optional[int] = ScoreSdeVeScheduler() UpperCAmelCase_ : str = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case ) sde_ve.to(__snake_case ) sde_ve.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : str = torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case ).images UpperCAmelCase_ : str = torch.manual_seed(0 ) UpperCAmelCase_ : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__snake_case , return_dict=__snake_case )[ 0 ] UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ : Any = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''google/ncsnpp-church-256''' UpperCAmelCase_ : Dict = UNetaDModel.from_pretrained(__snake_case ) UpperCAmelCase_ : List[Any] = ScoreSdeVeScheduler.from_pretrained(__snake_case ) UpperCAmelCase_ : Optional[int] = ScoreSdeVePipeline(unet=__snake_case , scheduler=__snake_case ) sde_ve.to(__snake_case ) sde_ve.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = torch.manual_seed(0 ) UpperCAmelCase_ : Tuple = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__snake_case ).images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
import math import os import sys def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = '''''' try: with open(__lowercase , '''rb''' ) as binary_file: UpperCAmelCase_ : List[str] = binary_file.read() for dat in data: UpperCAmelCase_ : Any = F'''{dat:08b}''' result += curr_byte return result except OSError: print('''File not accessible''' ) sys.exit() def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): lexicon.pop(__lowercase ) UpperCAmelCase_ : str = last_match_id if math.loga(__lowercase ).is_integer(): for curr_key in lexicon: UpperCAmelCase_ : str = '''0''' + lexicon[curr_key] UpperCAmelCase_ : Any = bin(__lowercase )[2:] def snake_case_ ( __lowercase ): UpperCAmelCase_ : Dict = {'''0''': '''0''', '''1''': '''1'''} UpperCAmelCase_ , UpperCAmelCase_ : str = '''''', '''''' UpperCAmelCase_ : int = len(__lowercase ) for i in range(len(__lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCAmelCase_ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowercase , __lowercase , __lowercase , __lowercase ) index += 1 UpperCAmelCase_ : Optional[Any] = '''''' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": UpperCAmelCase_ : Dict = lexicon[curr_string] result += last_match_id return result def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = os.path.getsize(__lowercase ) UpperCAmelCase_ : Any = bin(__lowercase )[2:] UpperCAmelCase_ : Union[str, Any] = len(__lowercase ) return "0" * (length_length - 1) + file_length_binary + compressed def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 8 try: with open(__lowercase , '''wb''' ) as opened_file: UpperCAmelCase_ : Optional[int] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowercase ) , __lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('''10000000''' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowercase , 2 ).to_bytes(1 , byteorder='''big''' ) ) except OSError: print('''File not accessible''' ) sys.exit() def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Dict = read_file_binary(__lowercase ) UpperCAmelCase_ : Tuple = compress_data(__lowercase ) UpperCAmelCase_ : int = add_file_length(__lowercase , __lowercase ) write_file_binary(__lowercase , __lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def snake_case_ ( __lowercase ): return (data["data"], data["target"]) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = XGBRegressor(verbosity=0 , random_state=4_2 ) xgb.fit(__lowercase , __lowercase ) # Predict target for test data UpperCAmelCase_ : List[Any] = xgb.predict(__lowercase ) UpperCAmelCase_ : List[Any] = predictions.reshape(len(__lowercase ) , 1 ) return predictions def snake_case_ ( ): UpperCAmelCase_ : str = fetch_california_housing() UpperCAmelCase_ , UpperCAmelCase_ : List[str] = data_handling(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = train_test_split( __lowercase , __lowercase , test_size=0.2_5 , random_state=1 ) UpperCAmelCase_ : Tuple = xgboost(__lowercase , __lowercase , __lowercase ) # Error printing print(F'''Mean Absolute Error : {mean_absolute_error(__lowercase , __lowercase )}''' ) print(F'''Mean Square Error : {mean_squared_error(__lowercase , __lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Dict = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Optional[Any] = {'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['ViTFeatureExtractor'] __UpperCamelCase : int = ['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __UpperCamelCase : Optional[int] = datasets.utils.logging.get_logger(__name__) @dataclass class lowerCAmelCase__( datasets.BuilderConfig ): '''simple docstring''' A_ : Optional[datasets.Features] = None A_ : str = "utf-8" A_ : Optional[str] = None A_ : Optional[str] = None A_ : bool = True # deprecated A_ : Optional[int] = None # deprecated A_ : int = 1_0 << 2_0 # 10MB A_ : Optional[bool] = None class lowerCAmelCase__( datasets.ArrowBasedBuilder ): '''simple docstring''' A_ : Optional[int] = JsonConfig def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) UpperCAmelCase_ : Any = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self : Tuple , __snake_case : str ): '''simple docstring''' if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCAmelCase_ : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__snake_case , (str, list, tuple) ): UpperCAmelCase_ : Optional[Any] = data_files if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Any = [files] UpperCAmelCase_ : Any = [dl_manager.iter_files(__snake_case ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] UpperCAmelCase_ : Optional[int] = [] for split_name, files in data_files.items(): if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : int = [files] UpperCAmelCase_ : Optional[Any] = [dl_manager.iter_files(__snake_case ) for file in files] splits.append(datasets.SplitGenerator(name=__snake_case , gen_kwargs={'''files''': files} ) ) return splits def _lowerCamelCase ( self : Optional[int] , __snake_case : pa.Table ): '''simple docstring''' if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCAmelCase_ : Any = self.config.features.arrow_schema.field(__snake_case ).type UpperCAmelCase_ : Optional[int] = pa_table.append_column(__snake_case , pa.array([None] * len(__snake_case ) , type=__snake_case ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase_ : Union[str, Any] = table_cast(__snake_case , self.config.features.arrow_schema ) return pa_table def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] ): '''simple docstring''' for file_idx, file in enumerate(itertools.chain.from_iterable(__snake_case ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : Optional[Any] = json.load(__snake_case ) # We keep only the field we are interested in UpperCAmelCase_ : List[Any] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__snake_case , (list, tuple) ): UpperCAmelCase_ : Optional[Any] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : int = {col: [row.get(__snake_case ) for row in dataset] for col in keys} else: UpperCAmelCase_ : List[Any] = dataset UpperCAmelCase_ : Any = pa.Table.from_pydict(__snake_case ) yield file_idx, self._cast_table(__snake_case ) # If the file has one json object per line else: with open(__snake_case , '''rb''' ) as f: UpperCAmelCase_ : Dict = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCAmelCase_ : int = max(self.config.chunksize // 32 , 16 << 10 ) UpperCAmelCase_ : int = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: UpperCAmelCase_ : List[Any] = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__snake_case ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCAmelCase_ : Dict = batch.decode(self.config.encoding , errors=__snake_case ).encode('''utf-8''' ) try: while True: try: UpperCAmelCase_ : Optional[int] = paj.read_json( io.BytesIO(__snake_case ) , read_options=paj.ReadOptions(block_size=__snake_case ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__snake_case , pa.ArrowInvalid ) and "straddling" not in str(__snake_case ) or block_size > len(__snake_case ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(__snake_case )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __snake_case , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCAmelCase_ : Union[str, Any] = json.load(__snake_case ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__snake_case , __snake_case ): # list is the only sequence type supported in JSON try: UpperCAmelCase_ : Union[str, Any] = set().union(*[row.keys() for row in dataset] ) UpperCAmelCase_ : List[Any] = {col: [row.get(__snake_case ) for row in dataset] for col in keys} UpperCAmelCase_ : Any = pa.Table.from_pydict(__snake_case ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(__snake_case ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(__snake_case )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__snake_case ) batch_idx += 1
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = 'facebook/bart-large-mnli' A_ : List[Any] = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) A_ : Optional[Any] = 'text_classifier' A_ : Dict = AutoTokenizer A_ : int = AutoModelForSequenceClassification A_ : List[str] = ['text', ['text']] A_ : Tuple = ['text'] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().setup() UpperCAmelCase_ : Tuple = self.model.config UpperCAmelCase_ : Optional[int] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): UpperCAmelCase_ : List[str] = int(__snake_case ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = labels return self.pre_processor( [text] * len(__snake_case ) , [f'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def _lowerCamelCase ( self : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = outputs.logits UpperCAmelCase_ : int = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ['BartphoTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
def snake_case_ ( __lowercase = 5_0 ): UpperCAmelCase_ : Optional[int] = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'{solution() = }')
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'donut-swin' A_ : Optional[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : Optional[int] , __snake_case : str=224 , __snake_case : Optional[int]=4 , __snake_case : Optional[int]=3 , __snake_case : Optional[Any]=96 , __snake_case : Optional[Any]=[2, 2, 6, 2] , __snake_case : int=[3, 6, 12, 24] , __snake_case : int=7 , __snake_case : Union[str, Any]=4.0 , __snake_case : int=True , __snake_case : int=0.0 , __snake_case : List[Any]=0.0 , __snake_case : List[Any]=0.1 , __snake_case : List[str]="gelu" , __snake_case : int=False , __snake_case : Optional[int]=0.02 , __snake_case : int=1E-5 , **__snake_case : Union[str, Any] , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[Any] = image_size UpperCAmelCase_ : Dict = patch_size UpperCAmelCase_ : Optional[Any] = num_channels UpperCAmelCase_ : Union[str, Any] = embed_dim UpperCAmelCase_ : Any = depths UpperCAmelCase_ : Union[str, Any] = len(__snake_case ) UpperCAmelCase_ : Union[str, Any] = num_heads UpperCAmelCase_ : List[str] = window_size UpperCAmelCase_ : Dict = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Tuple = attention_probs_dropout_prob UpperCAmelCase_ : Dict = drop_path_rate UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Union[str, Any] = use_absolute_embeddings UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : Tuple = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : int = int(embed_dim * 2 ** (len(__snake_case ) - 1) )
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __UpperCamelCase : Optional[Any] = False @skip_mps class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : str = StableDiffusionAttendAndExcitePipeline A_ : Optional[Any] = False A_ : List[str] = TEXT_TO_IMAGE_PARAMS A_ : Dict = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) A_ : Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS A_ : int = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def _lowerCamelCase ( cls : str ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def _lowerCamelCase ( cls : int ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) UpperCAmelCase_ : Dict = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) UpperCAmelCase_ : Optional[Any] = CLIPTextModel(__snake_case ) UpperCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase_ : List[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=0 ): '''simple docstring''' if str(__snake_case ).startswith('''mps''' ): UpperCAmelCase_ : int = torch.manual_seed(__snake_case ) else: UpperCAmelCase_ : Optional[int] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) UpperCAmelCase_ : str = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = '''cpu''' UpperCAmelCase_ : List[Any] = self.get_dummy_components() UpperCAmelCase_ : Dict = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs(__snake_case ) UpperCAmelCase_ : Any = pipe(**__snake_case ).images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) UpperCAmelCase_ : List[Any] = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) UpperCAmelCase_ : Any = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1E-3 ) def _lowerCamelCase ( self : Any ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : int ): '''simple docstring''' # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_save_load_local(expected_max_difference=5E-4 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @classmethod def _lowerCamelCase ( cls : Optional[Any] ): '''simple docstring''' super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def _lowerCamelCase ( cls : Any ): '''simple docstring''' super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.manual_seed(51 ) UpperCAmelCase_ : Dict = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) UpperCAmelCase_ : Tuple = '''a painting of an elephant with glasses''' UpperCAmelCase_ : Any = [5, 7] UpperCAmelCase_ : Optional[Any] = pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] UpperCAmelCase_ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__( snake_case__ , snake_case__ ): '''simple docstring''' @register_to_config def __init__( self : int , __snake_case : bool , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCAmelCase_ : str = torch.zeros(__snake_case , __snake_case ) else: UpperCAmelCase_ : Any = None UpperCAmelCase_ : Dict = torch.nn.Parameter(__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : VQModel A_ : CLIPTextModel A_ : CLIPTokenizer A_ : TransformeraDModel A_ : LearnedClassifierFreeSamplingEmbeddings A_ : VQDiffusionScheduler def __init__( self : str , __snake_case : VQModel , __snake_case : CLIPTextModel , __snake_case : CLIPTokenizer , __snake_case : TransformeraDModel , __snake_case : VQDiffusionScheduler , __snake_case : LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def _lowerCamelCase ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings UpperCAmelCase_ : Union[str, Any] = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase_ : Any = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase_ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] UpperCAmelCase_ : Optional[int] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCAmelCase_ : Optional[Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : List[Any] = prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCAmelCase_ : List[str] = self.learned_classifier_free_sampling_embeddings.embeddings UpperCAmelCase_ : Optional[int] = negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: UpperCAmelCase_ : int = [''''''] * batch_size UpperCAmelCase_ : Dict = text_input_ids.shape[-1] UpperCAmelCase_ : Dict = self.tokenizer( __snake_case , padding='''max_length''' , max_length=__snake_case , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ : int = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCAmelCase_ : Any = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : Dict = negative_prompt_embeds.shape[1] UpperCAmelCase_ : Union[str, Any] = negative_prompt_embeds.repeat(1 , __snake_case , 1 ) UpperCAmelCase_ : Optional[int] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , __snake_case : Union[str, List[str]] , __snake_case : int = 100 , __snake_case : float = 5.0 , __snake_case : float = 1.0 , __snake_case : int = 1 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[torch.FloatTensor] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case : int = 1 , ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Union[str, Any] = 1 elif isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[int] = len(__snake_case ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__snake_case )}''' ) UpperCAmelCase_ : Dict = batch_size * num_images_per_prompt UpperCAmelCase_ : str = guidance_scale > 1.0 UpperCAmelCase_ : str = self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__snake_case )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCAmelCase_ : Tuple = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCAmelCase_ : List[str] = self.transformer.num_vector_embeds - 1 UpperCAmelCase_ : Tuple = torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( '''Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,''' f''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCAmelCase_ : Optional[int] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) UpperCAmelCase_ : str = self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ : Tuple = latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance UpperCAmelCase_ : List[str] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCAmelCase_ : Optional[int] = self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model_output.chunk(2 ) UpperCAmelCase_ : Optional[int] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) UpperCAmelCase_ : List[Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Dict = self.vqvae.config.vq_embed_dim UpperCAmelCase_ : Any = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCAmelCase_ : str = self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample UpperCAmelCase_ : Union[str, Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def _lowerCamelCase ( self : str , __snake_case : torch.FloatTensor , __snake_case : float ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.sort(__snake_case , 1 , descending=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.exp(__snake_case ) UpperCAmelCase_ : Tuple = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCAmelCase_ : Any = torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) UpperCAmelCase_ : Union[str, Any] = torch.cat((all_true, keep_mask) , dim=1 ) UpperCAmelCase_ : str = keep_mask[:, :-1, :] UpperCAmelCase_ : List[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCAmelCase_ : Optional[Any] = log_p_x_0.clone() UpperCAmelCase_ : Any = -torch.inf # -inf = log(0) return rv
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
__UpperCamelCase : int = [sum(int(c, 10) ** 2 for c in i.__str__()) for i in range(10_0000)] def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 1_0_0_0_0_0] number //= 1_0_0_0_0_0 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution __UpperCamelCase : list[bool | None] = [None] * 1000_0000 __UpperCamelCase : int = True __UpperCamelCase : List[Any] = False def snake_case_ ( __lowercase ): if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore UpperCAmelCase_ : Union[str, Any] = chain(next_number(__lowercase ) ) UpperCAmelCase_ : Tuple = number_chain while number < 1_0_0_0_0_0_0_0: UpperCAmelCase_ : List[Any] = number_chain number *= 1_0 return number_chain def snake_case_ ( __lowercase = 1_0_0_0_0_0_0_0 ): for i in range(1 , __lowercase ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__lowercase ) if __name__ == "__main__": import doctest doctest.testmod() print(F'{solution() = }')
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = int(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=3_0_0 ): # docstyle-ignore return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = '''<table border="1" class="dataframe">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase_ : Tuple = F'''{elt:.6f}''' if isinstance(__lowercase , __lowercase ) else str(__lowercase ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class lowerCAmelCase__: '''simple docstring''' A_ : int = 5 A_ : List[Any] = 0.2 def __init__( self : List[str] , __snake_case : int , __snake_case : Optional[str] = None , __snake_case : bool = True , __snake_case : Optional["NotebookTrainingTracker"] = None , __snake_case : int = 300 , ): '''simple docstring''' UpperCAmelCase_ : Any = total UpperCAmelCase_ : Union[str, Any] = '''''' if prefix is None else prefix UpperCAmelCase_ : str = leave UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : List[Any] = width UpperCAmelCase_ : str = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Any = None def _lowerCamelCase ( self : Optional[int] , __snake_case : int , __snake_case : bool = False , __snake_case : str = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = value if comment is not None: UpperCAmelCase_ : int = comment if self.last_value is None: UpperCAmelCase_ : int = time.time() UpperCAmelCase_ : Optional[int] = value UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = self.warmup UpperCAmelCase_ : List[Any] = 1 self.update_bar(__snake_case ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase_ : Union[str, Any] = time.time() UpperCAmelCase_ : List[str] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase_ : int = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase_ : Optional[int] = None if value >= self.total: UpperCAmelCase_ : Optional[int] = self.total UpperCAmelCase_ : str = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase_ : Any = self.average_time_per_item * (self.total - value) self.update_bar(__snake_case ) UpperCAmelCase_ : List[str] = value UpperCAmelCase_ : Tuple = current_time if self.average_time_per_item is None: UpperCAmelCase_ : Dict = 1 else: UpperCAmelCase_ : int = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowerCamelCase ( self : Tuple , __snake_case : List[Any] , __snake_case : List[str]=None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ''' ''' * (len(str(self.total ) ) - len(str(__snake_case ) )) + str(__snake_case ) if self.elapsed_time is None: UpperCAmelCase_ : int = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: UpperCAmelCase_ : Optional[Any] = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: UpperCAmelCase_ : Tuple = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase_ : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any]=None ): '''simple docstring''' super().__init__(__snake_case ) UpperCAmelCase_ : Tuple = None if column_names is None else [column_names] UpperCAmelCase_ : Dict = None def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase_ : Dict = disp.display(disp.HTML(self.html_code ) , display_id=__snake_case ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Optional[int] ): '''simple docstring''' if self.inner_table is None: UpperCAmelCase_ : List[Any] = [list(values.keys() ), list(values.values() )] else: UpperCAmelCase_ : Union[str, Any] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__snake_case ) UpperCAmelCase_ : Union[str, Any] = columns self.inner_table.append([values[c] for c in columns] ) def _lowerCamelCase ( self : Dict , __snake_case : Dict , __snake_case : Any=None , __snake_case : List[str]=300 ): '''simple docstring''' UpperCAmelCase_ : str = NotebookProgressBar(__snake_case , prefix=__snake_case , parent=self , width=__snake_case ) return self.child_bar def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = None self.display() class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = False def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Any , __snake_case : str , **__snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) UpperCAmelCase_ : Any = NotebookTrainingTracker(state.max_steps , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , **__snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) UpperCAmelCase_ : str = False def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : int , __snake_case : int , __snake_case : Dict=None , **__snake_case : int ): '''simple docstring''' if not has_length(__snake_case ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase_ : List[Any] = self.training_tracker.add_child(len(__snake_case ) ) else: UpperCAmelCase_ : List[str] = NotebookProgressBar(len(__snake_case ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase_ : List[str] = None def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Union[str, Any]=None , **__snake_case : Dict ): '''simple docstring''' # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase_ : Union[str, Any] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase_ : str = state.global_step self.training_tracker.write_line(__snake_case ) def _lowerCamelCase ( self : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : int=None , **__snake_case : int ): '''simple docstring''' if self.training_tracker is not None: UpperCAmelCase_ : List[Any] = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase_ : Dict = log['''loss'''] break if self.first_column == "Epoch": UpperCAmelCase_ : Dict = int(state.epoch ) else: UpperCAmelCase_ : Dict = state.global_step UpperCAmelCase_ : Dict = '''eval''' for k in metrics: if k.endswith('''_loss''' ): UpperCAmelCase_ : Optional[Any] = re.sub(R'''\_loss$''' , '''''' , __snake_case ) UpperCAmelCase_ : Union[str, Any] = metrics.pop('''total_flos''' , __snake_case ) UpperCAmelCase_ : str = metrics.pop('''epoch''' , __snake_case ) UpperCAmelCase_ : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , __snake_case ) UpperCAmelCase_ : int = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , __snake_case ) UpperCAmelCase_ : int = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , __snake_case ) UpperCAmelCase_ : Optional[int] = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , __snake_case ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Optional[Any] = k.split('''_''' ) UpperCAmelCase_ : Optional[Any] = ''' '''.join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase_ : Optional[Any] = v self.training_tracker.write_line(__snake_case ) self.training_tracker.remove_child() UpperCAmelCase_ : Tuple = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase_ : Any = True def _lowerCamelCase ( self : str , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Tuple , **__snake_case : str ): '''simple docstring''' self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=__snake_case ) UpperCAmelCase_ : List[str] = None
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __UpperCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = R'''\w+[.]\d+''' UpperCAmelCase_ : Optional[int] = re.findall(__lowercase , __lowercase ) for pat in pats: UpperCAmelCase_ : Tuple = key.replace(__lowercase , '''_'''.join(pat.split('''.''' ) ) ) return key def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase_ : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase_ : int = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase_ : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase_ : Tuple = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase_ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase_ : Union[str, Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase_ : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def snake_case_ ( __lowercase , __lowercase , __lowercase=4_2 ): # Step 1: Convert pytorch tensor to numpy UpperCAmelCase_ : str = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase_ : Dict = flax_model.init_weights(PRNGKey(__lowercase ) ) UpperCAmelCase_ : Optional[int] = flatten_dict(__lowercase ) UpperCAmelCase_ : Tuple = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase_ : Any = rename_key(__lowercase ) UpperCAmelCase_ : int = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = rename_key_and_reshape_tensor(__lowercase , __lowercase , __lowercase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown UpperCAmelCase_ : str = jnp.asarray(__lowercase ) return unflatten_dict(__lowercase )
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : str = { 'snap-research/efficientformer-l1-300': ( 'https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json' ), } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[Any] = 'efficientformer' def __init__( self : Any , __snake_case : List[int] = [3, 2, 6, 4] , __snake_case : List[int] = [48, 96, 224, 448] , __snake_case : List[bool] = [True, True, True, True] , __snake_case : int = 448 , __snake_case : int = 32 , __snake_case : int = 4 , __snake_case : int = 7 , __snake_case : int = 5 , __snake_case : int = 8 , __snake_case : int = 4 , __snake_case : float = 0.0 , __snake_case : int = 16 , __snake_case : int = 3 , __snake_case : int = 3 , __snake_case : int = 3 , __snake_case : int = 2 , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 1 , __snake_case : bool = True , __snake_case : bool = True , __snake_case : float = 1E-5 , __snake_case : str = "gelu" , __snake_case : float = 0.02 , __snake_case : float = 1E-12 , __snake_case : int = 224 , __snake_case : float = 1E-05 , **__snake_case : str , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : Dict = hidden_sizes UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : Union[str, Any] = patch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : List[str] = depths UpperCAmelCase_ : Any = mlp_expansion_ratio UpperCAmelCase_ : Tuple = downsamples UpperCAmelCase_ : Any = dim UpperCAmelCase_ : Dict = key_dim UpperCAmelCase_ : str = attention_ratio UpperCAmelCase_ : int = resolution UpperCAmelCase_ : Optional[Any] = pool_size UpperCAmelCase_ : str = downsample_patch_size UpperCAmelCase_ : Optional[int] = downsample_stride UpperCAmelCase_ : List[str] = downsample_pad UpperCAmelCase_ : Tuple = drop_path_rate UpperCAmelCase_ : Any = num_metaad_blocks UpperCAmelCase_ : str = distillation UpperCAmelCase_ : Dict = use_layer_scale UpperCAmelCase_ : str = layer_scale_init_value UpperCAmelCase_ : int = image_size UpperCAmelCase_ : Tuple = batch_norm_eps
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Any = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _lowerCamelCase ( self : Dict , __snake_case : Dict , __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) UpperCAmelCase_ : Tuple = VideoClassificationPipeline(model=__snake_case , image_processor=__snake_case , top_k=2 ) UpperCAmelCase_ : Tuple = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' for example in examples: UpperCAmelCase_ : int = video_classifier(__snake_case ) self.assertEqual( __snake_case , [ {'''score''': ANY(__snake_case ), '''label''': ANY(__snake_case )}, {'''score''': ANY(__snake_case ), '''label''': ANY(__snake_case )}, ] , ) @require_torch def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' UpperCAmelCase_ : Optional[int] = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) UpperCAmelCase_ : Any = pipeline( '''video-classification''' , model=__snake_case , feature_extractor=__snake_case , frame_sampling_rate=4 ) UpperCAmelCase_ : Tuple = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) UpperCAmelCase_ : Tuple = video_classifier(__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}] , ) UpperCAmelCase_ : Union[str, Any] = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5_199, '''label''': '''LABEL_0'''}, {'''score''': 0.4_801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' pass
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCAmelCase__: '''simple docstring''' def __init__( self : str , __snake_case : str=2 , __snake_case : Any=3 , __snake_case : Optional[Any]=64 , __snake_case : List[Any]=None ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.random.default_rng(__snake_case ) UpperCAmelCase_ : str = length UpperCAmelCase_ : Union[str, Any] = rng.normal(size=(length,) ).astype(np.floataa ) UpperCAmelCase_ : int = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Tuple ): '''simple docstring''' return self.length def __getitem__( self : List[Any] , __snake_case : List[str] ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class lowerCAmelCase__( torch.nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : List[Any]=0 , __snake_case : Union[str, Any]=0 , __snake_case : str=False ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Optional[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) UpperCAmelCase_ : List[Any] = True def _lowerCamelCase ( self : List[Any] , __snake_case : Any=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : Any = False return x * self.a[0] + self.b[0] class lowerCAmelCase__( torch.nn.Module ): '''simple docstring''' def __init__( self : Dict , __snake_case : List[str]=0 , __snake_case : Optional[int]=0 , __snake_case : Union[str, Any]=False ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Optional[int] = torch.nn.Parameter(torch.tensor(__snake_case ).float() ) UpperCAmelCase_ : Dict = torch.nn.Parameter(torch.tensor(__snake_case ).float() ) UpperCAmelCase_ : List[str] = True def _lowerCamelCase ( self : Any , __snake_case : str=None ): '''simple docstring''' if self.first_batch: print(f'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) UpperCAmelCase_ : int = False return x * self.a + self.b def snake_case_ ( __lowercase , __lowercase = 1_6 ): from datasets import load_dataset from transformers import AutoTokenizer UpperCAmelCase_ : str = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Dict = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} UpperCAmelCase_ : Optional[Any] = load_dataset('''csv''' , data_files=__lowercase ) UpperCAmelCase_ : Optional[int] = datasets['''train'''].unique('''label''' ) UpperCAmelCase_ : str = {v: i for i, v in enumerate(__lowercase )} def tokenize_function(__lowercase ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase_ : Optional[Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase , padding='''max_length''' ) if "label" in examples: UpperCAmelCase_ : int = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase_ : int = datasets.map( __lowercase , batched=__lowercase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCAmelCase_ : Tuple = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=2 ) UpperCAmelCase_ : Dict = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1 ) return train_dataloader, eval_dataloader
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = 3_8_4 if "tiny" in model_name: UpperCAmelCase_ : Any = [3, 3, 9, 3] UpperCAmelCase_ : Union[str, Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: UpperCAmelCase_ : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase_ : Dict = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: UpperCAmelCase_ : List[str] = [3, 3, 2_7, 3] UpperCAmelCase_ : Optional[Any] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] UpperCAmelCase_ : Any = 5_1_2 if "large" in model_name: UpperCAmelCase_ : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase_ : Dict = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] UpperCAmelCase_ : int = 7_6_8 if "xlarge" in model_name: UpperCAmelCase_ : Any = [3, 3, 2_7, 3] UpperCAmelCase_ : int = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] UpperCAmelCase_ : Optional[int] = 1_0_2_4 # set label information UpperCAmelCase_ : Dict = 1_5_0 UpperCAmelCase_ : Any = '''huggingface/label-files''' UpperCAmelCase_ : Tuple = '''ade20k-id2label.json''' UpperCAmelCase_ : Optional[int] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[str] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : int = ConvNextConfig( depths=__lowercase , hidden_sizes=__lowercase , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase_ : List[Any] = UperNetConfig( backbone_config=__lowercase , auxiliary_in_channels=__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase , ) return config def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = dct.pop(__lowercase ) UpperCAmelCase_ : List[Any] = val def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : str = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } UpperCAmelCase_ : List[str] = model_name_to_url[model_name] UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ : Optional[Any] = get_upernet_config(__lowercase ) UpperCAmelCase_ : List[Any] = UperNetForSemanticSegmentation(__lowercase ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ : str = state_dict.pop(__lowercase ) if "bn" in key: UpperCAmelCase_ : Tuple = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ : Optional[int] = val # rename keys UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) model.load_state_dict(__lowercase ) # verify on image UpperCAmelCase_ : Optional[int] = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' UpperCAmelCase_ : Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) UpperCAmelCase_ : List[Any] = SegformerImageProcessor() UpperCAmelCase_ : int = processor(__lowercase , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ : Tuple = model(__lowercase ) if model_name == "upernet-convnext-tiny": UpperCAmelCase_ : Optional[Any] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase_ : List[Any] = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase_ : Dict = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase_ : Any = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __lowercase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__lowercase ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Any = ['sentencepiece'] def __init__( self : List[Any] , *__snake_case : str , **__snake_case : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Dict = ['sentencepiece'] def __init__( self : str , *__snake_case : int , **__snake_case : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Dict = ['sentencepiece'] def __init__( self : int , *__snake_case : int , **__snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Any = ['sentencepiece'] def __init__( self : str , *__snake_case : Optional[Any] , **__snake_case : Tuple ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : List[Any] = ['sentencepiece'] def __init__( self : List[str] , *__snake_case : List[str] , **__snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : List[str] = ['sentencepiece'] def __init__( self : List[str] , *__snake_case : List[str] , **__snake_case : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Optional[int] = ['sentencepiece'] def __init__( self : Optional[Any] , *__snake_case : Any , **__snake_case : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : List[str] = ['sentencepiece'] def __init__( self : Tuple , *__snake_case : Union[str, Any] , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Dict = ['sentencepiece'] def __init__( self : Union[str, Any] , *__snake_case : str , **__snake_case : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : str = ['sentencepiece'] def __init__( self : Union[str, Any] , *__snake_case : Any , **__snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Optional[int] = ['sentencepiece'] def __init__( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : int = ['sentencepiece'] def __init__( self : Optional[int] , *__snake_case : str , **__snake_case : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Tuple = ['sentencepiece'] def __init__( self : Union[str, Any] , *__snake_case : List[Any] , **__snake_case : Tuple ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : str = ['sentencepiece'] def __init__( self : Tuple , *__snake_case : Any , **__snake_case : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : int = ['sentencepiece'] def __init__( self : Any , *__snake_case : int , **__snake_case : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : int = ['sentencepiece'] def __init__( self : str , *__snake_case : Optional[Any] , **__snake_case : Tuple ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Tuple = ['sentencepiece'] def __init__( self : str , *__snake_case : Any , **__snake_case : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Dict = ['sentencepiece'] def __init__( self : str , *__snake_case : int , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Optional[int] = ['sentencepiece'] def __init__( self : str , *__snake_case : Tuple , **__snake_case : str ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Tuple = ['sentencepiece'] def __init__( self : List[Any] , *__snake_case : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : str = ['sentencepiece'] def __init__( self : Any , *__snake_case : List[Any] , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Dict = ['sentencepiece'] def __init__( self : List[str] , *__snake_case : List[Any] , **__snake_case : Any ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : str = ['sentencepiece'] def __init__( self : List[str] , *__snake_case : Optional[int] , **__snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Optional[int] = ['sentencepiece'] def __init__( self : Any , *__snake_case : int , **__snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Optional[int] = ['sentencepiece'] def __init__( self : str , *__snake_case : str , **__snake_case : List[str] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : int = ['sentencepiece'] def __init__( self : str , *__snake_case : Union[str, Any] , **__snake_case : Dict ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : List[Any] = ['sentencepiece'] def __init__( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : int ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Any = ['sentencepiece'] def __init__( self : Union[str, Any] , *__snake_case : Tuple , **__snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : Dict = ['sentencepiece'] def __init__( self : Optional[int] , *__snake_case : Any , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : List[str] = ['sentencepiece'] def __init__( self : Tuple , *__snake_case : Dict , **__snake_case : List[Any] ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] ) class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : str = ['sentencepiece'] def __init__( self : List[Any] , *__snake_case : Union[str, Any] , **__snake_case : Any ): '''simple docstring''' requires_backends(self , ['''sentencepiece'''] )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : Any = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : List[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __UpperCamelCase : List[Any] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } __UpperCamelCase : List[Any] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } __UpperCamelCase : Dict = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } __UpperCamelCase : List[str] = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } __UpperCamelCase : Union[str, Any] = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } __UpperCamelCase : Optional[int] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } __UpperCamelCase : Dict = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } __UpperCamelCase : str = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Dict = VOCAB_FILES_NAMES A_ : str = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A_ : List[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Any = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = VOCAB_FILES_NAMES A_ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A_ : Any = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Tuple = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION __UpperCamelCase : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) __UpperCamelCase : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) __UpperCamelCase : List[str] = R'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__: '''simple docstring''' def __call__( self : str , __snake_case : Tuple , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Union[bool, str] = False , __snake_case : Union[bool, str] = False , __snake_case : Optional[int] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[bool] = None , **__snake_case : Optional[int] , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( __snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , return_tensors=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) elif titles is None or texts is None: UpperCAmelCase_ : int = titles if texts is None else texts return super().__call__( __snake_case , __snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , return_tensors=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) UpperCAmelCase_ : Dict = titles if not isinstance(__snake_case , __snake_case ) else [titles] UpperCAmelCase_ : Optional[Any] = texts if not isinstance(__snake_case , __snake_case ) else [texts] UpperCAmelCase_ : Optional[Any] = len(__snake_case ) UpperCAmelCase_ : Union[str, Any] = questions if not isinstance(__snake_case , __snake_case ) else [questions] * n_passages if len(__snake_case ) != len(__snake_case ): raise ValueError( f'''There should be as many titles than texts but got {len(__snake_case )} titles and {len(__snake_case )} texts.''' ) UpperCAmelCase_ : List[str] = super().__call__(__snake_case , __snake_case , padding=__snake_case , truncation=__snake_case )['''input_ids'''] UpperCAmelCase_ : str = super().__call__(__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case )['''input_ids'''] UpperCAmelCase_ : Optional[Any] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(__snake_case , __snake_case ) ] } if return_attention_mask is not False: UpperCAmelCase_ : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCAmelCase_ : Dict = attention_mask return self.pad(__snake_case , padding=__snake_case , max_length=__snake_case , return_tensors=__snake_case ) def _lowerCamelCase ( self : str , __snake_case : BatchEncoding , __snake_case : DPRReaderOutput , __snake_case : int = 16 , __snake_case : int = 64 , __snake_case : int = 4 , ): '''simple docstring''' UpperCAmelCase_ : List[str] = reader_input['''input_ids'''] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = reader_output[:3] UpperCAmelCase_ : Optional[int] = len(__snake_case ) UpperCAmelCase_ : str = sorted(range(__snake_case ) , reverse=__snake_case , key=relevance_logits.__getitem__ ) UpperCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: UpperCAmelCase_ : List[str] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCAmelCase_ : List[Any] = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCAmelCase_ : List[str] = sequence_ids.index(self.pad_token_id ) else: UpperCAmelCase_ : Dict = len(__snake_case ) UpperCAmelCase_ : str = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=__snake_case , top_spans=__snake_case , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=__snake_case , start_index=__snake_case , end_index=__snake_case , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(__snake_case ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowerCamelCase ( self : Tuple , __snake_case : List[int] , __snake_case : List[int] , __snake_case : int , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Tuple = [] for start_index, start_score in enumerate(__snake_case ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCAmelCase_ : Dict = sorted(__snake_case , key=lambda __snake_case : x[1] , reverse=__snake_case ) UpperCAmelCase_ : List[Any] = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(f'''Wrong span indices: [{start_index}:{end_index}]''' ) UpperCAmelCase_ : Dict = end_index - start_index + 1 if length > max_answer_length: raise ValueError(f'''Span is too long: {length} > {max_answer_length}''' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(__snake_case ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ , snake_case__ ): '''simple docstring''' A_ : str = VOCAB_FILES_NAMES A_ : Optional[Any] = READER_PRETRAINED_VOCAB_FILES_MAP A_ : Union[str, Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = READER_PRETRAINED_INIT_CONFIGURATION A_ : Union[str, Any] = ['input_ids', 'attention_mask']
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : List[Any] = 13 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : Optional[int] = 30 UpperCAmelCase_ : str = self.seq_length + self.mem_len UpperCAmelCase_ : Optional[Any] = 15 UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : str = 99 UpperCAmelCase_ : List[Any] = [10, 50, 80] UpperCAmelCase_ : Dict = 32 UpperCAmelCase_ : List[Any] = 32 UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : Tuple = 8 UpperCAmelCase_ : Union[str, Any] = 128 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[Any] = 3 UpperCAmelCase_ : List[str] = self.vocab_size - 1 UpperCAmelCase_ : Optional[int] = 0.01 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : int , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFTransfoXLModel(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Any = model(__snake_case ).to_tuple() UpperCAmelCase_ : Dict = {'''input_ids''': input_ids_a, '''mems''': mems_a} UpperCAmelCase_ , UpperCAmelCase_ : Tuple = model(__snake_case ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCamelCase ( self : List[str] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Any = TFTransfoXLLMHeadModel(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = model(__snake_case ).to_tuple() UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} UpperCAmelCase_ , UpperCAmelCase_ : List[str] = model(__snake_case ).to_tuple() UpperCAmelCase_ , UpperCAmelCase_ : Dict = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase_ : List[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = model(__snake_case ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : int = TFTransfoXLForSequenceClassification(__snake_case ) UpperCAmelCase_ : List[Any] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = config_and_inputs UpperCAmelCase_ : Any = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) A_ : Union[str, Any] = () if is_tf_available() else () A_ : Optional[int] = ( { 'feature-extraction': TFTransfoXLModel, 'text-classification': TFTransfoXLForSequenceClassification, 'text-generation': TFTransfoXLLMHeadModel, 'zero-shot': TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented A_ : Dict = False A_ : int = False A_ : Any = False A_ : str = False def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Dict , __snake_case : int , __snake_case : str , __snake_case : int ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = TFTransfoXLModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=__snake_case , d_embed=37 ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.model_tester.set_seed() UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' self.model_tester.set_seed() UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Any = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class(__snake_case ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase_ : int = model.get_output_embeddings() assert isinstance(__snake_case , tf.keras.layers.Layer ) UpperCAmelCase_ : int = model.get_bias() assert name is None else: UpperCAmelCase_ : int = model.get_output_embeddings() assert x is None UpperCAmelCase_ : Union[str, Any] = model.get_bias() assert name is None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' # TODO JP: Make TransfoXL XLA compliant pass @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = TFTransfoXLModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off UpperCAmelCase_ : Optional[Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase_ : Union[str, Any] = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase_ : Union[str, Any] = model.generate(__snake_case , max_length=200 , do_sample=__snake_case ) self.assertListEqual(output_ids[0].numpy().tolist() , __snake_case )
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase , __lowercase ): # Initialise PyTorch model UpperCAmelCase_ : str = MobileBertConfig.from_json_file(__lowercase ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCAmelCase_ : int = MobileBertForPreTraining(__lowercase ) # Load weights from tf checkpoint UpperCAmelCase_ : Dict = load_tf_weights_in_mobilebert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": __UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class lowerCAmelCase__: '''simple docstring''' A_ : str = BlenderbotConfig A_ : Tuple = {} A_ : str = 'gelu' def __init__( self : Dict , __snake_case : str , __snake_case : Optional[Any]=13 , __snake_case : Any=7 , __snake_case : Optional[int]=True , __snake_case : Optional[Any]=False , __snake_case : str=99 , __snake_case : Optional[Any]=32 , __snake_case : List[Any]=2 , __snake_case : Dict=4 , __snake_case : Union[str, Any]=37 , __snake_case : List[str]=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=20 , __snake_case : List[Any]=2 , __snake_case : Union[str, Any]=1 , __snake_case : List[Any]=0 , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = parent UpperCAmelCase_ : Tuple = batch_size UpperCAmelCase_ : List[Any] = seq_length UpperCAmelCase_ : Any = is_training UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Dict = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = pad_token_id UpperCAmelCase_ : int = bos_token_id def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase_ : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase_ : Dict = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[int] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCAmelCase_ : int = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def _lowerCamelCase ( self : Tuple , __snake_case : List[str] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = TFBlenderbotModel(config=__snake_case ).get_decoder() UpperCAmelCase_ : Optional[int] = inputs_dict['''input_ids'''] UpperCAmelCase_ : List[Any] = input_ids[:1, :] UpperCAmelCase_ : Union[str, Any] = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase_ : str = inputs_dict['''head_mask'''] UpperCAmelCase_ : Dict = 1 # first forward pass UpperCAmelCase_ : Optional[int] = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase_ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase_ : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase_ : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase_ : Any = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase_ : Optional[int] = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase_ : Union[str, Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase_ : Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase_ : List[str] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCAmelCase_ : Any = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase_ : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Any = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () A_ : Optional[Any] = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () A_ : Dict = ( { 'conversational': TFBlenderbotForConditionalGeneration, 'feature-extraction': TFBlenderbotModel, 'summarization': TFBlenderbotForConditionalGeneration, 'text2text-generation': TFBlenderbotForConditionalGeneration, 'translation': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) A_ : Optional[Any] = True A_ : Dict = False A_ : List[str] = False def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = TFBlenderbotModelTester(self ) UpperCAmelCase_ : List[str] = ConfigTester(self , config_class=__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Dict = ['My friends are cool but they eat too many carbs.'] A_ : Optional[Any] = 'facebook/blenderbot-400M-distill' @cached_property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.tokenizer(self.src_text , return_tensors='''tf''' ) UpperCAmelCase_ : str = self.model.generate( model_inputs.input_ids , ) UpperCAmelCase_ : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) # General docstring __UpperCamelCase : Any = 'RegNetConfig' # Base docstring __UpperCamelCase : int = 'facebook/regnet-y-040' __UpperCamelCase : int = [1, 1088, 7, 7] # Image classification docstring __UpperCamelCase : str = 'facebook/regnet-y-040' __UpperCamelCase : int = 'tabby, tabby cat' __UpperCamelCase : Optional[Any] = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int = 3 , __snake_case : int = 1 , __snake_case : int = 1 , __snake_case : Optional[str] = "relu" , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb UpperCAmelCase_ : str = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=__snake_case , strides=__snake_case , padding='''VALID''' , groups=__snake_case , use_bias=__snake_case , name='''convolution''' , ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) UpperCAmelCase_ : Union[str, Any] = ACTaFN[activation] if activation is not None else tf.identity def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.convolution(self.padding(__snake_case ) ) UpperCAmelCase_ : List[Any] = self.normalization(__snake_case ) UpperCAmelCase_ : List[Any] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Dict , __snake_case : RegNetConfig , **__snake_case : Optional[int] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Any = config.num_channels UpperCAmelCase_ : Tuple = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Any = shape_list(__snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) UpperCAmelCase_ : Dict = tf.transpose(__snake_case , perm=(0, 2, 3, 1) ) UpperCAmelCase_ : Tuple = self.embedder(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[str] , __snake_case : int , __snake_case : int = 2 , **__snake_case : int ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : str = tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=1 , strides=__snake_case , use_bias=__snake_case , name='''convolution''' ) UpperCAmelCase_ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def _lowerCamelCase ( self : Any , __snake_case : tf.Tensor , __snake_case : bool = False ): '''simple docstring''' return self.normalization(self.convolution(__snake_case ) , training=__snake_case ) class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , __snake_case : int , __snake_case : int , **__snake_case : Optional[Any] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Tuple = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='''pooler''' ) UpperCAmelCase_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _lowerCamelCase ( self : List[str] , __snake_case : Optional[Any] ): '''simple docstring''' # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] UpperCAmelCase_ : Any = self.pooler(__snake_case ) for layer_module in self.attention: UpperCAmelCase_ : List[str] = layer_module(__snake_case ) UpperCAmelCase_ : Any = hidden_state * pooled return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : int , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Tuple = in_channels != out_channels or stride != 1 UpperCAmelCase_ : int = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : List[Any] = ( TFRegNetShortCut(__snake_case , stride=__snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. UpperCAmelCase_ : List[Any] = [ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='''layer.2''' ), ] UpperCAmelCase_ : List[Any] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self : Union[str, Any] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = hidden_state for layer_module in self.layers: UpperCAmelCase_ : List[str] = layer_module(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase_ : Union[str, Any] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : str , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 1 , **__snake_case : int ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : List[str] = in_channels != out_channels or stride != 1 UpperCAmelCase_ : List[Any] = max(1 , out_channels // config.groups_width ) UpperCAmelCase_ : Union[str, Any] = ( TFRegNetShortCut(__snake_case , stride=__snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) UpperCAmelCase_ : Optional[int] = [ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='''layer.3''' ), ] UpperCAmelCase_ : List[str] = ACTaFN[config.hidden_act] def _lowerCamelCase ( self : str , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = hidden_state for layer_module in self.layers: UpperCAmelCase_ : List[str] = layer_module(__snake_case ) UpperCAmelCase_ : Any = self.shortcut(__snake_case ) hidden_state += residual UpperCAmelCase_ : List[str] = self.activation(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : RegNetConfig , __snake_case : int , __snake_case : int , __snake_case : int = 2 , __snake_case : int = 2 , **__snake_case : int ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[Any] = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer UpperCAmelCase_ : List[str] = [ # downsampling is done in the first layer with stride of 2 layer(__snake_case , __snake_case , __snake_case , stride=__snake_case , name='''layers.0''' ), *[layer(__snake_case , __snake_case , __snake_case , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowerCamelCase ( self : int , __snake_case : List[Any] ): '''simple docstring''' for layer_module in self.layers: UpperCAmelCase_ : Tuple = layer_module(__snake_case ) return hidden_state class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , __snake_case : RegNetConfig , **__snake_case : Any ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) UpperCAmelCase_ : List[str] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case , name=f'''stages.{i+1}''' ) ) def _lowerCamelCase ( self : Dict , __snake_case : tf.Tensor , __snake_case : bool = False , __snake_case : bool = True ): '''simple docstring''' UpperCAmelCase_ : List[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: UpperCAmelCase_ : Optional[Any] = hidden_states + (hidden_state,) UpperCAmelCase_ : Union[str, Any] = stage_module(__snake_case ) if output_hidden_states: UpperCAmelCase_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) @keras_serializable class lowerCAmelCase__( tf.keras.layers.Layer ): '''simple docstring''' A_ : Dict = RegNetConfig def __init__( self : int , __snake_case : List[str] , **__snake_case : List[Any] ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : List[Any] = config UpperCAmelCase_ : int = TFRegNetEmbeddings(__snake_case , name='''embedder''' ) UpperCAmelCase_ : Union[str, Any] = TFRegNetEncoder(__snake_case , name='''encoder''' ) UpperCAmelCase_ : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='''pooler''' ) @unpack_inputs def _lowerCamelCase ( self : str , __snake_case : tf.Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Any = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Union[str, Any] = self.embedder(__snake_case , training=__snake_case ) UpperCAmelCase_ : Tuple = self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) UpperCAmelCase_ : Any = encoder_outputs[0] UpperCAmelCase_ : Union[str, Any] = self.pooler(__snake_case ) # Change to NCHW output format have uniformity in the modules UpperCAmelCase_ : str = tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) UpperCAmelCase_ : Dict = tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: UpperCAmelCase_ : Tuple = tuple([tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[Any] = RegNetConfig A_ : Dict = 'regnet' A_ : str = 'pixel_values' @property def _lowerCamelCase ( self : int ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCamelCase : List[Any] = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __UpperCamelCase : str = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , snake_case__ , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : RegNetConfig , *__snake_case : Union[str, Any] , **__snake_case : List[str] ): '''simple docstring''' super().__init__(__snake_case , *__snake_case , **__snake_case ) UpperCAmelCase_ : str = TFRegNetMainLayer(__snake_case , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : List[str] , __snake_case : tf.Tensor , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : Tuple=False , ): '''simple docstring''' UpperCAmelCase_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : Dict = self.regnet( pixel_values=__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , snake_case__ , ) class lowerCAmelCase__( snake_case__ , snake_case__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : RegNetConfig , *__snake_case : List[str] , **__snake_case : Optional[int] ): '''simple docstring''' super().__init__(__snake_case , *__snake_case , **__snake_case ) UpperCAmelCase_ : Any = config.num_labels UpperCAmelCase_ : List[Any] = TFRegNetMainLayer(__snake_case , name='''regnet''' ) # classification head UpperCAmelCase_ : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Tuple , __snake_case : tf.Tensor = None , __snake_case : tf.Tensor = None , __snake_case : bool = None , __snake_case : bool = None , __snake_case : Tuple=False , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase_ : str = self.regnet( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) UpperCAmelCase_ : List[str] = outputs.pooler_output if return_dict else outputs[1] UpperCAmelCase_ : List[Any] = self.classifier[0](__snake_case ) UpperCAmelCase_ : Optional[int] = self.classifier[1](__snake_case ) UpperCAmelCase_ : Optional[Any] = None if labels is None else self.hf_compute_loss(labels=__snake_case , logits=__snake_case ) if not return_dict: UpperCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from ..utils import DummyObject, requires_backends class lowerCAmelCase__( metaclass=snake_case__ ): '''simple docstring''' A_ : int = ['note_seq'] def __init__( self : Tuple , *__snake_case : Tuple , **__snake_case : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['''note_seq'''] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *__snake_case : Optional[Any] , **__snake_case : Any ): '''simple docstring''' requires_backends(cls , ['''note_seq'''] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *__snake_case : Optional[Any] , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['''note_seq'''] )
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
from timeit import timeit def snake_case_ ( __lowercase ): if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ : Tuple = 0 while number: number &= number - 1 result += 1 return result def snake_case_ ( __lowercase ): if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ : List[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def snake_case_ ( ): def do_benchmark(__lowercase ) -> None: UpperCAmelCase_ : List[Any] = '''import __main__ as z''' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(__lowercase ) = }''' ) UpperCAmelCase_ : Any = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__lowercase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(__lowercase ) = }''' ) UpperCAmelCase_ : str = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__lowercase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(__lowercase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __UpperCamelCase : Tuple = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') __UpperCamelCase : Union[str, Any] = F'https://www.google.com/search?q={query}&num=100' __UpperCamelCase : str = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: __UpperCamelCase : Dict = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: __UpperCamelCase : str = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : Tuple=7 , __snake_case : int=3 , __snake_case : str=10 , __snake_case : Union[str, Any]=18 , __snake_case : Dict=30 , __snake_case : Union[str, Any]=400 , __snake_case : Optional[Any]=True , __snake_case : Dict=None , __snake_case : List[str]=True , __snake_case : List[Any]=[0.5, 0.5, 0.5] , __snake_case : int=[0.5, 0.5, 0.5] , __snake_case : List[Any]=None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = size if size is not None else {'''shortest_edge''': 18} UpperCAmelCase_ : Any = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Optional[int] = num_channels UpperCAmelCase_ : List[str] = num_frames UpperCAmelCase_ : str = image_size UpperCAmelCase_ : Dict = min_resolution UpperCAmelCase_ : List[Any] = max_resolution UpperCAmelCase_ : Any = do_resize UpperCAmelCase_ : int = size UpperCAmelCase_ : Tuple = do_normalize UpperCAmelCase_ : List[str] = image_mean UpperCAmelCase_ : Dict = image_std UpperCAmelCase_ : str = crop_size def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = VivitImageProcessor if is_vision_available() else None def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : int = VivitImageProcessingTester(self ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCAmelCase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input UpperCAmelCase_ : List[Any] = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : int = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ : Optional[int] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input UpperCAmelCase_ : str = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self : int ): '''simple docstring''' # Initialize image_processing UpperCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for video in video_inputs: self.assertIsInstance(__snake_case , __snake_case ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input UpperCAmelCase_ : Tuple = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase_ : Dict = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [int(__lowercase ) for i in ip_va_address.split('''.''' ) if i.isdigit()] return len(__lowercase ) == 4 and all(0 <= int(__lowercase ) <= 2_5_4 for octet in octets ) if __name__ == "__main__": __UpperCamelCase : str = input().strip() __UpperCamelCase : List[str] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'{ip} is a {valid_or_invalid} IP v4 address.')
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
import unittest from transformers import BigBirdConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax from transformers.models.big_bird.modeling_flax_big_bird import ( FlaxBigBirdForCausalLM, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForPreTraining, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, FlaxBigBirdModel, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Dict , __snake_case : List[Any]=2 , __snake_case : str=56 , __snake_case : Union[str, Any]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=True , __snake_case : List[str]=True , __snake_case : Any=99 , __snake_case : List[str]=32 , __snake_case : Union[str, Any]=2 , __snake_case : Tuple=2 , __snake_case : List[Any]=7 , __snake_case : List[Any]="gelu_new" , __snake_case : Tuple=0.1 , __snake_case : Any=0.1 , __snake_case : int=512 , __snake_case : Union[str, Any]=16 , __snake_case : int=2 , __snake_case : Tuple=0.02 , __snake_case : List[str]=4 , __snake_case : Union[str, Any]="block_sparse" , __snake_case : Optional[int]=True , __snake_case : int=False , __snake_case : int=2 , __snake_case : List[Any]=3 , ): '''simple docstring''' UpperCAmelCase_ : List[str] = parent UpperCAmelCase_ : str = batch_size UpperCAmelCase_ : str = seq_length UpperCAmelCase_ : int = is_training UpperCAmelCase_ : Optional[Any] = use_attention_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : int = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Optional[Any] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Dict = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : str = num_choices UpperCAmelCase_ : Tuple = rescale_embeddings UpperCAmelCase_ : Union[str, Any] = attention_type UpperCAmelCase_ : Optional[Any] = use_bias UpperCAmelCase_ : str = block_size UpperCAmelCase_ : Tuple = num_random_blocks def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = None if self.use_attention_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[str] = BigBirdConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , attention_type=self.attention_type , block_size=self.block_size , num_random_blocks=self.num_random_blocks , use_bias=self.use_bias , rescale_embeddings=self.rescale_embeddings , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Optional[Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask, } return config, inputs_dict @require_flax class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( ( FlaxBigBirdForCausalLM, FlaxBigBirdModel, FlaxBigBirdForPreTraining, FlaxBigBirdForMaskedLM, FlaxBigBirdForMultipleChoice, FlaxBigBirdForQuestionAnswering, FlaxBigBirdForSequenceClassification, FlaxBigBirdForTokenClassification, ) if is_flax_available() else () ) A_ : str = False A_ : Dict = False def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = FlaxBigBirdModelTester(self ) @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' super().test_from_pretrained_save_pretrained() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : str ): '''simple docstring''' super().test_from_pretrained_with_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_no_automatic_init() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().test_hidden_states_output() @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ : Tuple = model_class_name.from_pretrained('''google/bigbird-roberta-base''' ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' if self.test_attn_probs: super().test_attention_outputs() @slow # copied from `test_modeling_flax_common` because it takes much longer than other models def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[Any] = self._prepare_for_class(__snake_case , __snake_case ) UpperCAmelCase_ : Optional[Any] = model_class(__snake_case ) @jax.jit def model_jitted(__snake_case : Dict , __snake_case : int=None , **__snake_case : List[str] ): return model(input_ids=__snake_case , attention_mask=__snake_case , **__snake_case ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ : Optional[Any] = model_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ : Any = model_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self : List[str] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : str=1E-5 , __snake_case : Tuple="outputs" , __snake_case : str=None ): '''simple docstring''' # `bigbird_block_sparse_attention` in `FlaxBigBird` returns `attention_probs = None`, while in PyTorch version, # an effort was done to return `attention_probs` (yet to be verified). if name.startswith('''outputs.attentions''' ): return else: super().check_pt_flax_outputs(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case )
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[List[PIL.Image.Image], np.ndarray] A_ : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[Any]=13 , __snake_case : List[Any]=7 , __snake_case : Union[str, Any]=True , __snake_case : str=True , __snake_case : Dict=True , __snake_case : Any=True , __snake_case : Tuple=99 , __snake_case : str=32 , __snake_case : int=2 , __snake_case : Union[str, Any]=4 , __snake_case : List[Any]=37 , __snake_case : Optional[int]="gelu" , __snake_case : int=0.1 , __snake_case : List[Any]=0.1 , __snake_case : List[Any]=512 , __snake_case : int=16 , __snake_case : Optional[int]=2 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=3 , __snake_case : List[str]=4 , __snake_case : int=None , ): '''simple docstring''' UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Tuple = 13 UpperCAmelCase_ : int = 7 UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Any = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[int] = 99 UpperCAmelCase_ : List[str] = 384 UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : List[Any] = 37 UpperCAmelCase_ : List[str] = '''gelu''' UpperCAmelCase_ : Optional[int] = 0.1 UpperCAmelCase_ : List[Any] = 0.1 UpperCAmelCase_ : str = 512 UpperCAmelCase_ : List[str] = 16 UpperCAmelCase_ : str = 2 UpperCAmelCase_ : List[str] = 0.02 UpperCAmelCase_ : Optional[int] = 3 UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Union[str, Any] = 128 UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Any = 9 UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Union[str, Any] = None def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[int] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : int , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : int = TFConvBertModel(config=__snake_case ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Tuple = [input_ids, input_mask] UpperCAmelCase_ : List[str] = model(__snake_case ) UpperCAmelCase_ : str = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Any , __snake_case : List[str] , __snake_case : str , __snake_case : str , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : str , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFConvBertForMaskedLM(config=__snake_case ) UpperCAmelCase_ : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : str = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Tuple = TFConvBertForSequenceClassification(config=__snake_case ) UpperCAmelCase_ : List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Dict , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_choices UpperCAmelCase_ : int = TFConvBertForMultipleChoice(config=__snake_case ) UpperCAmelCase_ : Any = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Tuple = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Any = TFConvBertForTokenClassification(config=__snake_case ) UpperCAmelCase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = TFConvBertForQuestionAnswering(config=__snake_case ) UpperCAmelCase_ : Dict = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Optional[Any] = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : List[Any] = config_and_inputs UpperCAmelCase_ : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A_ : Any = False A_ : Optional[int] = False A_ : Dict = False def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = TFConvBertModelTester(self ) UpperCAmelCase_ : Tuple = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Any = True if hasattr(__snake_case , '''use_cache''' ): UpperCAmelCase_ : str = True UpperCAmelCase_ : Optional[int] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) UpperCAmelCase_ : str = getattr(self.model_tester , '''key_length''' , __snake_case ) for model_class in self.all_model_classes: UpperCAmelCase_ : List[Any] = self._prepare_for_class(__snake_case , __snake_case ) UpperCAmelCase_ : Optional[int] = model_class(__snake_case ) UpperCAmelCase_ : List[Any] = len(model(__snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__snake_case , saved_model=__snake_case ) UpperCAmelCase_ : Any = os.path.join(__snake_case , '''saved_model''' , '''1''' ) UpperCAmelCase_ : Optional[int] = tf.keras.models.load_model(__snake_case ) UpperCAmelCase_ : List[Any] = model(__snake_case ) if self.is_encoder_decoder: UpperCAmelCase_ : Union[str, Any] = outputs['''encoder_hidden_states'''] UpperCAmelCase_ : List[str] = outputs['''encoder_attentions'''] else: UpperCAmelCase_ : Union[str, Any] = outputs['''hidden_states'''] UpperCAmelCase_ : Union[str, Any] = outputs['''attentions'''] self.assertEqual(len(__snake_case ) , __snake_case ) UpperCAmelCase_ : Union[str, Any] = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__snake_case ) , __snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Optional[Any] = getattr(self.model_tester , '''decoder_seq_length''' , self.model_tester.seq_length ) UpperCAmelCase_ : List[str] = getattr(self.model_tester , '''encoder_seq_length''' , self.model_tester.seq_length ) UpperCAmelCase_ : Optional[Any] = getattr(self.model_tester , '''key_length''' , __snake_case ) UpperCAmelCase_ : Optional[Any] = getattr(self.model_tester , '''key_length''' , __snake_case ) def check_decoder_attentions_output(__snake_case : Tuple ): UpperCAmelCase_ : Any = len(__snake_case ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase_ : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__snake_case : int ): UpperCAmelCase_ : Tuple = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Optional[Any] = model_class(__snake_case ) UpperCAmelCase_ : List[str] = model(self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ : Optional[int] = len(__snake_case ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) if self.is_encoder_decoder: UpperCAmelCase_ : List[Any] = model_class(__snake_case ) UpperCAmelCase_ : Optional[int] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_decoder_attentions_output(__snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase_ : Any = True UpperCAmelCase_ : List[str] = model_class(__snake_case ) UpperCAmelCase_ : Optional[int] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) # Check attention is always last and order is fine UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Optional[int] = True UpperCAmelCase_ : List[Any] = model_class(__snake_case ) UpperCAmelCase_ : List[str] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__snake_case ) ) self.assertEqual(model.config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) UpperCAmelCase_ : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ : Union[str, Any] = model(__snake_case )[0] UpperCAmelCase_ : Union[str, Any] = [1, 6, 768] self.assertEqual(output.shape , __snake_case ) UpperCAmelCase_ : Any = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-4 )
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Union[str, Any] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
def snake_case_ ( __lowercase ): if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) UpperCAmelCase_ : List[Any] = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase_ : Optional[Any] = 1 if upper_limit > 0: UpperCAmelCase_ : List[str] = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(__lowercase ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __UpperCamelCase : Optional[Any] = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1