code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if "img_encoder.pos_embed" in name: lowercase_ : Optional[int] = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowercase_ : List[str] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowercase_ : Optional[Any] = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowercase_ : Any = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowercase_ : Dict = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowercase_ : Any = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowercase_ : Tuple = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowercase_ : List[Any] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowercase_ : Union[str, Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowercase_ : str = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowercase_ : Optional[Any] = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowercase_ : List[Any] = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowercase_ : List[Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowercase_ : List[Any] = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowercase_ : str = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowercase_ : int = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowercase_ : Dict = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowercase_ : Optional[Any] = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowercase_ : int = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowercase_ : Optional[Any] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowercase_ : str = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowercase_ : Optional[int] = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowercase_ : List[Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowercase_ : Dict = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase_ : List[Any] = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ : Optional[int] = key.split("." ) lowercase_ , lowercase_ : int = int(key_split[2] ), int(key_split[4] ) lowercase_ : Tuple = config.vision_config.hidden_size if "weight" in key: lowercase_ : Union[str, Any] = val[:dim, :] lowercase_ : Union[str, Any] = val[dim : dim * 2, :] lowercase_ : Tuple = val[-dim:, :] else: lowercase_ : int = val[:dim] lowercase_ : Optional[int] = val[dim : dim * 2] lowercase_ : List[Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowercase_ : List[str] = key.split("." ) lowercase_ : str = int(key_split[3] ) lowercase_ : Union[str, Any] = config.text_config.hidden_size if "weight" in key: lowercase_ : List[str] = val[:dim, :] lowercase_ : Any = val[ dim : dim * 2, : ] lowercase_ : Dict = val[-dim:, :] else: lowercase_ : Union[str, Any] = val[:dim] lowercase_ : Dict = val[dim : dim * 2] lowercase_ : int = val[-dim:] else: lowercase_ : Optional[Any] = rename_key(_UpperCamelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowercase_ : int = val.squeeze_() else: lowercase_ : Dict = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ : int = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase="groupvit-gcc-yfcc" , _UpperCamelCase=False ): """simple docstring""" lowercase_ : Union[str, Any] = GroupViTConfig() lowercase_ : Tuple = GroupViTModel(_UpperCamelCase ).eval() lowercase_ : int = torch.load(_UpperCamelCase , map_location="cpu" )["model"] lowercase_ : Tuple = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) lowercase_ , lowercase_ : Tuple = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(_UpperCamelCase ) == 0) # verify result lowercase_ : Tuple = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowercase_ : List[Any] = prepare_img() lowercase_ : List[str] = processor(text=["a photo of a cat", "a photo of a dog"] , images=_UpperCamelCase , padding=_UpperCamelCase , return_tensors="pt" ) with torch.no_grad(): lowercase_ : int = model(**_UpperCamelCase ) if model_name == "groupvit-gcc-yfcc": lowercase_ : List[Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": lowercase_ : Optional[Any] = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , _UpperCamelCase , atol=1e-3 ) processor.save_pretrained(_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print("Successfully saved processor and model to" , _UpperCamelCase ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(_UpperCamelCase , organization="nielsr" ) model.push_to_hub(_UpperCamelCase , organization="nielsr" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.', ) UpperCamelCase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
640
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.txt'} UpperCamelCase__ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } UpperCamelCase__ = { 'facebook/esm2_t6_8M_UR50D': 1024, 'facebook/esm2_t12_35M_UR50D': 1024, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" with open(_UpperCamelCase , "r" ) as f: lowercase_ : Optional[Any] = f.read().splitlines() return [l.strip() for l in lines] class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[str] = VOCAB_FILES_NAMES __lowerCamelCase: Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: Any = ['input_ids', 'attention_mask'] def __init__( self : Tuple , a : str , a : List[Any]="<unk>" , a : List[Any]="<cls>" , a : Tuple="<pad>" , a : int="<mask>" , a : List[Any]="<eos>" , **a : Dict , ): '''simple docstring''' super().__init__(**a ) lowercase_ : List[Any] = load_vocab_file(a ) lowercase_ : Tuple = dict(enumerate(self.all_tokens ) ) lowercase_ : Union[str, Any] = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowercase_ : Any = unk_token lowercase_ : List[Any] = cls_token lowercase_ : str = pad_token lowercase_ : str = mask_token lowercase_ : List[str] = eos_token lowercase_ : Optional[int] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCAmelCase__ ( self : int , a : int ): '''simple docstring''' return self._id_to_token.get(a , self.unk_token ) def lowerCAmelCase__ ( self : Optional[int] , a : str ): '''simple docstring''' return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[Any] , **a : Union[str, Any] ): '''simple docstring''' return text.split() def lowerCAmelCase__ ( self : Optional[Any] , a : List[str]=False ): '''simple docstring''' return len(self._id_to_token ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def lowerCAmelCase__ ( self : int , a : str ): '''simple docstring''' return self._token_to_id.get(a , self._token_to_id.get(self.unk_token ) ) def lowerCAmelCase__ ( self : Dict , a : int ): '''simple docstring''' return self._id_to_token.get(a , self.unk_token ) def lowerCAmelCase__ ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowercase_ : int = [self.cls_token_id] lowercase_ : Any = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCAmelCase__ ( self : Dict , a : List , a : Optional[List] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowercase_ : Dict = [1] + ([0] * len(a )) + [1] if token_ids_a is not None: mask += [0] * len(a ) + [1] return mask def lowerCAmelCase__ ( self : List[str] , a : Union[str, Any] , a : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = os.path.join(a , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" ) with open(a , "w" ) as f: f.write("\n".join(self.all_tokens ) ) return (vocab_file,) @property def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=a ) def lowerCAmelCase__ ( self : int , a : Union[List[str], List[AddedToken]] , a : bool = False ): '''simple docstring''' return super()._add_tokens(a , special_tokens=a )
640
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ = 'scheduler_config.json' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: int = 1 __lowerCamelCase: List[Any] = 2 __lowerCamelCase: Optional[Any] = 3 __lowerCamelCase: int = 4 __lowerCamelCase: Optional[int] = 5 @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: jnp.ndarray class _UpperCAmelCase : __lowerCamelCase: List[str] = SCHEDULER_CONFIG_NAME __lowerCamelCase: Optional[int] = ['dtype'] __lowerCamelCase: int = [] __lowerCamelCase: Dict = True @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Dict[str, Any] = None , a : Optional[str] = None , a : Union[str, Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ , lowercase_ : Any = cls.load_config( pretrained_model_name_or_path=a , subfolder=a , return_unused_kwargs=a , **a , ) lowercase_ , lowercase_ : Union[str, Any] = cls.from_config(a , return_unused_kwargs=a , **a ) if hasattr(a , "create_state" ) and getattr(a , "has_state" , a ): lowercase_ : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : int , a : Union[str, os.PathLike] , a : bool = False , **a : int ): '''simple docstring''' self.save_config(save_directory=a , push_to_hub=a , **a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase_ : str = importlib.import_module(__name__.split("." )[0] ) lowercase_ : Optional[Any] = [ getattr(a , a ) for c in compatible_classes_str if hasattr(a , a ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowercase_ : int = [] for i in range(_UpperCamelCase ): lowercase_ : Union[str, Any] = i / num_diffusion_timesteps lowercase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class _UpperCAmelCase : __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Optional[int] ): '''simple docstring''' lowercase_ : Any = scheduler.config if config.trained_betas is not None: lowercase_ : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase_ : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase_ : str = 1.0 - betas lowercase_ : Dict = jnp.cumprod(a , axis=0 ) return cls( alphas=a , betas=a , alphas_cumprod=a , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = state.alphas_cumprod lowercase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase_ : int = sqrt_alpha_prod.flatten() lowercase_ : Union[str, Any] = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) lowercase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() lowercase_ : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
640
1
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = 1 lowercase_ : Union[str, Any] = 2 while i * i <= n: lowercase_ : int = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = 1 lowercase_ : Any = 1 while True: i += 1 t_num += i if count_divisors(_UpperCamelCase ) > 500: break return t_num if __name__ == "__main__": print(solution())
640
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
1
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Dict = AutoImageProcessor.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) lowercase_ : Dict = AutoModelForImageClassification.from_pretrained("microsoft/dit-base-finetuned-rvlcdip" ) model.to(a ) from datasets import load_dataset lowercase_ : List[Any] = load_dataset("nielsr/rvlcdip-demo" ) lowercase_ : Optional[int] = dataset["train"][0]["image"].convert("RGB" ) lowercase_ : Dict = image_processor(a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): lowercase_ : List[Any] = model(**a ) lowercase_ : Optional[Any] = outputs.logits lowercase_ : Optional[int] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase_ : str = torch.tensor( [-0.4158, -0.4092, -0.4347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
640
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
1
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Dict = [1_0, 2_0, 3_0, 4_0, 5_0, 6_0] lowercase_ : str = [2, 4, 6, 8, 1_0, 1_2] lowercase_ : Union[str, Any] = 1_0_0 self.assertEqual(kp.calc_profit(a , a , a ) , 2_1_0 ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertRaisesRegex(a , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertRaisesRegex(a , "Weight can not be negative." ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertRaisesRegex(a , "Profit can not be negative." ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.assertRaisesRegex(a , "max_weight must greater than zero." ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.assertRaisesRegex( a , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
640
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
1
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCAmelCase : def __init__( self : Union[str, Any] , a : List[Any] , a : Dict=2 , a : int=True , a : Optional[Any]=False , a : str=1_0 , a : Union[str, Any]=3 , a : str=3_2 * 8 , a : Tuple=3_2 * 8 , a : Optional[int]=4 , a : List[str]=6_4 , ): '''simple docstring''' lowercase_ : Dict = parent lowercase_ : List[str] = batch_size lowercase_ : Dict = is_training lowercase_ : Tuple = use_auxiliary_loss lowercase_ : List[Any] = num_queries lowercase_ : Any = num_channels lowercase_ : Optional[int] = min_size lowercase_ : Dict = max_size lowercase_ : Tuple = num_labels lowercase_ : Optional[int] = hidden_dim lowercase_ : Optional[int] = hidden_dim def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( a ) lowercase_ : Optional[int] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=a ) lowercase_ : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=a ) > 0.5 ).float() lowercase_ : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=a ) > 0.5).long() lowercase_ : Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : List[Any] = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowercase_ : Optional[Any] = self.num_queries lowercase_ : int = self.num_labels lowercase_ : Tuple = [1, 1, 1, 1] lowercase_ : Tuple = self.num_channels lowercase_ : Dict = 6_4 lowercase_ : Union[str, Any] = 1_2_8 lowercase_ : Tuple = self.hidden_dim lowercase_ : Optional[Any] = self.hidden_dim lowercase_ : List[Any] = self.hidden_dim return config def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : Tuple = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self : Dict , a : int , a : Optional[int] ): '''simple docstring''' lowercase_ : int = output.encoder_hidden_states lowercase_ : List[Any] = output.pixel_decoder_hidden_states lowercase_ : Optional[int] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(a ) , config.decoder_layers ) def lowerCAmelCase__ ( self : int , a : str , a : Dict , a : Dict , a : Dict=False ): '''simple docstring''' with torch.no_grad(): lowercase_ : str = MaskaFormerModel(config=a ) model.to(a ) model.eval() lowercase_ : str = model(pixel_values=a , pixel_mask=a ) lowercase_ : List[str] = model(a , output_hidden_states=a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any] , a : str , a : Tuple , a : str , a : Dict ): '''simple docstring''' lowercase_ : List[str] = MaskaFormerForUniversalSegmentation(config=a ) model.to(a ) model.eval() def comm_check_on_output(a : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Optional[Any] = model(pixel_values=a , pixel_mask=a ) lowercase_ : str = model(a ) comm_check_on_output(a ) lowercase_ : int = model( pixel_values=a , pixel_mask=a , mask_labels=a , class_labels=a ) comm_check_on_output(a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: int = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __lowerCamelCase: Any = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} __lowerCamelCase: Dict = False __lowerCamelCase: int = False __lowerCamelCase: Tuple = False __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[int] = MaskaFormerModelTester(self ) lowercase_ : Dict = ConfigTester(self , config_class=a , has_text_modality=a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a , **a , output_hidden_states=a ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*a ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : List[Any] = model_class(a ) lowercase_ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) @slow def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowercase_ : Union[str, Any] = MaskaFormerModel.from_pretrained(a ) self.assertIsNotNone(a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Union[str, Any] = (self.model_tester.min_size,) * 2 lowercase_ : Tuple = { "pixel_values": torch.randn((2, 3, *size) , device=a ), "mask_labels": torch.randn((2, 1_0, *size) , device=a ), "class_labels": torch.zeros(2 , 1_0 , device=a ).long(), } lowercase_ : str = self.model_tester.get_config() lowercase_ : List[Any] = MaskaFormerForUniversalSegmentation(a ).to(a ) lowercase_ : List[Any] = model(**a ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(a , **a , output_hidden_states=a ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = model_class(a ).to(a ) lowercase_ : Optional[int] = model(**a , output_attentions=a ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' if not self.model_tester.is_training: return lowercase_ : Optional[Any] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() lowercase_ : Union[str, Any] = model_class(a ) model.to(a ) model.train() lowercase_ : str = model(a , mask_labels=a , class_labels=a ).loss loss.backward() def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Optional[int] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowercase_ : str = True lowercase_ : Dict = True lowercase_ : Optional[Any] = model_class(a ).to(a ) model.train() lowercase_ : Tuple = model(a , mask_labels=a , class_labels=a ) lowercase_ : int = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowercase_ : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase__ = 1e-4 def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : int ): '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(a ) lowercase_ : Tuple = self.default_image_processor lowercase_ : str = prepare_img() lowercase_ : List[Any] = image_processor(a , return_tensors="pt" ).to(a ) lowercase_ : Optional[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowercase_ : int = model(**a ) lowercase_ : Dict = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , a , atol=a ) ) lowercase_ : Optional[Any] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , a , atol=a ) ) lowercase_ : List[Any] = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , a , atol=a ) ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Optional[int] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a ).eval() lowercase_ : Optional[int] = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : Any = image_processor(a , return_tensors="pt" ).to(a ) lowercase_ : List[Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(a , (1, 3, 3_8_4, 3_8_4) ) with torch.no_grad(): lowercase_ : Tuple = model(**a ) # masks_queries_logits lowercase_ : Any = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowercase_ : Optional[Any] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowercase_ : List[Any] = torch.tensor(a ).to(a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , a , atol=a ) ) # class_queries_logits lowercase_ : Optional[Any] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowercase_ : Union[str, Any] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , a , atol=a ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Dict = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(a ).eval() lowercase_ : Optional[int] = self.default_image_processor lowercase_ : List[Any] = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="pt" , ) lowercase_ : Union[str, Any] = inputs["pixel_values"].to(a ) lowercase_ : int = [el.to(a ) for el in inputs["mask_labels"]] lowercase_ : Optional[int] = [el.to(a ) for el in inputs["class_labels"]] with torch.no_grad(): lowercase_ : Optional[Any] = model(**a ) self.assertTrue(outputs.loss is not None )
640
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
1
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = os.path.join(args.tf_model_dir , "parameters.json" ) lowercase_ : str = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): lowercase_ : str = args.output + ".pt" lowercase_ : Any = OrderedDict() with tf.device("/CPU:0" ): lowercase_ : str = tf.train.load_checkpoint(args.tf_model_dir ) lowercase_ : Any = reader.get_variable_to_shape_map() for key_name in shapes.keys(): lowercase_ : Optional[Any] = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): lowercase_ : Optional[int] = int(key_name[9] ) elif key_name.startswith("pasts/out" ): lowercase_ : Tuple = 8 lowercase_ : str = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time lowercase_ : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase_ : Optional[int] = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/moe" ): lowercase_ : Dict = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): lowercase_ : Optional[Any] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player lowercase_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase_ : Tuple = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/softmlp/kernel" ): lowercase_ : str = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player lowercase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase_ : Any = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): lowercase_ : List[str] = key_name[-9:-7] for i in range(16 ): lowercase_ : Optional[int] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) lowercase_ : Optional[Any] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided lowercase_ : Optional[int] = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/mlp" ): lowercase_ : Dict = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): lowercase_ : List[Any] = "model.blocks.%d.feed_forward.mlp.wi.weight" % player lowercase_ : Tuple = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase_ : Tuple = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p1/bias" ): lowercase_ : Optional[int] = "model.blocks.%d.feed_forward.mlp.wi.bias" % player lowercase_ : Tuple = vnp.copy() # same because it is one dimensional lowercase_ : List[str] = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/kernel" ): lowercase_ : Optional[int] = "model.blocks.%d.feed_forward.mlp.wo.weight" % player lowercase_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase_ : Tuple = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/bias" ): lowercase_ : Tuple = "model.blocks.%d.feed_forward.mlp.wo.bias" % player lowercase_ : Dict = vnp.copy() # same because it is one dimensional lowercase_ : Dict = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/ln" ): lowercase_ : Tuple = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowercase_ : Dict = "model.blocks.%d.feed_forward.norm.bias" % player lowercase_ : Optional[int] = vnp.copy() # same because it is one dimensional lowercase_ : Union[str, Any] = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): lowercase_ : List[str] = "model.blocks.%d.feed_forward.norm.weight" % player lowercase_ : Dict = vnp.copy() # same because it is one dimensional lowercase_ : List[Any] = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/att" ): lowercase_ : List[str] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): lowercase_ : Optional[Any] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum lowercase_ : Union[str, Any] = state[:, 0, :, :] lowercase_ : int = state[:, 1, :, :] lowercase_ : Any = state[:, 2, :, :] lowercase_ : List[Any] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase_ : Dict = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase_ : Union[str, Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase_ : Union[str, Any] = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player lowercase_ : Dict = torch.tensor(_UpperCamelCase ) lowercase_ : Any = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player lowercase_ : Optional[int] = torch.tensor(_UpperCamelCase ) lowercase_ : Tuple = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player lowercase_ : int = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/o/kernel" ): lowercase_ : List[str] = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player lowercase_ : List[Any] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix lowercase_ : Optional[int] = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/an" ): lowercase_ : str = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): lowercase_ : str = "model.blocks.%d.self_attn.norm.bias" % player lowercase_ : str = vnp.copy() # same because it is one dimensional lowercase_ : int = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): lowercase_ : List[Any] = "model.blocks.%d.self_attn.norm.weight" % player lowercase_ : Dict = vnp.copy() # same because it is one dimensional lowercase_ : Optional[Any] = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): lowercase_ : Tuple = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] lowercase_ : Tuple = "model.%s.weight" % nlayer lowercase_ : Tuple = vnp.copy() # same in embedded lowercase_ : Any = torch.tensor(_UpperCamelCase ) if key_name.startswith("model/wte" ): lowercase_ : Any = "lm_head.weight" lowercase_ : List[Any] = vnp.copy() # same in embedded lowercase_ : int = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/wob" ): lowercase_ : Any = "final_logits_bias" lowercase_ : Any = vnp.copy() # same in embedded lowercase_ : Optional[Any] = state.reshape((1, -1) ) lowercase_ : Any = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": lowercase_ : Optional[Any] = "model.last_project.weight" lowercase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix lowercase_ : int = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": lowercase_ : List[Any] = "model.last_project.bias" lowercase_ : Any = vnp.copy() # same because it is one dimensional lowercase_ : int = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser( description='model converter.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--tf_model_dir', metavar='PATH', type=str, required=True, help='import model') parser.add_argument('--output', metavar='PATH', type=str, required=True, help='output model') UpperCamelCase__ = parser.parse_args() convert_tf_gptsan_to_pt(args)
640
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
1
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _UpperCAmelCase ( nn.Module ): def __init__( self : Any , a : int = 1_6 , a : int = 8_8 , a : Optional[int] = None , a : int = 1 , a : float = 0.0 , a : int = 3_2 , a : Optional[int] = None , a : bool = False , a : Optional[int] = None , a : Optional[int] = None , a : str = "geglu" , a : Optional[int] = None , ): '''simple docstring''' super().__init__() lowercase_ : Dict = nn.ModuleList( [ TransformeraDModel( num_attention_heads=a , attention_head_dim=a , in_channels=a , num_layers=a , dropout=a , norm_num_groups=a , cross_attention_dim=a , attention_bias=a , sample_size=a , num_vector_embeds=a , activation_fn=a , num_embeds_ada_norm=a , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowercase_ : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowercase_ : Optional[Any] = [7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowercase_ : List[Any] = [1, 0] def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : Tuple , a : Union[str, Any]=None , a : Optional[Any]=None , a : Tuple=None , a : bool = True , ): '''simple docstring''' lowercase_ : Any = hidden_states lowercase_ : Tuple = [] lowercase_ : Optional[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowercase_ : Dict = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowercase_ : Dict = self.transformer_index_for_condition[i] lowercase_ : Union[str, Any] = self.transformers[transformer_index]( a , encoder_hidden_states=a , timestep=a , cross_attention_kwargs=a , return_dict=a , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowercase_ : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowercase_ : str = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=a )
640
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowercase_ : int = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE_ ) lowercase_ : Optional[Any] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE_ ) lowercase_ : int = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowercase_ : List[Any] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowercase_ : int = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Optional[Any] = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): lowercase_ : Tuple = F"""layers_{str(SCREAMING_SNAKE_CASE_ )}""" # Self-Attention lowercase_ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowercase_ : Dict = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowercase_ : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowercase_ : Any = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : int = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowercase_ : Any = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowercase_ : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase_ : Tuple = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase_ : List[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase_ : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase_ : Optional[int] = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase_ : Dict = flax_model.params["encoder"]["block"][str(SCREAMING_SNAKE_CASE_ )]["layer"] lowercase_ : List[str] = tax_attention_key lowercase_ : Tuple = tax_attention_out lowercase_ : List[Any] = tax_attention_query lowercase_ : int = tax_attention_value lowercase_ : List[Any] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : str = tax_global_layer_norm if split_mlp_wi: lowercase_ : Any = tax_mlp_wi_a lowercase_ : Optional[Any] = tax_mlp_wi_a else: lowercase_ : Optional[Any] = tax_mlp_wi lowercase_ : str = tax_mlp_wo lowercase_ : Dict = tax_mlp_layer_norm lowercase_ : Optional[Any] = flax_model_encoder_layer_block # Only for layer 0: lowercase_ : Optional[Any] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowercase_ : int = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowercase_ : Tuple = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowercase_ : Tuple = tax_encoder_global_rel_embedding # Assigning lowercase_ : List[str] = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowercase_ : Optional[int] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowercase_ : int = F"""layers_{str(SCREAMING_SNAKE_CASE_ )}""" # Self-Attention lowercase_ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowercase_ : int = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowercase_ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowercase_ : int = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowercase_ : Dict = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowercase_ : Optional[int] = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowercase_ : Any = tax_enc_dec_attention_module["key"]["kernel"] lowercase_ : List[str] = tax_enc_dec_attention_module["out"]["kernel"] lowercase_ : Any = tax_enc_dec_attention_module["query"]["kernel"] lowercase_ : Any = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowercase_ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowercase_ : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowercase_ : List[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowercase_ : Dict = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowercase_ : Optional[int] = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowercase_ : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowercase_ : Dict = flax_model.params["decoder"]["block"][str(SCREAMING_SNAKE_CASE_ )]["layer"] lowercase_ : str = tax_attention_key lowercase_ : Union[str, Any] = tax_attention_out lowercase_ : List[Any] = tax_attention_query lowercase_ : str = tax_attention_value lowercase_ : List[Any] = tax_pre_attention_layer_norm lowercase_ : int = tax_enc_dec_attention_key lowercase_ : List[Any] = tax_enc_dec_attention_out lowercase_ : List[str] = tax_enc_dec_attention_query lowercase_ : str = tax_enc_dec_attention_value lowercase_ : Tuple = tax_cross_layer_norm if split_mlp_wi: lowercase_ : int = tax_mlp_wi_a lowercase_ : str = tax_mlp_wi_a else: lowercase_ : List[str] = tax_mlp_wi lowercase_ : List[Any] = tax_mlp_wo lowercase_ : List[str] = txa_mlp_layer_norm lowercase_ : Union[str, Any] = flax_model_decoder_layer_block # Decoder Normalization lowercase_ : Tuple = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowercase_ : int = txa_decoder_norm # Only for layer 0: lowercase_ : str = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowercase_ : Tuple = tax_decoder_rel_embedding # Token Embeddings lowercase_ : int = tax_model["target"]["token_embedder"]["embedding"] lowercase_ : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowercase_ : Optional[Any] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) UpperCamelCase__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
700
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase__ = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers UpperCamelCase__ = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" require_version(deps[pkg] , _SCREAMING_SNAKE_CASE )
702
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): @staticmethod @abstractmethod def lowerCAmelCase__ ( a : Optional[int] ): '''simple docstring''' raise NotImplementedError() @abstractmethod def lowerCAmelCase__ ( self : str ): '''simple docstring''' raise NotImplementedError()
703
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
0
'''simple docstring''' from typing import List import numpy as np def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = {key: len(_A ) for key, value in gen_kwargs.items() if isinstance(_A , _A )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F"""\t- key {key} has length {length}""" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) lowercase_ : Optional[Any] = max(lists_lengths.values() , default=0 ) return max(1 , _A ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for group_idx in range(_A ): lowercase_ : str = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowercase_ : List[str] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowercase_ : Tuple = range(_A , start + num_shards_to_add ) shards_indices_per_group.append(_A ) return shards_indices_per_group def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : int = _number_of_shards_in_gen_kwargs(_A ) if num_shards == 1: return [dict(_A )] else: lowercase_ : Any = _distribute_shards(num_shards=_A , max_num_jobs=_A ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_A , _A ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_A ) ) ] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _A ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = {len(_A ) for value in gen_kwargs.values() if isinstance(_A , _A )} lowercase_ : Any = {} for size in list_sizes: lowercase_ : str = list(range(_A ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowercase_ : Tuple = dict(_A ) for key, value in shuffled_kwargs.items(): if isinstance(_A , _A ): lowercase_ : Tuple = [value[i] for i in indices_per_size[len(_A )]] return shuffled_kwargs
705
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
640
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( "split_dict" , [ SplitDict(), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 , dataset_name="my_dataset" )} ), SplitDict({"train": SplitInfo(name="train" , num_bytes=1337 , num_examples=42 )} ), SplitDict({"train": SplitInfo()} ), ] , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = split_dict._to_yaml_list() assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) lowercase_ : Union[str, Any] = SplitDict._from_yaml_list(lowerCamelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump lowercase_ : Dict = None # the split name of split_dict takes over the name of the split info object lowercase_ : List[str] = split_name assert split_dict == reloaded @pytest.mark.parametrize( "split_info" , [SplitInfo(), SplitInfo(dataset_name=lowerCamelCase_ ), SplitInfo(dataset_name="my_dataset" )] ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = asdict(SplitDict({"train": split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
706
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MultilingualCLIP , a : XLMRobertaTokenizer , a : UNetaDConditionModel , a : Union[DDIMScheduler, DDPMScheduler] , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=a , tokenizer=a , unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] , a : str , a : Tuple , a : List[str] ): '''simple docstring''' if latents is None: lowercase_ : List[str] = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : str = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Union[str, Any] , a : str , a : Tuple=None , ): '''simple docstring''' lowercase_ : Tuple = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( a , padding="max_length" , truncation=a , max_length=7_7 , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : Union[str, Any] = text_inputs.input_ids lowercase_ : Tuple = self.tokenizer(a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a , a ): lowercase_ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase_ : List[str] = text_input_ids.to(a ) lowercase_ : int = text_inputs.attention_mask.to(a ) lowercase_ , lowercase_ : Optional[int] = self.text_encoder( input_ids=a , attention_mask=a ) lowercase_ : str = prompt_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(a , dim=0 ) lowercase_ : int = text_mask.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] if negative_prompt is None: lowercase_ : int = [""] * batch_size elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase_ : Tuple = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: lowercase_ : Dict = negative_prompt lowercase_ : str = self.tokenizer( a , padding="max_length" , max_length=7_7 , truncation=a , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : List[Any] = uncond_input.input_ids.to(a ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(a ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=a , attention_mask=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : List[str] = negative_prompt_embeds.shape[1] lowercase_ : Dict = negative_prompt_embeds.repeat(1 , a ) lowercase_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , a , 1 ) lowercase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , a , -1 ) lowercase_ : List[Any] = uncond_text_mask.repeat_interleave(a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self : Tuple , a : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(a , a , prev_module_hook=a ) if self.safety_checker is not None: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(self.safety_checker , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[str, List[str]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Optional[Union[str, List[str]]] = None , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , a ): lowercase_ : List[str] = 1 elif isinstance(a , a ): lowercase_ : int = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) lowercase_ : Tuple = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : List[str] = self._encode_prompt( a , a , a , a , a ) if isinstance(a , a ): lowercase_ : Optional[int] = torch.cat(a , dim=0 ) if isinstance(a , a ): lowercase_ : int = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[int] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) lowercase_ : List[str] = self.scheduler.timesteps lowercase_ : str = self.unet.config.in_channels lowercase_ , lowercase_ : int = get_new_h_w(a , a , self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( a , a , a , generator=a , ).prev_sample # post-processing lowercase_ : Union[str, Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Optional[int] = image.clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' from __future__ import annotations from math import pow, sqrt def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCamelCase , 2 ) - pow(_UpperCamelCase , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCamelCase , 2 ) - pow(_UpperCamelCase , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCamelCase , 2 ) + pow(_UpperCamelCase , 2 ) )} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class _UpperCAmelCase ( __A ): __lowerCamelCase: str = 'lxmert' __lowerCamelCase: str = {} def __init__( self : Optional[Any] , a : Dict=3_0_5_2_2 , a : int=7_6_8 , a : Optional[Any]=1_2 , a : Tuple=9_5_0_0 , a : List[str]=1_6_0_0 , a : Union[str, Any]=4_0_0 , a : Optional[int]=3_0_7_2 , a : List[str]="gelu" , a : Optional[Any]=0.1 , a : List[str]=0.1 , a : Tuple=5_1_2 , a : Union[str, Any]=2 , a : Optional[Any]=0.02 , a : int=1e-12 , a : int=9 , a : Dict=5 , a : Optional[Any]=5 , a : int=2_0_4_8 , a : Dict=4 , a : int=6.67 , a : List[Any]=True , a : Dict=True , a : Optional[Any]=True , a : List[str]=True , a : str=True , a : List[Any]=True , a : Optional[Any]=True , **a : Tuple , ): '''simple docstring''' lowercase_ : Dict = vocab_size lowercase_ : Optional[int] = hidden_size lowercase_ : int = num_attention_heads lowercase_ : int = hidden_act lowercase_ : List[Any] = intermediate_size lowercase_ : str = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : int = type_vocab_size lowercase_ : Tuple = initializer_range lowercase_ : Optional[Any] = layer_norm_eps lowercase_ : Dict = num_qa_labels lowercase_ : List[str] = num_object_labels lowercase_ : Optional[Any] = num_attr_labels lowercase_ : Tuple = l_layers lowercase_ : Optional[Any] = x_layers lowercase_ : List[str] = r_layers lowercase_ : List[Any] = visual_feat_dim lowercase_ : List[str] = visual_pos_dim lowercase_ : Tuple = visual_loss_normalizer lowercase_ : Optional[int] = task_matched lowercase_ : Tuple = task_mask_lm lowercase_ : Union[str, Any] = task_obj_predict lowercase_ : List[Any] = task_qa lowercase_ : Dict = visual_obj_loss lowercase_ : int = visual_attr_loss lowercase_ : List[Any] = visual_feat_loss lowercase_ : Union[str, Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a )
708
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = ['image_processor', 'tokenizer'] __lowerCamelCase: Dict = 'Pix2StructImageProcessor' __lowerCamelCase: Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : str , a : Dict , a : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = False super().__init__(a , a ) def __call__( self : Tuple , a : int=None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : Optional[int] = 2_0_4_8 , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase_ : Dict = self.tokenizer lowercase_ : Tuple = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase_ : Optional[int] = self.image_processor( a , return_tensors=a , max_patches=a , **a ) else: # add pixel_values and bbox lowercase_ : Any = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a ) if text is not None and not self.image_processor.is_vqa: lowercase_ : int = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: lowercase_ : str = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase_ : Dict = text_encoding.pop("input_ids" ) else: lowercase_ : str = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def lowerCAmelCase__ ( self : Any , *a : str , **a : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def lowerCAmelCase__ ( self : str , *a : Optional[int] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
640
0
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = "▁" UpperCamelCase__ = {"vocab_file": "sentencepiece.bpe.model"} UpperCamelCase__ = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } UpperCamelCase__ = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off UpperCamelCase__ = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase: int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: Dict = ["input_ids", "attention_mask"] __lowerCamelCase: List[int] = [] __lowerCamelCase: List[int] = [] def __init__( self : str , a : Dict , a : Optional[int]="<s>" , a : Dict="</s>" , a : List[str]="</s>" , a : int="<s>" , a : Union[str, Any]="<unk>" , a : Dict="<pad>" , a : List[Any]="<mask>" , a : str=None , a : Tuple=None , a : Optional[Any]=None , a : Optional[Any] = None , a : Tuple=None , a : Optional[Any]=False , **a : str , ): '''simple docstring''' lowercase_ : List[str] = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token lowercase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs lowercase_ : Any = legacy_behaviour super().__init__( bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) lowercase_ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : List[Any] = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : str = 1 lowercase_ : Union[str, Any] = len(self.sp_model ) lowercase_ : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } lowercase_ : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} lowercase_ : Optional[int] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase_ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase_ : Any = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase_ : Optional[Any] = src_lang if src_lang is not None else "eng_Latn" lowercase_ : Optional[int] = self.lang_code_to_id[self._src_lang] lowercase_ : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Dict ): '''simple docstring''' lowercase_ : int = self.__dict__.copy() lowercase_ : str = None lowercase_ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict , a : List[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowercase_ : Dict = {} lowercase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__ ( self : List[Any] , a : List[str] ): '''simple docstring''' lowercase_ : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__ ( self : List[str] , a : Any , a : Dict = None , a : Any = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) lowercase_ : Optional[int] = [1] * len(self.prefix_tokens ) lowercase_ : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def lowerCAmelCase__ ( self : List[Any] , a : Any , a : Optional[int] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__ ( self : Dict , a : Optional[Any] , a : Dict = None ): '''simple docstring''' lowercase_ : Optional[Any] = [self.sep_token_id] lowercase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : Any , a : Tuple , a : List[Any] , **a : str ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowercase_ : Union[str, Any] = src_lang lowercase_ : str = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) lowercase_ : Union[str, Any] = self.convert_tokens_to_ids(UpperCamelCase_ ) lowercase_ : Optional[int] = tgt_lang_id return inputs def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[Any] = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase__ ( self : List[Any] , a : Optional[Any] ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[Any] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Union[str, Any] = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase__ ( self : Optional[int] , a : List[Any] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase__ ( self : int , a : Tuple ): '''simple docstring''' lowercase_ : str = "".join(UpperCamelCase_ ).replace(UpperCamelCase_ , " " ).strip() return out_string def lowerCAmelCase__ ( self : Dict , a : Dict , a : int = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase_ : List[str] = os.path.join( UpperCamelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , "wb" ) as fi: lowercase_ : Dict = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def lowerCAmelCase__ ( self : List[str] , a : Union[str, Any] , a : str = "eng_Latn" , a : List[Any] = None , a : int = "fra_Latn" , **a : Any , ): '''simple docstring''' lowercase_ : Tuple = src_lang lowercase_ : Dict = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__ ( self : Dict , a : str ): '''simple docstring''' lowercase_ : int = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase_ : Union[str, Any] = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : Dict = [self.cur_lang_code] lowercase_ : Any = [self.eos_token_id] def lowerCAmelCase__ ( self : Union[str, Any] , a : str ): '''simple docstring''' lowercase_ : int = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase_ : Union[str, Any] = [] lowercase_ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: lowercase_ : Tuple = [self.cur_lang_code] lowercase_ : Any = [self.eos_token_id]
710
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig UpperCamelCase__ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = 'maskformer' __lowerCamelCase: str = {'hidden_size': 'mask_feature_size'} __lowerCamelCase: Optional[int] = ['resnet', 'swin'] __lowerCamelCase: Any = ['detr'] def __init__( self : str , a : int = 2_5_6 , a : int = 2_5_6 , a : float = 0.1 , a : bool = False , a : Optional[Dict] = None , a : Optional[Dict] = None , a : float = 0.02 , a : float = 1.0 , a : float = 1.0 , a : float = 1.0 , a : float = 20.0 , a : Optional[bool] = None , **a : List[str] , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ : int = SwinConfig( image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(__A , __A ): lowercase_ : Optional[Any] = backbone_config.pop("model_type" ) lowercase_ : str = CONFIG_MAPPING[backbone_model_type] lowercase_ : Union[str, Any] = config_class.from_dict(__A ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ : Optional[Any] = DetrConfig() else: # verify that the decoder is supported lowercase_ : Dict = ( decoder_config.pop("model_type" ) if isinstance(__A , __A ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(__A , __A ): lowercase_ : str = CONFIG_MAPPING[decoder_type] lowercase_ : List[str] = config_class.from_dict(__A ) lowercase_ : Tuple = backbone_config lowercase_ : str = decoder_config # main feature dimension for the model lowercase_ : Dict = fpn_feature_size lowercase_ : Any = mask_feature_size # initializer lowercase_ : Optional[int] = init_std lowercase_ : str = init_xavier_std # Hungarian matcher && loss lowercase_ : Optional[int] = cross_entropy_weight lowercase_ : Union[str, Any] = dice_weight lowercase_ : Optional[Any] = mask_weight lowercase_ : Any = use_auxiliary_loss lowercase_ : List[Any] = no_object_weight lowercase_ : List[Any] = output_auxiliary_logits lowercase_ : int = self.decoder_config.encoder_attention_heads lowercase_ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**__A ) @classmethod def lowerCAmelCase__ ( cls : Any , a : PretrainedConfig , a : PretrainedConfig , **a : Optional[int] ): '''simple docstring''' return cls( backbone_config=__A , decoder_config=__A , **__A , ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = copy.deepcopy(self.__dict__ ) lowercase_ : Dict = self.backbone_config.to_dict() lowercase_ : Union[str, Any] = self.decoder_config.to_dict() lowercase_ : Tuple = self.__class__.model_type return output
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
0
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( UpperCamelCase_ , unittest.TestCase ): __lowerCamelCase: List[Any] = LxmertTokenizer __lowerCamelCase: List[Any] = LxmertTokenizerFast __lowerCamelCase: Optional[Any] = True __lowerCamelCase: List[Any] = True def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' super().setUp() lowercase_ : str = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowercase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self : Tuple , a : Union[str, Any] ): '''simple docstring''' lowercase_ : List[str] = """UNwant\u00E9d,running""" lowercase_ : str = """unwanted, running""" return input_text, output_text def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer_class(self.vocab_file ) lowercase_ : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [7, 4, 5, 1_0, 8, 9] ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ : Dict = self.get_tokenizer() lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Any = """I was born in 92000, and this is falsé.""" lowercase_ : Union[str, Any] = tokenizer.tokenize(_a ) lowercase_ : Tuple = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) lowercase_ : Tuple = tokenizer.encode(_a , add_special_tokens=_a ) lowercase_ : int = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) lowercase_ : List[Any] = self.get_rust_tokenizer() lowercase_ : Tuple = tokenizer.encode(_a ) lowercase_ : int = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a )
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Optional[Any] , a : Any ): '''simple docstring''' lowercase_ : List[Any] = str(id_ ) lowercase_ : List[str] = None lowercase_ : Tuple = None lowercase_ : Dict = [] lowercase_ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : Optional[Any] , a : int ): '''simple docstring''' return self.key < other.key def __repr__( self : Union[str, Any] ): '''simple docstring''' return self.id def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[int] ): '''simple docstring''' self.neighbors.append(a ) def lowerCAmelCase__ ( self : Dict , a : int , a : Optional[int] ): '''simple docstring''' lowercase_ : int = weight def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = [] for u in graph: lowercase_ : List[Any] = math.inf lowercase_ : str = None lowercase_ : Tuple = 0 lowercase_ : Tuple = graph[:] while q: lowercase_ : List[Any] = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase_ : Optional[int] = u lowercase_ : Union[str, Any] = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for u in graph: lowercase_ : str = math.inf lowercase_ : int = None lowercase_ : List[Any] = 0 lowercase_ : str = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: lowercase_ : List[Any] = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase_ : str = u lowercase_ : Optional[int] = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
640
0
import numpy # List of input, output pairs UpperCamelCase__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCamelCase__ = [2, 4, 1, 5] UpperCamelCase__ = len(train_data) UpperCamelCase__ = 0.0_09 def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase="train" ): """simple docstring""" return calculate_hypothesis_value(__UpperCAmelCase , __UpperCAmelCase ) - output( __UpperCAmelCase , __UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = 0 for i in range(len(__UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=m ): """simple docstring""" lowercase_ : Optional[Any] = 0 for i in range(__UpperCAmelCase ): if index == -1: summation_value += _error(__UpperCAmelCase ) else: summation_value += _error(__UpperCAmelCase ) * train_data[i][0][index] return summation_value def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = summation_of_cost_derivative(__UpperCAmelCase , __UpperCAmelCase ) / m return cost_derivative_value def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" global parameter_vector # Tune these values to set a tolerance value for predicted output lowercase_ : str = 0.000002 lowercase_ : Optional[int] = 0 lowercase_ : Dict = 0 while True: j += 1 lowercase_ : Optional[Any] = [0, 0, 0, 0] for i in range(0 , len(__UpperCAmelCase ) ): lowercase_ : Optional[Any] = get_cost_derivative(i - 1 ) lowercase_ : List[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCAmelCase , __UpperCAmelCase , atol=__UpperCAmelCase , rtol=__UpperCAmelCase , ): break lowercase_ : Union[str, Any] = temp_parameter_vector print(("Number of iterations:", j) ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" for i in range(len(__UpperCAmelCase ) ): print(("Actual output value:", output(__UpperCAmelCase , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(__UpperCAmelCase , "test" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
713
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Any = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
640
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Union[str, Any] = 'vit_msn' def __init__( self : int , a : str=7_6_8 , a : List[Any]=1_2 , a : Optional[int]=1_2 , a : Any=3_0_7_2 , a : Optional[Any]="gelu" , a : Union[str, Any]=0.0 , a : List[str]=0.0 , a : int=0.02 , a : Tuple=1e-06 , a : int=2_2_4 , a : Tuple=1_6 , a : Optional[int]=3 , a : Union[str, Any]=True , **a : List[Any] , ): '''simple docstring''' super().__init__(**_UpperCAmelCase ) lowercase_ : Any = hidden_size lowercase_ : List[str] = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : Optional[int] = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : int = hidden_dropout_prob lowercase_ : str = attention_probs_dropout_prob lowercase_ : Tuple = initializer_range lowercase_ : List[Any] = layer_norm_eps lowercase_ : int = image_size lowercase_ : List[Any] = patch_size lowercase_ : Optional[Any] = num_channels lowercase_ : List[str] = qkv_bias
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig UpperCamelCase__ = logging.get_logger(__name__) # General docstring UpperCamelCase__ = "RegNetConfig" # Base docstring UpperCamelCase__ = "facebook/regnet-y-040" UpperCamelCase__ = [1, 1088, 7, 7] # Image classification docstring UpperCamelCase__ = "facebook/regnet-y-040" UpperCamelCase__ = "tabby, tabby cat" UpperCamelCase__ = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : List[Any] , a : int , a : int = 3 , a : int = 1 , a : int = 1 , a : Optional[str] = "relu" , **a : str , ): '''simple docstring''' super().__init__(**_UpperCamelCase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ : List[Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ : Optional[int] = tf.keras.layers.ConvaD( filters=_UpperCamelCase , kernel_size=_UpperCamelCase , strides=_UpperCamelCase , padding="VALID" , groups=_UpperCamelCase , use_bias=_UpperCamelCase , name="convolution" , ) lowercase_ : Optional[Any] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) lowercase_ : Optional[Any] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase__ ( self : List[Any] , a : int ): '''simple docstring''' lowercase_ : List[Any] = self.convolution(self.padding(_UpperCamelCase ) ) lowercase_ : List[Any] = self.normalization(_UpperCamelCase ) lowercase_ : Optional[Any] = self.activation(_UpperCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : Optional[Any] , a : RegNetConfig , **a : Union[str, Any] ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : List[str] = config.num_channels lowercase_ : Any = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="embedder" , ) def lowerCAmelCase__ ( self : List[Any] , a : Dict ): '''simple docstring''' lowercase_ : Optional[int] = shape_list(_UpperCamelCase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ : Union[str, Any] = tf.transpose(_UpperCamelCase , perm=(0, 2, 3, 1) ) lowercase_ : Optional[int] = self.embedder(_UpperCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : Any , a : int , a : int = 2 , **a : List[Any] ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : Any = tf.keras.layers.ConvaD( filters=_UpperCamelCase , kernel_size=1 , strides=_UpperCamelCase , use_bias=_UpperCamelCase , name="convolution" ) lowercase_ : Any = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="normalization" ) def lowerCAmelCase__ ( self : str , a : tf.Tensor , a : bool = False ): '''simple docstring''' return self.normalization(self.convolution(_UpperCamelCase ) , training=_UpperCamelCase ) class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : List[Any] , a : int , a : int , **a : List[Any] ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : Optional[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCamelCase , name="pooler" ) lowercase_ : Optional[Any] = [ tf.keras.layers.ConvaD(filters=_UpperCamelCase , kernel_size=1 , activation="relu" , name="attention.0" ), tf.keras.layers.ConvaD(filters=_UpperCamelCase , kernel_size=1 , activation="sigmoid" , name="attention.2" ), ] def lowerCAmelCase__ ( self : Dict , a : int ): '''simple docstring''' lowercase_ : str = self.pooler(_UpperCamelCase ) for layer_module in self.attention: lowercase_ : str = layer_module(_UpperCamelCase ) lowercase_ : Dict = hidden_state * pooled return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : int , a : RegNetConfig , a : int , a : int , a : int = 1 , **a : List[str] ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : List[Any] = in_channels != out_channels or stride != 1 lowercase_ : Optional[int] = max(1 , out_channels // config.groups_width ) lowercase_ : Dict = ( TFRegNetShortCut(_UpperCamelCase , stride=_UpperCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ : Optional[Any] = [ TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase , name="layer.2" ), ] lowercase_ : Dict = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : Dict , a : Any ): '''simple docstring''' lowercase_ : Union[str, Any] = hidden_state for layer_module in self.layers: lowercase_ : Optional[Any] = layer_module(_UpperCamelCase ) lowercase_ : Optional[Any] = self.shortcut(_UpperCamelCase ) hidden_state += residual lowercase_ : Optional[Any] = self.activation(_UpperCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : Dict , a : RegNetConfig , a : int , a : int , a : int = 1 , **a : str ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : Optional[Any] = in_channels != out_channels or stride != 1 lowercase_ : Optional[Any] = max(1 , out_channels // config.groups_width ) lowercase_ : Any = ( TFRegNetShortCut(_UpperCamelCase , stride=_UpperCamelCase , name="shortcut" ) if should_apply_shortcut else tf.keras.layers.Activation("linear" , name="shortcut" ) ) lowercase_ : Any = [ TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=config.hidden_act , name="layer.0" ), TFRegNetConvLayer( _UpperCamelCase , stride=_UpperCamelCase , groups=_UpperCamelCase , activation=config.hidden_act , name="layer.1" ), TFRegNetSELayer(_UpperCamelCase , reduced_channels=int(round(in_channels / 4 ) ) , name="layer.2" ), TFRegNetConvLayer(_UpperCamelCase , kernel_size=1 , activation=_UpperCamelCase , name="layer.3" ), ] lowercase_ : List[str] = ACTaFN[config.hidden_act] def lowerCAmelCase__ ( self : List[str] , a : Optional[Any] ): '''simple docstring''' lowercase_ : str = hidden_state for layer_module in self.layers: lowercase_ : Tuple = layer_module(_UpperCamelCase ) lowercase_ : Optional[int] = self.shortcut(_UpperCamelCase ) hidden_state += residual lowercase_ : Any = self.activation(_UpperCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : Any , a : RegNetConfig , a : int , a : int , a : int = 2 , a : int = 2 , **a : int ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : Any = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer lowercase_ : List[Any] = [ # downsampling is done in the first layer with stride of 2 layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , stride=_UpperCamelCase , name="layers.0" ), *[layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , name=f"""layers.{i+1}""" ) for i in range(depth - 1 )], ] def lowerCAmelCase__ ( self : Tuple , a : str ): '''simple docstring''' for layer_module in self.layers: lowercase_ : Union[str, Any] = layer_module(_UpperCamelCase ) return hidden_state class _UpperCAmelCase ( tf.keras.layers.Layer ): def __init__( self : int , a : RegNetConfig , **a : Any ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( _UpperCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="stages.0" , ) ) lowercase_ : Tuple = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(_UpperCamelCase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , depth=_UpperCamelCase , name=f"""stages.{i+1}""" ) ) def lowerCAmelCase__ ( self : Union[str, Any] , a : tf.Tensor , a : bool = False , a : bool = True ): '''simple docstring''' lowercase_ : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ : Union[str, Any] = hidden_states + (hidden_state,) lowercase_ : Tuple = stage_module(_UpperCamelCase ) if output_hidden_states: lowercase_ : List[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=_UpperCamelCase , hidden_states=_UpperCamelCase ) @keras_serializable class _UpperCAmelCase ( tf.keras.layers.Layer ): __lowerCamelCase: Union[str, Any] = RegNetConfig def __init__( self : Optional[Any] , a : List[str] , **a : Any ): '''simple docstring''' super().__init__(**_UpperCamelCase ) lowercase_ : Optional[Any] = config lowercase_ : Dict = TFRegNetEmbeddings(_UpperCamelCase , name="embedder" ) lowercase_ : Optional[int] = TFRegNetEncoder(_UpperCamelCase , name="encoder" ) lowercase_ : str = tf.keras.layers.GlobalAveragePoolingaD(keepdims=_UpperCamelCase , name="pooler" ) @unpack_inputs def lowerCAmelCase__ ( self : Optional[int] , a : tf.Tensor , a : Optional[bool] = None , a : Optional[bool] = None , a : bool = False , ): '''simple docstring''' lowercase_ : Tuple = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : Optional[int] = self.embedder(_UpperCamelCase , training=_UpperCamelCase ) lowercase_ : int = self.encoder( _UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , training=_UpperCamelCase ) lowercase_ : Dict = encoder_outputs[0] lowercase_ : Any = self.pooler(_UpperCamelCase ) # Change to NCHW output format have uniformity in the modules lowercase_ : Optional[int] = tf.transpose(_UpperCamelCase , perm=(0, 3, 1, 2) ) lowercase_ : Any = tf.transpose(_UpperCamelCase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ : int = tuple([tf.transpose(_UpperCamelCase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCamelCase , pooler_output=_UpperCamelCase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class _UpperCAmelCase ( __lowerCAmelCase ): __lowerCamelCase: Tuple = RegNetConfig __lowerCamelCase: int = 'regnet' __lowerCamelCase: str = 'pixel_values' @property def lowerCAmelCase__ ( self : int ): '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} UpperCamelCase__ = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" UpperCamelCase__ = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , __lowerCAmelCase , ) class _UpperCAmelCase ( __lowerCAmelCase ): def __init__( self : List[Any] , a : RegNetConfig , *a : int , **a : List[Any] ): '''simple docstring''' super().__init__(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) lowercase_ : int = TFRegNetMainLayer(_UpperCamelCase , name="regnet" ) @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase__ ( self : List[Any] , a : tf.Tensor , a : Optional[bool] = None , a : Optional[bool] = None , a : Tuple=False , ): '''simple docstring''' lowercase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : str = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : List[str] = self.regnet( pixel_values=_UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , training=_UpperCamelCase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __lowerCAmelCase , ) class _UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ): def __init__( self : str , a : RegNetConfig , *a : Optional[Any] , **a : List[Any] ): '''simple docstring''' super().__init__(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) lowercase_ : Any = config.num_labels lowercase_ : Union[str, Any] = TFRegNetMainLayer(_UpperCamelCase , name="regnet" ) # classification head lowercase_ : Union[str, Any] = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name="classifier.1" ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(_UpperCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase__ ( self : Optional[int] , a : tf.Tensor = None , a : tf.Tensor = None , a : bool = None , a : bool = None , a : List[Any]=False , ): '''simple docstring''' lowercase_ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : List[str] = self.regnet( _UpperCamelCase , output_hidden_states=_UpperCamelCase , return_dict=_UpperCamelCase , training=_UpperCamelCase ) lowercase_ : Dict = outputs.pooler_output if return_dict else outputs[1] lowercase_ : Any = self.classifier[0](_UpperCamelCase ) lowercase_ : List[Any] = self.classifier[1](_UpperCamelCase ) lowercase_ : List[Any] = None if labels is None else self.hf_compute_loss(labels=_UpperCamelCase , logits=_UpperCamelCase ) if not return_dict: lowercase_ : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=_UpperCamelCase , logits=_UpperCamelCase , hidden_states=outputs.hidden_states )
715
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ = 'scheduler_config.json' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: int = 1 __lowerCamelCase: List[Any] = 2 __lowerCamelCase: Optional[Any] = 3 __lowerCamelCase: int = 4 __lowerCamelCase: Optional[int] = 5 @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: jnp.ndarray class _UpperCAmelCase : __lowerCamelCase: List[str] = SCHEDULER_CONFIG_NAME __lowerCamelCase: Optional[int] = ['dtype'] __lowerCamelCase: int = [] __lowerCamelCase: Dict = True @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Dict[str, Any] = None , a : Optional[str] = None , a : Union[str, Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ , lowercase_ : Any = cls.load_config( pretrained_model_name_or_path=a , subfolder=a , return_unused_kwargs=a , **a , ) lowercase_ , lowercase_ : Union[str, Any] = cls.from_config(a , return_unused_kwargs=a , **a ) if hasattr(a , "create_state" ) and getattr(a , "has_state" , a ): lowercase_ : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : int , a : Union[str, os.PathLike] , a : bool = False , **a : int ): '''simple docstring''' self.save_config(save_directory=a , push_to_hub=a , **a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase_ : str = importlib.import_module(__name__.split("." )[0] ) lowercase_ : Optional[Any] = [ getattr(a , a ) for c in compatible_classes_str if hasattr(a , a ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowercase_ : int = [] for i in range(_UpperCamelCase ): lowercase_ : Union[str, Any] = i / num_diffusion_timesteps lowercase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class _UpperCAmelCase : __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Optional[int] ): '''simple docstring''' lowercase_ : Any = scheduler.config if config.trained_betas is not None: lowercase_ : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase_ : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase_ : str = 1.0 - betas lowercase_ : Dict = jnp.cumprod(a , axis=0 ) return cls( alphas=a , betas=a , alphas_cumprod=a , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = state.alphas_cumprod lowercase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase_ : int = sqrt_alpha_prod.flatten() lowercase_ : Union[str, Any] = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) lowercase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() lowercase_ : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
640
0
'''simple docstring''' from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return np.array_equal(_lowerCamelCase , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = v.conjugate().T lowercase_ : Union[str, Any] = v_star.dot(_lowerCamelCase ) assert isinstance(_lowerCamelCase , np.ndarray ) return (v_star_dot.dot(_lowerCamelCase )) / (v_star.dot(_lowerCamelCase )) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Tuple = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) lowercase_ : Dict = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCamelCase ), F"""{a} is not hermitian.""" print(rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) ) lowercase_ : Optional[int] = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCamelCase ), F"""{a} is not hermitian.""" assert rayleigh_quotient(_lowerCamelCase , _lowerCamelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
716
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( _A ): __lowerCamelCase: str = 'encoder-decoder' __lowerCamelCase: Any = True def __init__( self : Dict , **a : List[Any] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase_ : List[Any] = kwargs.pop("encoder" ) lowercase_ : List[Any] = encoder_config.pop("model_type" ) lowercase_ : Optional[int] = kwargs.pop("decoder" ) lowercase_ : Optional[int] = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig lowercase_ : int = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) lowercase_ : str = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) lowercase_ : int = True @classmethod def lowerCAmelCase__ ( cls : List[str] , a : PretrainedConfig , a : PretrainedConfig , **a : List[Any] ): '''simple docstring''' logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowercase_ : Optional[int] = True lowercase_ : Union[str, Any] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCamelCase ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = copy.deepcopy(self.__dict__ ) lowercase_ : List[Any] = self.encoder.to_dict() lowercase_ : Union[str, Any] = self.decoder.to_dict() lowercase_ : Dict = self.__class__.model_type return output
717
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
0
'''simple docstring''' import math class _UpperCAmelCase : def __init__( self : Union[str, Any] , a : List[str]=0 ): # a graph with Node 0,1,...,N-1 '''simple docstring''' lowercase_ : Tuple = n lowercase_ : List[Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight lowercase_ : Any = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def lowerCAmelCase__ ( self : Dict , a : Optional[int] , a : Union[str, Any] , a : Union[str, Any] ): '''simple docstring''' lowercase_ : Optional[Any] = w def lowerCAmelCase__ ( self : str ): '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowercase_ : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def lowerCAmelCase__ ( self : int , a : Union[str, Any] , a : Optional[int] ): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": UpperCamelCase__ = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
718
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _enforce_args(_A , _A ) if n == 0: return 0 lowercase_ : Optional[Any] = float("-inf" ) for i in range(1 , n + 1 ): lowercase_ : Optional[Any] = max( _A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) ) return max_revue def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _enforce_args(_A , _A ) lowercase_ : List[Any] = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A , _A , _A ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowercase_ : List[Any] = float("-inf" ) for i in range(1 , n + 1 ): lowercase_ : Tuple = max( _A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , ) lowercase_ : int = max_revenue return max_rev[n] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _enforce_args(_A , _A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowercase_ : Optional[int] = [float("-inf" ) for _ in range(n + 1 )] lowercase_ : Tuple = 0 for i in range(1 , n + 1 ): lowercase_ : Union[str, Any] = max_rev[i] for j in range(1 , i + 1 ): lowercase_ : Optional[int] = max(_A , prices[j - 1] + max_rev[i - j] ) lowercase_ : int = max_revenue_i return max_rev[n] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if n < 0: lowercase_ : Dict = F"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(_A ) if n > len(_A ): lowercase_ : Union[str, Any] = ( "Each integral piece of rod must have a corresponding price. " F"""Got n = {n} but length of prices = {len(_A )}""" ) raise ValueError(_A ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = [6, 10, 12, 15, 20, 23] lowercase_ : Optional[int] = len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowercase_ : Dict = 36 lowercase_ : Optional[int] = top_down_cut_rod(_A , _A ) lowercase_ : int = bottom_up_cut_rod(_A , _A ) lowercase_ : str = naive_cut_rod_recursive(_A , _A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
719
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _UpperCAmelCase ( _a , unittest.TestCase ): __lowerCamelCase: Dict = DebertaTokenizer __lowerCamelCase: Optional[int] = True __lowerCamelCase: Optional[Any] = DebertaTokenizerFast def lowerCAmelCase__ ( self : str ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ : Optional[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowercase_ : List[Any] = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) lowercase_ : List[str] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase_ : Optional[Any] = {"unk_token": "[UNK]"} lowercase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case_ ) ) def lowerCAmelCase__ ( self : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case_ ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[Any] ): '''simple docstring''' lowercase_ : List[str] = "lower newer" lowercase_ : Any = "lower newer" return input_text, output_text def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : List[str] = "lower newer" lowercase_ : Any = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase_ : Dict = tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) lowercase_ : Optional[int] = tokens + [tokenizer.unk_token] lowercase_ : str = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , snake_case_ ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.get_tokenizer() lowercase_ : str = tokenizer("Hello" , "World" ) lowercase_ : str = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , snake_case_ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowercase_ : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) lowercase_ : Optional[Any] = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) lowercase_ : Any = tokenizer.encode( "sequence builders" , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) lowercase_ : int = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=snake_case_ , add_prefix_space=snake_case_ ) lowercase_ : List[str] = tokenizer.build_inputs_with_special_tokens(snake_case_ ) lowercase_ : Any = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Tuple = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowercase_ : Optional[Any] = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowercase_ : str = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowercase_ : Dict = tokenizer(snake_case_ , padding=snake_case_ ) lowercase_ : List[str] = [tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) for seq in encoding["input_ids"]] # fmt: off lowercase_ : int = { "input_ids": [ [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 3_5, 8_3, 2_5_1_9_1, 1_6_3, 1_8_8_5_4, 1_3, 1_2_1_5_6, 1_2, 1_6_1_0_1, 2_5_3_7_6, 1_3_8_0_7, 9, 2_2_2_0_5, 2_7_8_9_3, 1_6_3_5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_1_1_8, 1_1_1_2_6, 5_6_5, 2_4_5_3_6, 8_0, 4_3_7_9_7, 4_8_7_8, 7_3_7_3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1_3_3, 7_8, 6_5, 1_6, 1_0, 3_7_2_4, 1_5_3_8, 3_3_1_8_3, 1_1_3_0_3, 4_3_7_9_7, 1_9_3_8, 4, 8_7_0, 2_4_1_6_5, 2_9_1_0_5, 5, 7_3_9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 3_6_1_7_3, 8_8, 8_0, 6_5_0, 7_8_2_1, 4_5_9_4_0, 6, 5_2, 2_5_5_9, 5, 1_8_3_6, 9, 5, 7_3_9_7, 1_3_1_7_1, 3_1, 5, 1_8_3_6, 9, 3_2_6_4_4, 3_3_1_8_3, 1_1_3_0_3, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowercase_ : List[Any] = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , snake_case_ ) for expected, decoded in zip(snake_case_ , snake_case_ ): self.assertEqual(snake_case_ , snake_case_ )
720
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , **lowerCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = AutoConfig.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) lowercase_ : Optional[Any] = AutoModelForSeqaSeqLM.from_config(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) AutoTokenizer.from_pretrained(__UpperCamelCase ).save_pretrained(__UpperCamelCase ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class _UpperCAmelCase : def __init__( self : str , a : Union[str, Any] , a : Optional[Any]=1_4 , a : Any=7 , a : Union[str, Any]=True , a : Optional[int]=True , a : Optional[Any]=False , a : int=True , a : Any=9_9 , a : Dict=3_2 , a : str=4 , a : Any=4 , a : Optional[Any]=4 , a : List[Any]=3_7 , a : Optional[int]="gelu" , a : Dict=0.1 , a : Optional[int]=0.1 , a : Any=5_1_2 , a : int=0.02 , ): '''simple docstring''' lowercase_ : Optional[int] = parent lowercase_ : str = batch_size lowercase_ : Optional[Any] = seq_length lowercase_ : int = is_training lowercase_ : List[Any] = use_input_mask lowercase_ : Union[str, Any] = use_token_type_ids lowercase_ : Union[str, Any] = use_labels lowercase_ : Any = vocab_size lowercase_ : Dict = hidden_size lowercase_ : str = rotary_dim lowercase_ : Any = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : List[str] = intermediate_size lowercase_ : Optional[int] = hidden_act lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Any = max_position_embeddings lowercase_ : List[str] = initializer_range lowercase_ : List[Any] = None lowercase_ : Tuple = vocab_size - 1 lowercase_ : int = vocab_size - 1 lowercase_ : Dict = vocab_size - 1 def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[int] = None if self.use_input_mask: lowercase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Optional[Any] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=A_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : int = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Tuple = config_and_inputs lowercase_ : Tuple = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def lowerCAmelCase__ ( self : Dict , a : Any , a : List[str] , a : List[str] , a : Tuple ): '''simple docstring''' lowercase_ : Union[str, Any] = 2_0 lowercase_ : Optional[Any] = model_class_name(A_ ) lowercase_ : Dict = model.init_cache(input_ids.shape[0] , A_ ) lowercase_ : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowercase_ : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase_ : int = model( input_ids[:, :-1] , attention_mask=A_ , past_key_values=A_ , position_ids=A_ , ) lowercase_ : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowercase_ : Optional[Any] = model( input_ids[:, -1:] , attention_mask=A_ , past_key_values=outputs_cache.past_key_values , position_ids=A_ , ) lowercase_ : Optional[Any] = model(A_ ) lowercase_ : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowerCAmelCase__ ( self : str , a : Optional[int] , a : Optional[int] , a : Tuple , a : Union[str, Any] ): '''simple docstring''' lowercase_ : str = 2_0 lowercase_ : List[str] = model_class_name(A_ ) lowercase_ : int = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowercase_ : List[str] = model.init_cache(input_ids.shape[0] , A_ ) lowercase_ : List[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowercase_ : List[Any] = model( input_ids[:, :-1] , attention_mask=A_ , past_key_values=A_ , position_ids=A_ , ) lowercase_ : int = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="i4" ) lowercase_ : List[str] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=A_ , position_ids=A_ , ) lowercase_ : List[str] = model(A_ , attention_mask=A_ ) lowercase_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _UpperCAmelCase ( _lowercase , _lowercase , unittest.TestCase ): __lowerCamelCase: List[Any] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase: Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[Any] = FlaxGPTJModelTester(self ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ , lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(A_ , A_ , A_ , A_ ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ , lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( A_ , A_ , A_ , A_ ) @tooslow def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : int = GPTaTokenizer.from_pretrained("gpt2" , pad_token="<|endoftext|>" , padding_side="left" ) lowercase_ : str = tokenizer(["Hello this is a long string", "Hey"] , return_tensors="np" , padding=A_ , truncation=A_ ) lowercase_ : str = FlaxGPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B" ) lowercase_ : str = False lowercase_ : Any = model.config.eos_token_id lowercase_ : Dict = jax.jit(model.generate ) lowercase_ : str = jit_generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , pad_token_id=tokenizer.pad_token_id ).sequences lowercase_ : str = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) lowercase_ : List[str] = [ "Hello this is a long string of text.\n\nI\'m trying to get the text of the", "Hey, I\'m a little late to the party. I\'m going to", ] self.assertListEqual(A_ , A_ ) @is_pt_flax_cross_test def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ , lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase_ : Dict = self._prepare_for_class(A_ , A_ ) lowercase_ : Dict = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase_ : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase_ : List[Any] = getattr(A_ , A_ ) lowercase_ , lowercase_ : Any = pt_inputs["input_ids"].shape lowercase_ : List[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): lowercase_ : Union[str, Any] = 0 lowercase_ : Dict = 1 lowercase_ : Dict = 0 lowercase_ : Optional[Any] = 1 lowercase_ : Optional[int] = pt_model_class(A_ ).eval() lowercase_ : List[Any] = model_class(A_ , dtype=jnp.floataa ) lowercase_ : Any = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , A_ ) lowercase_ : Union[str, Any] = fx_state with torch.no_grad(): lowercase_ : int = pt_model(**A_ ).to_tuple() lowercase_ : Union[str, Any] = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(A_ ) lowercase_ : Optional[Any] = model_class.from_pretrained(A_ , from_pt=A_ ) lowercase_ : List[Any] = fx_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output_loaded, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ , lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowercase_ : Union[str, Any] = self._prepare_for_class(A_ , A_ ) lowercase_ : Tuple = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowercase_ : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning lowercase_ : Tuple = getattr(A_ , A_ ) lowercase_ : Optional[int] = pt_model_class(A_ ).eval() lowercase_ : str = model_class(A_ , dtype=jnp.floataa ) lowercase_ : Union[str, Any] = load_flax_weights_in_pytorch_model(A_ , fx_model.params ) lowercase_ , lowercase_ : Tuple = pt_inputs["input_ids"].shape lowercase_ : Tuple = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(A_ ): lowercase_ : Any = 0 lowercase_ : Optional[Any] = 1 lowercase_ : Union[str, Any] = 0 lowercase_ : List[Any] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowercase_ : Dict = pt_model(**A_ ).to_tuple() lowercase_ : Union[str, Any] = fx_model(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(A_ ) lowercase_ : Any = pt_model_class.from_pretrained(A_ , from_flax=A_ ) with torch.no_grad(): lowercase_ : int = pt_model_loaded(**A_ ).to_tuple() self.assertEqual( len(A_ ) , len(A_ ) , "Output lengths differ between Flax and PyTorch" ) for fx_output, pt_output in zip(A_ , A_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: lowercase_ : Any = model_class_name.from_pretrained("EleutherAI/gpt-j-6B" ) lowercase_ : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(A_ )
700
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : int = HfArgumentParser(__SCREAMING_SNAKE_CASE ) lowercase_ : int = parser.parse_args_into_dataclasses()[0] lowercase_ : Dict = TensorFlowBenchmark(args=__SCREAMING_SNAKE_CASE ) try: lowercase_ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: lowercase_ : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." lowercase_ : Optional[int] = " ".join(str(__SCREAMING_SNAKE_CASE ).split(" " )[:-1] ) lowercase_ : Dict = "" lowercase_ : int = eval(str(__SCREAMING_SNAKE_CASE ).split(" " )[-1] ) lowercase_ : str = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: lowercase_ : Tuple = full_error_msg + begin_error_msg + str(__SCREAMING_SNAKE_CASE ) raise ValueError(__SCREAMING_SNAKE_CASE ) benchmark.run() if __name__ == "__main__": main()
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } UpperCamelCase__ = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase_ : Dict = bs[:] lowercase_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowercase_ : Any = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = set() lowercase_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : List[str] = char return pairs class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase: Dict = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: int = ['input_ids', 'attention_mask'] def __init__( self : str , a : Optional[int] , a : Dict , a : Dict="replace" , a : Tuple="<s>" , a : Any="</s>" , a : Union[str, Any]="</s>" , a : Tuple="<s>" , a : int="<unk>" , a : List[Any]="<pad>" , a : Any="<mask>" , a : Tuple=False , **a : List[str] , ): '''simple docstring''' lowercase_ : List[str] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token lowercase_ : Union[str, Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token lowercase_ : Union[str, Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token lowercase_ : Dict = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token lowercase_ : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token lowercase_ : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Optional[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding="utf-8" ) as vocab_handle: lowercase_ : Tuple = json.load(a ) lowercase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowercase_ : Optional[Any] = errors # how to handle errors in decoding lowercase_ : Any = bytes_to_unicode() lowercase_ : int = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding="utf-8" ) as merges_handle: lowercase_ : Union[str, Any] = merges_handle.read().split("\n" )[1:-1] lowercase_ : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges] lowercase_ : Tuple = dict(zip(a , range(len(a ) ) ) ) lowercase_ : List[Any] = {} lowercase_ : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase_ : int = re.compile(R"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self : Optional[Any] , a : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowercase_ : int = tuple(a ) lowercase_ : Tuple = get_pairs(a ) if not pairs: return token while True: lowercase_ : int = min(a , key=lambda a : self.bpe_ranks.get(a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ : Optional[int] = bigram lowercase_ : int = [] lowercase_ : Any = 0 while i < len(a ): try: lowercase_ : Any = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ : Union[str, Any] = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : Tuple = tuple(a ) lowercase_ : int = new_word if len(a ) == 1: break else: lowercase_ : str = get_pairs(a ) lowercase_ : Dict = " ".join(a ) lowercase_ : Dict = word return word def lowerCAmelCase__ ( self : Tuple , a : str ): '''simple docstring''' lowercase_ : Optional[int] = [] for token in re.findall(self.pat , a ): lowercase_ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(" " ) ) return bpe_tokens def lowerCAmelCase__ ( self : str , a : str ): '''simple docstring''' return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self : Any , a : Dict ): '''simple docstring''' return self.decoder.get(a ) def lowerCAmelCase__ ( self : List[Any] , a : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "".join(a ) lowercase_ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase__ ( self : List[str] , a : str , a : Union[str, Any] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase_ : Union[str, Any] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ : Optional[int] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) lowercase_ : Tuple = 0 with open(a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase_ : Any = token_index writer.write(" ".join(a ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict , a : List[Any] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Optional[int] = [self.cls_token_id] lowercase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[Any] , a : int = None , a : int = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def lowerCAmelCase__ ( self : Union[str, Any] , a : List[Any] , a : Any = None ): '''simple docstring''' lowercase_ : List[Any] = [self.sep_token_id] lowercase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : Tuple=False , **a : List[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): lowercase_ : Dict = " " + text return (text, kwargs)
702
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
0
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position UpperCamelCase__ = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('3.7'): raise ImportWarning( 'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( 'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n' 'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip UpperCamelCase__ = concatenate_datasets UpperCamelCase__ = DownloadConfig UpperCamelCase__ = DownloadManager UpperCamelCase__ = DownloadMode UpperCamelCase__ = DownloadConfig UpperCamelCase__ = DownloadMode UpperCamelCase__ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
703
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
0
from collections.abc import Iterable from typing import Any class _UpperCAmelCase : def __init__( self : Union[str, Any] , a : int | None = None ): '''simple docstring''' lowercase_ : Dict = value lowercase_ : Node | None = None # Added in order to delete a node easier lowercase_ : Node | None = None lowercase_ : Node | None = None def __repr__( self : int ): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f"""{self.value}""": (self.left, self.right)} , indent=1 ) class _UpperCAmelCase : def __init__( self : Optional[int] , a : Node | None = None ): '''simple docstring''' lowercase_ : Dict = root def __str__( self : str ): '''simple docstring''' return str(self.root ) def lowerCAmelCase__ ( self : str , a : Node , a : Node | None ): '''simple docstring''' if new_children is not None: # reset its kids lowercase_ : List[str] = node.parent if node.parent is not None: # reset its parent if self.is_right(a ): # If it is the right children lowercase_ : Dict = new_children else: lowercase_ : Any = new_children else: lowercase_ : List[str] = new_children def lowerCAmelCase__ ( self : str , a : Node ): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self.root is None def lowerCAmelCase__ ( self : Optional[int] , a : Dict ): '''simple docstring''' lowercase_ : List[Any] = Node(a ) # create a new Node if self.empty(): # if Tree is empty lowercase_ : Dict = new_node # set its root else: # Tree is not empty lowercase_ : Optional[Any] = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowercase_ : List[Any] = new_node # We insert the new node in a leaf break else: lowercase_ : Union[str, Any] = parent_node.left else: if parent_node.right is None: lowercase_ : Optional[int] = new_node break else: lowercase_ : Optional[Any] = parent_node.right lowercase_ : List[str] = parent_node def lowerCAmelCase__ ( self : Union[str, Any] , *a : int ): '''simple docstring''' for value in values: self.__insert(a ) def lowerCAmelCase__ ( self : Any , a : Any ): '''simple docstring''' if self.empty(): raise IndexError("Warning: Tree is empty! please use another." ) else: lowercase_ : Tuple = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowercase_ : Union[str, Any] = node.left if value < node.value else node.right return node def lowerCAmelCase__ ( self : Optional[Any] , a : Node | None = None ): '''simple docstring''' if node is None: if self.root is None: return None lowercase_ : str = self.root if not self.empty(): while node.right is not None: lowercase_ : int = node.right return node def lowerCAmelCase__ ( self : List[Any] , a : Node | None = None ): '''simple docstring''' if node is None: lowercase_ : Tuple = self.root if self.root is None: return None if not self.empty(): lowercase_ : Union[str, Any] = self.root while node.left is not None: lowercase_ : Tuple = node.left return node def lowerCAmelCase__ ( self : Optional[Any] , a : int ): '''simple docstring''' lowercase_ : Dict = self.search(a ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(a , a ) elif node.left is None: # Has only right children self.__reassign_nodes(a , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(a , node.left ) else: lowercase_ : int = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowercase_ : Union[str, Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowerCAmelCase__ ( self : Any , a : Node | None ): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowerCAmelCase__ ( self : str , a : List[Any]=None ): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowerCAmelCase__ ( self : List[Any] , a : list , a : Node | None ): '''simple docstring''' if node: self.inorder(a , node.left ) arr.append(node.value ) self.inorder(a , node.right ) def lowerCAmelCase__ ( self : Optional[Any] , a : int , a : Node ): '''simple docstring''' lowercase_ : list[int] = [] self.inorder(a , a ) # append all values to list using inorder traversal return arr[k - 1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Union[str, Any] = [] if curr_node is not None: lowercase_ : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowercase_ : List[str] = BinarySearchTree() for i in testlist: t.insert(_lowerCamelCase ) # Prints all the elements of the list in order traversal print(_lowerCamelCase ) if t.search(6 ) is not None: print("The value 6 exists" ) else: print("The value 6 doesn't exist" ) if t.search(-1 ) is not None: print("The value -1 exists" ) else: print("The value -1 doesn't exist" ) if not t.empty(): print("Max Value: " , t.get_max().value ) # type: ignore print("Min Value: " , t.get_min().value ) # type: ignore for i in testlist: t.remove(_lowerCamelCase ) print(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
704
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (preds == labels).mean() @dataclass class _UpperCAmelCase : __lowerCamelCase: Optional[int] = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase: Any = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase: Dict = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase: str = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class _UpperCAmelCase : __lowerCamelCase: Optional[int] = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __lowerCamelCase: int = field(metadata={'help': 'Should contain the data files for the task.'} ) __lowerCamelCase: str = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase: List[Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _UpperCamelCase ) # Set seed set_seed(training_args.seed ) try: lowercase_ : List[str] = processors[data_args.task_name]() lowercase_ : Optional[int] = processor.get_labels() lowercase_ : List[str] = len(_UpperCamelCase ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase_ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_UpperCamelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowercase_ : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase_ : Tuple = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets lowercase_ : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase_ : List[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_UpperCamelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_UpperCamelCase ) -> Dict: lowercase_ : Dict = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_UpperCamelCase , p.label_ids )} # Data collator lowercase_ : str = DataCollatorWithPadding(_UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase_ : Optional[Any] = Trainer( model=_UpperCamelCase , args=_UpperCamelCase , train_dataset=_UpperCamelCase , eval_dataset=_UpperCamelCase , compute_metrics=_UpperCamelCase , data_collator=_UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase_ : List[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase_ : List[str] = trainer.evaluate() lowercase_ : Union[str, Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(_UpperCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _UpperCamelCase , _UpperCamelCase ) writer.write("%s = %s\n" % (key, value) ) results.update(_UpperCamelCase ) return results def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
705
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
640
0
'''simple docstring''' import pytest UpperCamelCase__ = '__dummy_dataset1__' UpperCamelCase__ = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = dataset_loading_script_name lowercase_ : Optional[Any] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=snake_case__ ) lowercase_ : Tuple = script_dir / F"""{script_name}.py""" with open(snake_case__ , "w" ) as f: f.write(snake_case__ ) return str(snake_case__ )
706
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MultilingualCLIP , a : XLMRobertaTokenizer , a : UNetaDConditionModel , a : Union[DDIMScheduler, DDPMScheduler] , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=a , tokenizer=a , unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] , a : str , a : Tuple , a : List[str] ): '''simple docstring''' if latents is None: lowercase_ : List[str] = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : str = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Union[str, Any] , a : str , a : Tuple=None , ): '''simple docstring''' lowercase_ : Tuple = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( a , padding="max_length" , truncation=a , max_length=7_7 , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : Union[str, Any] = text_inputs.input_ids lowercase_ : Tuple = self.tokenizer(a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a , a ): lowercase_ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase_ : List[str] = text_input_ids.to(a ) lowercase_ : int = text_inputs.attention_mask.to(a ) lowercase_ , lowercase_ : Optional[int] = self.text_encoder( input_ids=a , attention_mask=a ) lowercase_ : str = prompt_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(a , dim=0 ) lowercase_ : int = text_mask.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] if negative_prompt is None: lowercase_ : int = [""] * batch_size elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase_ : Tuple = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: lowercase_ : Dict = negative_prompt lowercase_ : str = self.tokenizer( a , padding="max_length" , max_length=7_7 , truncation=a , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : List[Any] = uncond_input.input_ids.to(a ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(a ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=a , attention_mask=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : List[str] = negative_prompt_embeds.shape[1] lowercase_ : Dict = negative_prompt_embeds.repeat(1 , a ) lowercase_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , a , 1 ) lowercase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , a , -1 ) lowercase_ : List[Any] = uncond_text_mask.repeat_interleave(a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self : Tuple , a : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(a , a , prev_module_hook=a ) if self.safety_checker is not None: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(self.safety_checker , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[str, List[str]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Optional[Union[str, List[str]]] = None , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , a ): lowercase_ : List[str] = 1 elif isinstance(a , a ): lowercase_ : int = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) lowercase_ : Tuple = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : List[str] = self._encode_prompt( a , a , a , a , a ) if isinstance(a , a ): lowercase_ : Optional[int] = torch.cat(a , dim=0 ) if isinstance(a , a ): lowercase_ : int = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[int] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) lowercase_ : List[str] = self.scheduler.timesteps lowercase_ : str = self.unet.config.in_channels lowercase_ , lowercase_ : int = get_new_h_w(a , a , self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( a , a , a , generator=a , ).prev_sample # post-processing lowercase_ : Union[str, Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Optional[int] = image.clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device UpperCamelCase__ = False class _UpperCAmelCase ( unittest.TestCase ): pass @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' lowercase_ : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained("shi-labs/versatile-diffusion" ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg" ) lowercase_ : Union[str, Any] = torch.manual_seed(0 ) lowercase_ : int = pipe( image=__lowerCAmelCase , generator=__lowerCAmelCase , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="numpy" , ).images lowercase_ : Optional[int] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ : List[str] = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' import sys def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = len(UpperCAmelCase__ ) lowercase_ : Any = [[0 for x in range(UpperCAmelCase__ )] for x in range(UpperCAmelCase__ )] lowercase_ : List[str] = [[0 for x in range(UpperCAmelCase__ )] for x in range(UpperCAmelCase__ )] for chain_length in range(2 , UpperCAmelCase__ ): for a in range(1 , n - chain_length + 1 ): lowercase_ : Optional[int] = a + chain_length - 1 lowercase_ : List[str] = sys.maxsize for c in range(UpperCAmelCase__ , UpperCAmelCase__ ): lowercase_ : List[str] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowercase_ : Optional[Any] = cost lowercase_ : str = c return matrix, sol def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if i == j: print("A" + str(UpperCAmelCase__ ) , end=" " ) else: print("(" , end=" " ) print_optiomal_solution(UpperCAmelCase__ , UpperCAmelCase__ , optimal_solution[i][j] ) print_optiomal_solution(UpperCAmelCase__ , optimal_solution[i][j] + 1 , UpperCAmelCase__ ) print(")" , end=" " ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : int = [30, 35, 15, 5, 10, 20, 25] lowercase_ : Union[str, Any] = len(UpperCAmelCase__ ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowercase_ : str = matrix_chain_order(UpperCAmelCase__ ) print("No. of Operation required: " + str(matrix[1][n - 1] ) ) print_optiomal_solution(UpperCAmelCase__ , 1 , n - 1 ) if __name__ == "__main__": main()
708
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = ['image_processor', 'tokenizer'] __lowerCamelCase: Dict = 'Pix2StructImageProcessor' __lowerCamelCase: Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : str , a : Dict , a : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = False super().__init__(a , a ) def __call__( self : Tuple , a : int=None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : Optional[int] = 2_0_4_8 , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase_ : Dict = self.tokenizer lowercase_ : Tuple = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase_ : Optional[int] = self.image_processor( a , return_tensors=a , max_patches=a , **a ) else: # add pixel_values and bbox lowercase_ : Any = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a ) if text is not None and not self.image_processor.is_vqa: lowercase_ : int = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: lowercase_ : str = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase_ : Dict = text_encoding.pop("input_ids" ) else: lowercase_ : str = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def lowerCAmelCase__ ( self : Any , *a : str , **a : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def lowerCAmelCase__ ( self : str , *a : Optional[int] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
640
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( a__ ): def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , "num_attention_heads" ) ) class _UpperCAmelCase : def __init__( self : List[str] , a : Optional[int] , a : List[Any]=1_3 , a : List[Any]=3_2 , a : List[str]=2 , a : List[Any]=3 , a : Optional[Any]=6_4_0 , a : Optional[int]=4 , a : Optional[int]="silu" , a : Optional[int]=3 , a : List[Any]=3_2 , a : Tuple=0.1 , a : Any=0.1 , a : List[Any]=0.1 , a : List[Any]=0.02 , a : int=True , a : Optional[Any]=True , a : Optional[Any]=1_0 , a : Union[str, Any]=None , ): '''simple docstring''' lowercase_ : List[Any] = parent lowercase_ : Tuple = batch_size lowercase_ : int = image_size lowercase_ : Tuple = patch_size lowercase_ : Tuple = num_channels lowercase_ : str = last_hidden_size lowercase_ : List[str] = num_attention_heads lowercase_ : Optional[int] = hidden_act lowercase_ : Dict = conv_kernel_size lowercase_ : Any = output_stride lowercase_ : Tuple = hidden_dropout_prob lowercase_ : Union[str, Any] = attention_probs_dropout_prob lowercase_ : str = classifier_dropout_prob lowercase_ : List[Any] = use_labels lowercase_ : Dict = is_training lowercase_ : int = num_labels lowercase_ : Tuple = initializer_range lowercase_ : Optional[int] = scope def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ : int = None lowercase_ : List[str] = None if self.use_labels: lowercase_ : int = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[str] , a : Tuple , a : List[Any] ): '''simple docstring''' lowercase_ : Tuple = MobileViTModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase_ : Any = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : int , a : List[Any] , a : Optional[int] , a : List[Any] , a : Tuple ): '''simple docstring''' lowercase_ : Optional[int] = self.num_labels lowercase_ : Optional[Any] = MobileViTForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase_ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase__ ( self : int , a : Optional[int] , a : Dict , a : Union[str, Any] , a : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.num_labels lowercase_ : List[Any] = MobileViTForSemanticSegmentation(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase_ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : Any = config_and_inputs lowercase_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( a__ , a__ , unittest.TestCase ): __lowerCamelCase: str = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __lowerCamelCase: List[Any] = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __lowerCamelCase: Optional[int] = False __lowerCamelCase: List[str] = False __lowerCamelCase: List[str] = False __lowerCamelCase: Any = False def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[Any] = MobileViTModelTester(self ) lowercase_ : Union[str, Any] = MobileViTConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="MobileViT does not output attentions" ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' pass def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Union[str, Any] = model_class(lowerCAmelCase__ ) lowercase_ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : int = [*signature.parameters.keys()] lowercase_ : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(a : Optional[Any] , a : Tuple , a : Optional[int] ): lowercase_ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowercase_ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase_ : Any = outputs.hidden_states lowercase_ : int = 5 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowercase_ : int = 2 for i in range(len(lowerCAmelCase__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Dict = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @slow def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : str = MobileViTModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(lowerCAmelCase__ ) lowercase_ : Any = self.default_image_processor lowercase_ : Dict = prepare_img() lowercase_ : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase_ : List[str] = model(**lowerCAmelCase__ ) # verify the logits lowercase_ : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase_ : Optional[Any] = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[Any] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) lowercase_ : int = model.to(lowerCAmelCase__ ) lowercase_ : Union[str, Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) lowercase_ : Optional[int] = prepare_img() lowercase_ : Any = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase_ : Tuple = model(**lowerCAmelCase__ ) lowercase_ : Union[str, Any] = outputs.logits # verify the logits lowercase_ : Dict = torch.Size((1, 2_1, 3_2, 3_2) ) self.assertEqual(logits.shape , lowerCAmelCase__ ) lowercase_ : List[str] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=lowerCAmelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) lowercase_ : Dict = model.to(lowerCAmelCase__ ) lowercase_ : Optional[Any] = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) lowercase_ : Union[str, Any] = prepare_img() lowercase_ : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowercase_ : Tuple = model(**lowerCAmelCase__ ) lowercase_ : Union[str, Any] = outputs.logits.detach().cpu() lowercase_ : int = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ , target_sizes=[(5_0, 6_0)] ) lowercase_ : Tuple = torch.Size((5_0, 6_0) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ ) lowercase_ : Tuple = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase__ ) lowercase_ : Optional[int] = torch.Size((3_2, 3_2) ) self.assertEqual(segmentation[0].shape , lowerCAmelCase__ )
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase__ = {'''configuration_yolos''': ['''YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''YolosConfig''', '''YolosOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['''YolosFeatureExtractor'''] UpperCamelCase__ = ['''YolosImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''YolosForObjectDetection''', '''YolosModel''', '''YolosPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_yolos import YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP, YolosConfig, YolosOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_yolos import YolosFeatureExtractor from .image_processing_yolos import YolosImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_yolos import ( YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST, YolosForObjectDetection, YolosModel, YolosPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): lowercase_ : List[str] = F"""Input value of [number={number}] must be an integer""" raise TypeError(_snake_case ) if number < 1: lowercase_ : Any = F"""Input value of [number={number}] must be > 0""" raise ValueError(_snake_case ) lowercase_ : Union[str, Any] = 1 for i in range(1 , _snake_case ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( UpperCamelCase_ ): __lowerCamelCase: Optional[Any] = ['image_processor', 'tokenizer'] __lowerCamelCase: Tuple = 'AutoImageProcessor' __lowerCamelCase: List[str] = 'AutoTokenizer' def __init__( self : Tuple , a : Dict , a : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ : List[str] = self.image_processor def __call__( self : Union[str, Any] , a : int=None , a : List[Any]=None , a : Any=None , **a : Any ): '''simple docstring''' if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowercase_ : Optional[int] = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: lowercase_ : List[Any] = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: lowercase_ : List[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] , *a : str , **a : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , *a : Any , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Optional[Any] , a : Any ): '''simple docstring''' lowercase_ : List[Any] = str(id_ ) lowercase_ : List[str] = None lowercase_ : Tuple = None lowercase_ : Dict = [] lowercase_ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : Optional[Any] , a : int ): '''simple docstring''' return self.key < other.key def __repr__( self : Union[str, Any] ): '''simple docstring''' return self.id def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[int] ): '''simple docstring''' self.neighbors.append(a ) def lowerCAmelCase__ ( self : Dict , a : int , a : Optional[int] ): '''simple docstring''' lowercase_ : int = weight def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = [] for u in graph: lowercase_ : List[Any] = math.inf lowercase_ : str = None lowercase_ : Tuple = 0 lowercase_ : Tuple = graph[:] while q: lowercase_ : List[Any] = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase_ : Optional[int] = u lowercase_ : Union[str, Any] = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for u in graph: lowercase_ : str = math.inf lowercase_ : int = None lowercase_ : List[Any] = 0 lowercase_ : str = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: lowercase_ : List[Any] = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase_ : str = u lowercase_ : Optional[int] = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
640
0
import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = RemBertConfig.from_json_file(__UpperCamelCase ) print("Building PyTorch model from configuration: {}".format(str(__UpperCamelCase ) ) ) lowercase_ : Union[str, Any] = RemBertModel(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_rembert(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Save pytorch-model print("Save PyTorch model to {}".format(__UpperCamelCase ) ) torch.save(model.state_dict() , __UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--rembert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained RemBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) UpperCamelCase__ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
713
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Any = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
640
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for attribute in key.split("." ): lowercase_ : int = getattr(_UpperCamelCase , _UpperCamelCase ) if weight_type is not None: lowercase_ : Union[str, Any] = getattr(_UpperCamelCase , _UpperCamelCase ).shape else: lowercase_ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase_ : Any = value elif weight_type == "weight_g": lowercase_ : List[Any] = value elif weight_type == "weight_v": lowercase_ : Any = value elif weight_type == "bias": lowercase_ : Optional[Any] = value else: lowercase_ : List[str] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Any = fairseq_model.state_dict() lowercase_ : List[str] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ : List[str] = True else: for key, mapped_key in MAPPING.items(): lowercase_ : str = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ : Union[str, Any] = True if "*" in mapped_key: lowercase_ : Optional[Any] = name.split(_UpperCamelCase )[0].split("." )[-2] lowercase_ : int = mapped_key.replace("*" , _UpperCamelCase ) if "weight_g" in name: lowercase_ : Optional[int] = """weight_g""" elif "weight_v" in name: lowercase_ : List[Any] = """weight_v""" elif "weight" in name: lowercase_ : List[str] = """weight""" elif "bias" in name: lowercase_ : Optional[int] = """bias""" else: lowercase_ : List[Any] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) continue if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = full_name.split("conv_layers." )[-1] lowercase_ : Optional[Any] = name.split("." ) lowercase_ : int = int(items[0] ) lowercase_ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase_ : List[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase_ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase_ : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase_ : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = SEWConfig() if is_finetuned: lowercase_ : Union[str, Any] = model.wav_encoder.wav_model.cfg else: lowercase_ : Tuple = model.cfg lowercase_ : List[str] = fs_config.conv_bias lowercase_ : List[Any] = eval(fs_config.conv_feature_layers ) lowercase_ : Optional[Any] = [x[0] for x in conv_layers] lowercase_ : Dict = [x[1] for x in conv_layers] lowercase_ : List[str] = [x[2] for x in conv_layers] lowercase_ : str = """gelu""" lowercase_ : Tuple = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" lowercase_ : int = 0.0 lowercase_ : Union[str, Any] = fs_config.activation_fn.name lowercase_ : str = fs_config.encoder_embed_dim lowercase_ : Union[str, Any] = 0.02 lowercase_ : str = fs_config.encoder_ffn_embed_dim lowercase_ : List[str] = 1e-5 lowercase_ : List[Any] = fs_config.encoder_layerdrop lowercase_ : Union[str, Any] = fs_config.encoder_attention_heads lowercase_ : Any = fs_config.conv_pos_groups lowercase_ : Optional[Any] = fs_config.conv_pos lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : int = fs_config.encoder_layers lowercase_ : List[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ : int = model.cfg lowercase_ : Union[str, Any] = fs_config.final_dropout lowercase_ : Tuple = fs_config.layerdrop lowercase_ : Dict = fs_config.activation_dropout lowercase_ : Union[str, Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ : str = fs_config.attention_dropout lowercase_ : Any = fs_config.dropout_input lowercase_ : Dict = fs_config.dropout lowercase_ : str = fs_config.mask_channel_length lowercase_ : Any = fs_config.mask_channel_prob lowercase_ : List[Any] = fs_config.mask_length lowercase_ : Dict = fs_config.mask_prob lowercase_ : List[str] = """Wav2Vec2FeatureExtractor""" lowercase_ : Tuple = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True ): """simple docstring""" if is_finetuned: lowercase_ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ : int = SEWConfig.from_pretrained(_UpperCamelCase ) else: lowercase_ : Dict = convert_config(model[0] , _UpperCamelCase ) lowercase_ : Any = model[0].eval() lowercase_ : Optional[int] = True if config.feat_extract_norm == """layer""" else False lowercase_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) if is_finetuned: if dict_path: lowercase_ : int = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ : Optional[Any] = target_dict.pad_index lowercase_ : Any = target_dict.bos_index lowercase_ : List[str] = target_dict.pad_index lowercase_ : List[str] = target_dict.bos_index lowercase_ : str = target_dict.eos_index lowercase_ : Optional[Any] = len(target_dict.symbols ) lowercase_ : int = os.path.join(_UpperCamelCase , "vocab.json" ) if not os.path.isdir(_UpperCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase ) lowercase_ : Tuple = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_UpperCamelCase , ) lowercase_ : Any = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) lowercase_ : Optional[int] = SEWForCTC(_UpperCamelCase ) else: lowercase_ : int = SEWModel(_UpperCamelCase ) feature_extractor.save_pretrained(_UpperCamelCase ) recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) hf_model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'naver-clova-ix/donut-base': 'https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _UpperCAmelCase ( lowercase__ ): __lowerCamelCase: List[Any] = """donut-swin""" __lowerCamelCase: Any = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , a : Dict=2_2_4 , a : str=4 , a : Optional[int]=3 , a : Dict=9_6 , a : List[str]=[2, 2, 6, 2] , a : Union[str, Any]=[3, 6, 1_2, 2_4] , a : str=7 , a : Optional[Any]=4.0 , a : Tuple=True , a : List[str]=0.0 , a : int=0.0 , a : Optional[Any]=0.1 , a : str="gelu" , a : List[str]=False , a : Optional[Any]=0.02 , a : Optional[int]=1e-5 , **a : int , ): '''simple docstring''' super().__init__(**__lowercase ) lowercase_ : List[Any] = image_size lowercase_ : List[Any] = patch_size lowercase_ : List[Any] = num_channels lowercase_ : Optional[int] = embed_dim lowercase_ : Optional[int] = depths lowercase_ : Dict = len(__lowercase ) lowercase_ : int = num_heads lowercase_ : Optional[int] = window_size lowercase_ : Any = mlp_ratio lowercase_ : Dict = qkv_bias lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : List[Any] = attention_probs_dropout_prob lowercase_ : Tuple = drop_path_rate lowercase_ : List[Any] = hidden_act lowercase_ : Tuple = use_absolute_embeddings lowercase_ : int = layer_norm_eps lowercase_ : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase_ : List[str] = int(embed_dim * 2 ** (len(__lowercase ) - 1) )
715
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ = 'scheduler_config.json' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: int = 1 __lowerCamelCase: List[Any] = 2 __lowerCamelCase: Optional[Any] = 3 __lowerCamelCase: int = 4 __lowerCamelCase: Optional[int] = 5 @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: jnp.ndarray class _UpperCAmelCase : __lowerCamelCase: List[str] = SCHEDULER_CONFIG_NAME __lowerCamelCase: Optional[int] = ['dtype'] __lowerCamelCase: int = [] __lowerCamelCase: Dict = True @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Dict[str, Any] = None , a : Optional[str] = None , a : Union[str, Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ , lowercase_ : Any = cls.load_config( pretrained_model_name_or_path=a , subfolder=a , return_unused_kwargs=a , **a , ) lowercase_ , lowercase_ : Union[str, Any] = cls.from_config(a , return_unused_kwargs=a , **a ) if hasattr(a , "create_state" ) and getattr(a , "has_state" , a ): lowercase_ : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : int , a : Union[str, os.PathLike] , a : bool = False , **a : int ): '''simple docstring''' self.save_config(save_directory=a , push_to_hub=a , **a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase_ : str = importlib.import_module(__name__.split("." )[0] ) lowercase_ : Optional[Any] = [ getattr(a , a ) for c in compatible_classes_str if hasattr(a , a ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowercase_ : int = [] for i in range(_UpperCamelCase ): lowercase_ : Union[str, Any] = i / num_diffusion_timesteps lowercase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class _UpperCAmelCase : __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Optional[int] ): '''simple docstring''' lowercase_ : Any = scheduler.config if config.trained_betas is not None: lowercase_ : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase_ : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase_ : str = 1.0 - betas lowercase_ : Dict = jnp.cumprod(a , axis=0 ) return cls( alphas=a , betas=a , alphas_cumprod=a , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = state.alphas_cumprod lowercase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase_ : int = sqrt_alpha_prod.flatten() lowercase_ : Union[str, Any] = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) lowercase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() lowercase_ : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
640
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( __snake_case , unittest.TestCase ): __lowerCamelCase: List[Any] = KandinskyVaaInpaintPipeline __lowerCamelCase: List[Any] = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image'] __lowerCamelCase: List[Any] = [ 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] __lowerCamelCase: List[Any] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] __lowerCamelCase: Optional[int] = False @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[Any] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowercase_ : Optional[int] = UNetaDConditionModel(**A_ ) return model @property def lowerCAmelCase__ ( self : int ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : List[Any] = self.dummy_unet lowercase_ : Optional[Any] = self.dummy_movq lowercase_ : Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) lowercase_ : Dict = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase__ ( self : Optional[int] , a : Optional[int] , a : Optional[int]=0 ): '''simple docstring''' lowercase_ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) lowercase_ : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image lowercase_ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(A_ ) ).to(A_ ) lowercase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ : str = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask lowercase_ : Dict = np.ones((6_4, 6_4) , dtype=np.floataa ) lowercase_ : Union[str, Any] = 0 if str(A_ ).startswith("mps" ): lowercase_ : Tuple = torch.manual_seed(A_ ) else: lowercase_ : Optional[int] = torch.Generator(device=A_ ).manual_seed(A_ ) lowercase_ : Optional[int] = { "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : int = "cpu" lowercase_ : Dict = self.get_dummy_components() lowercase_ : str = self.pipeline_class(**A_ ) lowercase_ : Any = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowercase_ : int = pipe(**self.get_dummy_inputs(A_ ) ) lowercase_ : List[Any] = output.images lowercase_ : List[str] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] lowercase_ : Optional[int] = image[0, -3:, -3:, -1] lowercase_ : int = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 6_4, 6_4, 3) lowercase_ : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) lowercase_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowercase_ : Tuple = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) lowercase_ : str = 0 lowercase_ : Tuple = "a hat" lowercase_ : Tuple = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) lowercase_ : Optional[Any] = KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) lowercase_ : int = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) lowercase_ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowercase_ : List[Any] = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowercase_ : Union[str, Any] = pipeline( image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) lowercase_ : Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(A_ , A_ )
716
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
0
'''simple docstring''' from __future__ import annotations def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if len(_UpperCamelCase ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) lowercase_ : Union[str, Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed UpperCamelCase__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=2 , _UpperCamelCase=3 , _UpperCamelCase=16 , _UpperCamelCase = 10 , _UpperCamelCase = 2 ): """simple docstring""" def get_dataset(_UpperCamelCase ): lowercase_ : Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCAmelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase_ : Dict = get_dataset(__lowerCAmelCase ) lowercase_ : Optional[int] = get_dataset(__lowerCAmelCase ) lowercase_ : Any = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) lowercase_ : str = DataLoader(__lowerCAmelCase , shuffle=__lowerCAmelCase , batch_size=__lowerCAmelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Optional[int] = [] for epoch in range(__lowerCAmelCase ): # Train quickly model.train() for batch in dataloader: lowercase_ : Optional[int] = batch lowercase_ : Optional[int] = model(__lowerCAmelCase ) lowercase_ : Optional[int] = torch.nn.functional.mse_loss(__lowerCAmelCase , __lowerCAmelCase ) accelerator.backward(__lowerCAmelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class _UpperCAmelCase ( nn.Module ): def __init__( self : Union[str, Any] ): '''simple docstring''' super().__init__() lowercase_ : Any = nn.Parameter(torch.randn(1 ) ) lowercase_ : Tuple = nn.Parameter(torch.randn(1 ) ) def lowerCAmelCase__ ( self : str , a : Optional[int] ): '''simple docstring''' return x * self.a + self.b class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowercase_ : List[Any] = DummyModel() lowercase_ : List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Union[str, Any] = dummy_dataloaders() lowercase_ : Tuple = ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase__ , automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline lowercase_ : List[str] = Accelerator(project_config=lowerCamelCase__ ) lowercase_ : Optional[Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowercase_ : List[Any] = DummyModel() lowercase_ : Dict = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Union[str, Any] = dummy_dataloaders() # Train baseline lowercase_ : List[str] = Accelerator() lowercase_ : Optional[Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial lowercase_ : Any = os.path.join(lowerCamelCase__ , "initial" ) accelerator.save_state(lowerCamelCase__ ) (lowercase_) : Union[str, Any] = model.a.item(), model.b.item() lowercase_ : str = optimizer.state_dict() lowercase_ : Tuple = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (lowercase_) : Optional[int] = model.a.item(), model.b.item() lowercase_ : List[str] = optimizer.state_dict() # Train partially set_seed(4_2 ) lowercase_ : Optional[Any] = DummyModel() lowercase_ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : List[Any] = dummy_dataloaders() lowercase_ : Union[str, Any] = Accelerator() lowercase_ : Optional[Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(lowerCamelCase__ ) (lowercase_) : Tuple = model.a.item(), model.b.item() lowercase_ : Union[str, Any] = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : Optional[Any] = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything lowercase_ : Optional[Any] = os.path.join(lowerCamelCase__ , "checkpoint" ) accelerator.save_state(lowerCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__ ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (lowercase_) : Union[str, Any] = model.a.item(), model.b.item() lowercase_ : Dict = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowercase_ : Optional[Any] = DummyModel() lowercase_ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Any = dummy_dataloaders() lowercase_ : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline lowercase_ : str = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase_ : Optional[Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() (lowercase_) : Optional[Any] = model.a.item(), model.b.item() lowercase_ : Union[str, Any] = optimizer.state_dict() lowercase_ : Optional[Any] = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (lowercase_) : Dict = model.a.item(), model.b.item() lowercase_ : Optional[Any] = optimizer.state_dict() # Train partially set_seed(4_2 ) lowercase_ : Optional[Any] = DummyModel() lowercase_ : str = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : Dict = dummy_dataloaders() lowercase_ : Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase__ ) lowercase_ : Optional[Any] = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase_ : Union[str, Any] = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_0" ) ) (lowercase_) : int = model.a.item(), model.b.item() lowercase_ : int = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : str = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (lowercase_) : Dict = model.a.item(), model.b.item() lowercase_ : Dict = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch.tensor([1, 2, 3] ) lowercase_ : Any = torch.tensor([2, 3, 4] ) lowercase_ : Optional[int] = DummyModel() lowercase_ : List[Any] = torch.optim.Adam(net.parameters() ) lowercase_ : Union[str, Any] = Accelerator() with self.assertRaises(lowerCamelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowercase_ : Tuple = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowercase_ : Optional[int] = DummyModel() lowercase_ : int = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ : int = torch.optim.lr_scheduler.StepLR(lowerCamelCase__ , step_size=1 , gamma=0.99 ) lowercase_ : Any = dummy_dataloaders() lowercase_ : Any = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline lowercase_ : Optional[Any] = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase_ : int = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() lowercase_ : Union[str, Any] = scheduler.state_dict() train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(lowerCamelCase__ , scheduler.state_dict() ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) lowercase_ : Dict = DummyModel() lowercase_ : int = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ , total_limit=2 ) # Train baseline lowercase_ : Optional[int] = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) lowercase_ : Union[str, Any] = accelerator.prepare(lowerCamelCase__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : str = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCamelCase__ = '/tmp/accelerate/state_checkpointing' UpperCamelCase__ = DummyModel() UpperCamelCase__ = torch.optim.Adam(params=model.parameters(), lr=1e-3) UpperCamelCase__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) UpperCamelCase__, UpperCamelCase__ = dummy_dataloaders() UpperCamelCase__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline UpperCamelCase__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='no') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) UpperCamelCase__, UpperCamelCase__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: UpperCamelCase__ = group['params'][0].device break assert param_device.type == accelerator.device.type UpperCamelCase__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='cpu') for group in optimizer.param_groups: UpperCamelCase__ = group['params'][0].device break assert ( param_device.type == torch.device('cpu').type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='on_device') for group in optimizer.param_groups: UpperCamelCase__ = group['params'][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='Unsupported optimizer map location passed'): accelerator.load_state(os.path.join(savedir, 'checkpoints', 'checkpoint_0'), map_location='invalid') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
718
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class _UpperCAmelCase ( __a ): __lowerCamelCase: Tuple = ["pixel_values"] def __init__( self : Any , a : Any = True , a : Optional[Any] = None , a : List[str] = PILImageResampling.BICUBIC , a : Optional[Any] = True , a : str = None , a : Optional[int] = True , a : Optional[int] = 1 / 2_5_5 , a : Tuple = True , a : Tuple = None , a : List[str] = None , a : Tuple = True , **a : List[Any] , ): '''simple docstring''' super().__init__(**lowerCAmelCase_ ) lowercase_ : List[Any] = size if size is not None else {"shortest_edge": 2_2_4} lowercase_ : Dict = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} lowercase_ : Union[str, Any] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ , param_name="crop_size" ) lowercase_ : Optional[Any] = do_resize lowercase_ : List[Any] = size lowercase_ : Optional[Any] = resample lowercase_ : Optional[Any] = do_center_crop lowercase_ : Tuple = crop_size lowercase_ : str = do_rescale lowercase_ : Union[str, Any] = rescale_factor lowercase_ : Tuple = do_normalize lowercase_ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowercase_ : str = image_std if image_std is not None else OPENAI_CLIP_STD lowercase_ : str = do_convert_rgb def lowerCAmelCase__ ( self : Union[str, Any] , a : Any , a : Union[str, Any] , a : int = PILImageResampling.BICUBIC , a : Tuple = None , **a : Optional[int] , ): '''simple docstring''' lowercase_ : Optional[int] = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowercase_ : Optional[Any] = get_resize_output_image_size(lowerCAmelCase_ , size=size["shortest_edge"] , default_to_square=lowerCAmelCase_ ) return resize(lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] , a : Optional[int] , a : Optional[Any] , a : str = None , **a : List[str] , ): '''simple docstring''' lowercase_ : Optional[Any] = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : int , a : Optional[int] , a : Dict , a : List[str] = None , **a : Tuple , ): '''simple docstring''' return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : Optional[Any] , a : str , a : Union[str, Any] , a : int , a : Optional[Any] = None , **a : Any , ): '''simple docstring''' return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : str , a : List[Any] , a : str = None , a : str = None , a : Union[str, Any] = None , a : Union[str, Any] = None , a : Union[str, Any] = None , a : Any = None , a : int = None , a : List[Any] = None , a : Tuple = None , a : Any = None , a : Optional[Any] = None , a : List[Any] = None , a : Optional[int] = ChannelDimension.FIRST , **a : int , ): '''simple docstring''' lowercase_ : Dict = do_resize if do_resize is not None else self.do_resize lowercase_ : str = size if size is not None else self.size lowercase_ : str = get_size_dict(lowerCAmelCase_ , param_name="size" , default_to_square=lowerCAmelCase_ ) lowercase_ : Union[str, Any] = resample if resample is not None else self.resample lowercase_ : Any = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Any = crop_size if crop_size is not None else self.crop_size lowercase_ : List[Any] = get_size_dict(lowerCAmelCase_ , param_name="crop_size" , default_to_square=lowerCAmelCase_ ) lowercase_ : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Dict = image_mean if image_mean is not None else self.image_mean lowercase_ : Optional[int] = image_std if image_std is not None else self.image_std lowercase_ : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowercase_ : Optional[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowercase_ : Union[str, Any] = [convert_to_rgb(lowerCAmelCase_ ) for image in images] # All transformations expect numpy arrays. lowercase_ : Union[str, Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: lowercase_ : Any = [self.resize(image=lowerCAmelCase_ , size=lowerCAmelCase_ , resample=lowerCAmelCase_ ) for image in images] if do_center_crop: lowercase_ : Tuple = [self.center_crop(image=lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] if do_rescale: lowercase_ : List[str] = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_normalize: lowercase_ : List[str] = [self.normalize(image=lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ ) for image in images] lowercase_ : int = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] lowercase_ : Any = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
719
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: lowercase_ : Optional[Any] = os.path.abspath(UpperCamelCase__ ) logger.info(F"""Loading PyTorch weights from {pt_path}""" ) lowercase_ : Any = torch.load(UpperCamelCase__ , map_location="cpu" ) logger.info(F"""PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.""" ) lowercase_ : List[str] = convert_pytorch_state_dict_to_flax(UpperCamelCase__ , UpperCamelCase__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowercase_ : Optional[Any] = convert_pytorch_sharded_state_dict_to_flax(UpperCamelCase__ , UpperCamelCase__ ) return flax_state_dict def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ): """simple docstring""" def is_key_or_prefix_key_in_dict(_UpperCamelCase ) -> bool: return len(set(UpperCamelCase__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowercase_ : List[Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(UpperCamelCase__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowercase_ : Optional[int] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(UpperCamelCase__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowercase_ : Union[str, Any] = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(UpperCamelCase__ ): return renamed_pt_tuple_key, pt_tensor # embedding lowercase_ : str = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(UpperCamelCase__ ): return renamed_pt_tuple_key, pt_tensor # conv layer lowercase_ : Tuple = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(UpperCamelCase__ ): lowercase_ : Optional[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase_ : Optional[Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(UpperCamelCase__ ): lowercase_ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase_ : Tuple = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase_ : Optional[int] = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowercase_ : int = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowercase_ : List[Any] = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowercase_ : Optional[Any] = pt_tuple_key[-2] + """_v""" if name is not None: lowercase_ : List[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase_ : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowercase_ : int = flax_model.params["""params"""] else: lowercase_ : Union[str, Any] = flax_model.params lowercase_ : List[str] = flatten_dict(UpperCamelCase__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase_ : Optional[Any] = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(UpperCamelCase__ ) lowercase_ : int = {} lowercase_ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowercase_ : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase_ : Dict = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowercase_ : str = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase_ : int = pt_tuple_key[1:] # Correctly rename weight parameters lowercase_ : str = rename_key_and_reshape_tensor( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # add model prefix if necessary lowercase_ : str = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase_ : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowercase_ : List[str] = jnp.asarray(UpperCamelCase__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) continue # also add unexpected weight so that warning is thrown lowercase_ : Union[str, Any] = jnp.asarray(UpperCamelCase__ ) else: # also add unexpected weight so that warning is thrown lowercase_ : List[str] = jnp.asarray(UpperCamelCase__ ) return unflatten_dict(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" import torch # Load the index lowercase_ : List[Any] = {} for shard_file in shard_filenames: # load using msgpack utils lowercase_ : Any = torch.load(UpperCamelCase__ ) lowercase_ : str = {k: v.numpy() for k, v in pt_state_dict.items()} lowercase_ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowercase_ : str = flax_model.params["""params"""] lowercase_ : List[str] = flatten_dict(UpperCamelCase__ ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: lowercase_ : Dict = flax_model.params lowercase_ : List[Any] = flatten_dict(UpperCamelCase__ ) lowercase_ : Optional[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowercase_ : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase_ : Tuple = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowercase_ : Optional[int] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowercase_ : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters lowercase_ : int = rename_key_and_reshape_tensor( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # add model prefix if necessary lowercase_ : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowercase_ : List[Any] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowercase_ : Optional[int] = jnp.asarray(UpperCamelCase__ ) continue if "var" in flax_key[-1]: lowercase_ : Any = jnp.asarray(UpperCamelCase__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) continue # also add unexpected weight so that warning is thrown lowercase_ : Tuple = jnp.asarray(UpperCamelCase__ ) else: # also add unexpected weight so that warning is thrown lowercase_ : List[Any] = jnp.asarray(UpperCamelCase__ ) return unflatten_dict(UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : int = os.path.abspath(UpperCamelCase__ ) logger.info(F"""Loading Flax weights from {flax_checkpoint_path}""" ) # import correct flax class lowercase_ : List[str] = getattr(UpperCamelCase__ , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(UpperCamelCase__ , "rb" ) as state_f: try: lowercase_ : Optional[int] = from_bytes(UpperCamelCase__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"""Unable to convert {flax_checkpoint_path} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(UpperCamelCase__ , UpperCamelCase__ ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowercase_ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda _UpperCamelCase : x.dtype == jnp.bfloataa , UpperCamelCase__ ) ).values() if any(UpperCamelCase__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowercase_ : Optional[Any] = jax.tree_util.tree_map( lambda _UpperCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , UpperCamelCase__ ) lowercase_ : List[Any] = flatten_dict(UpperCamelCase__ ) lowercase_ : Optional[Any] = pt_model.state_dict() lowercase_ : int = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) lowercase_ : List[str] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowercase_ : Union[str, Any] = [] lowercase_ : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowercase_ : Dict = flax_key_tuple[0] == pt_model.base_model_prefix lowercase_ : int = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowercase_ : Optional[int] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowercase_ : List[str] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(UpperCamelCase__ ) not in pt_model_dict: # conv layer lowercase_ : Tuple = flax_key_tuple[:-1] + ("""weight""",) lowercase_ : Dict = jnp.transpose(UpperCamelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCamelCase__ ) not in pt_model_dict: # linear layer lowercase_ : str = flax_key_tuple[:-1] + ("""weight""",) lowercase_ : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowercase_ : Any = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowercase_ : Tuple = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: lowercase_ : Tuple = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: lowercase_ : int = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowercase_ : Optional[int] = """.""".join(UpperCamelCase__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowercase_ : Tuple = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowercase_ : Any = key.split("." ) lowercase_ : Any = None if key_components[-3::2] == ["parametrizations", "original0"]: lowercase_ : Optional[Any] = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: lowercase_ : int = key_components[-2] + """_v""" if name is not None: lowercase_ : str = key_components[:-3] + [name] lowercase_ : int = """.""".join(UpperCamelCase__ ) lowercase_ : Any = key if flax_key in special_pt_names: lowercase_ : Optional[int] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowercase_ : List[Any] = np.asarray(UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , np.ndarray ) else flax_tensor lowercase_ : Tuple = torch.from_numpy(UpperCamelCase__ ) # remove from missing keys missing_keys.remove(UpperCamelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(UpperCamelCase__ ) pt_model.load_state_dict(UpperCamelCase__ ) # re-transform missing_keys to list lowercase_ : Union[str, Any] = list(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F"""All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n""" ) if len(UpperCamelCase__ ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) else: logger.warning( F"""All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n""" "If your task is similar to the task the model of the checkpoint was trained on, " F"""you can already use {pt_model.__class__.__name__} for predictions without further training.""" ) return pt_model
720
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCamelCase__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , a : List[str] , a : Optional[int]=7 , a : List[str]=3 , a : Dict=1_8 , a : Tuple=3_0 , a : List[Any]=4_0_0 , a : Any=None , a : Any=True , a : Tuple=True , a : List[str]=None , ): '''simple docstring''' lowercase_ : str = size if size is not None else {"height": 2_0, "width": 2_0} lowercase_ : Any = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : List[Any] = num_channels lowercase_ : int = image_size lowercase_ : Optional[Any] = min_resolution lowercase_ : str = max_resolution lowercase_ : str = size lowercase_ : Tuple = do_normalize lowercase_ : Optional[Any] = do_convert_rgb lowercase_ : Optional[Any] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] lowercase_ : Dict = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Dict = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" lowercase_ : int = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Any = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[Any] = PixaStructImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_convert_rgb" ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : List[Any] = self.image_processor_tester.prepare_dummy_image() lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Tuple = 2_0_4_8 lowercase_ : Optional[int] = image_processor(UpperCAmelCase__ , return_tensors="pt" , max_patches=UpperCAmelCase__ ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowercase_ : Dict = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase_ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase_ : int = image_processor( UpperCAmelCase__ , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowercase_ : List[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 lowercase_ : int = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase__ ): lowercase_ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches lowercase_ : List[Any] = "Hello" lowercase_ : Dict = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase_ : Dict = image_processor( UpperCAmelCase__ , return_tensors="pt" , max_patches=UpperCAmelCase__ , header_text=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) lowercase_ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase_ : List[str] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase_ : Tuple = image_processor( UpperCAmelCase__ , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowercase_ : List[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase_ : List[Any] = image_processor( UpperCAmelCase__ , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: List[Any] = PixaStructImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : str = PixaStructImageProcessingTester(self , num_channels=4 ) lowercase_ : str = 3 @property def lowerCAmelCase__ ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_convert_rgb" ) ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowercase_ : List[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase_ : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase_ : str = image_processor( UpperCAmelCase__ , return_tensors="pt" , max_patches=UpperCAmelCase__ ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer UpperCamelCase__ = logging.getLogger(__name__) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : int = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=_UpperCamelCase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=_UpperCamelCase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=_UpperCamelCase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=_UpperCamelCase , default=1000 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=_UpperCamelCase , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=_UpperCamelCase , type=_UpperCamelCase , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=_UpperCamelCase , default=512 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=_UpperCamelCase , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) lowercase_ : Optional[Any] = parser.parse_args() return args def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" def fn(_UpperCamelCase ): return tokenizer(examples["text"] ) return fn def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = [] for i in range(len(tokenized_data["input_ids"] ) ): lowercase_ : int = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } lowercase_ : Optional[int] = tf.train.Features(feature=_UpperCamelCase ) lowercase_ : Tuple = tf.train.Example(features=_UpperCamelCase ) lowercase_ : List[str] = example.SerializeToString() records.append(_UpperCamelCase ) return records def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : int = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: lowercase_ : Dict = min(len(_UpperCamelCase ) , args.limit ) lowercase_ : str = dataset.select(range(_UpperCamelCase ) ) print(F"""Limiting the dataset to {args.limit} entries.""" ) lowercase_ : str = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) lowercase_ : Optional[Any] = os.path.join(args.output_dir , args.split ) if not os.path.exists(_UpperCamelCase ): os.makedirs(_UpperCamelCase ) else: lowercase_ : int = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. lowercase_ : Dict = tokenize_function(_UpperCamelCase ) lowercase_ : Optional[Any] = dataset.map(_UpperCamelCase , batched=_UpperCamelCase , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_UpperCamelCase ): # Concatenate all texts. lowercase_ : Dict = {k: sum(examples[k] , [] ) for k in examples.keys()} lowercase_ : Optional[Any] = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 lowercase_ : Dict = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. lowercase_ : Union[str, Any] = { k: [t[i : i + args.max_length] for i in range(0 , _UpperCamelCase , args.max_length )] for k, t in concatenated_examples.items() } return result lowercase_ : Tuple = dataset_tokenized.map(_UpperCamelCase , batched=_UpperCamelCase , batch_size=1000 , num_proc=4 ) lowercase_ : List[Any] = 0 lowercase_ : Tuple = 0 for shard in range(0 , len(_UpperCamelCase ) , args.shard_size ): lowercase_ : Union[str, Any] = grouped_dataset[shard : shard + args.shard_size] lowercase_ : Union[str, Any] = len(dataset_snapshot["input_ids"] ) lowercase_ : str = os.path.join(_UpperCamelCase , F"""dataset-{shard_count}-{records_containing}.tfrecord""" ) lowercase_ : str = get_serialized_examples(_UpperCamelCase ) with tf.io.TFRecordWriter(_UpperCamelCase ) as out_file: for i in range(len(_UpperCamelCase ) ): lowercase_ : Optional[int] = serialized_examples[i] out_file.write(_UpperCamelCase ) print("Wrote file {} containing {} records".format(_UpperCamelCase , _UpperCamelCase ) ) shard_count += 1 total_records += records_containing with open(F"""split-{args.split}-records-count.txt""" , "w" ) as f: print(F"""Total {args.split} records: {total_records}""" , file=_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase__ = parse_args() main(args)
700
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , snake_case , unittest.TestCase ): __lowerCamelCase: List[Any] = StableDiffusionSAGPipeline __lowerCamelCase: str = TEXT_TO_IMAGE_PARAMS __lowerCamelCase: Dict = TEXT_TO_IMAGE_BATCH_PARAMS __lowerCamelCase: str = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase: Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase: Union[str, Any] = False def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Optional[int] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=3_2 , ) lowercase_ : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a , set_alpha_to_one=a , ) torch.manual_seed(0 ) lowercase_ : str = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowercase_ : Union[str, Any] = CLIPTextModel(a ) lowercase_ : List[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowercase_ : str = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase__ ( self : Tuple , a : Optional[int] , a : Any=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : str = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Dict = { "prompt": ".", "generator": generator, "num_inference_steps": 2, "guidance_scale": 1.0, "sag_scale": 1.0, "output_type": "numpy", } return inputs def lowerCAmelCase__ ( self : Any ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Union[str, Any] = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) lowercase_ : Union[str, Any] = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase_ : Optional[int] = "." lowercase_ : Union[str, Any] = torch.manual_seed(0 ) lowercase_ : Optional[Any] = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" ) lowercase_ : str = output.images lowercase_ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ : List[str] = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Tuple = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase_ : Any = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase_ : Union[str, Any] = "." lowercase_ : Tuple = torch.manual_seed(0 ) lowercase_ : int = sag_pipe( [prompt] , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" ) lowercase_ : int = output.images lowercase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ : Tuple = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-2 def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) lowercase_ : str = sag_pipe.to(a ) sag_pipe.set_progress_bar_config(disable=a ) lowercase_ : str = "." lowercase_ : Union[str, Any] = torch.manual_seed(0 ) lowercase_ : List[Any] = sag_pipe( [prompt] , width=7_6_8 , height=5_1_2 , generator=a , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=2_0 , output_type="np" , ) lowercase_ : List[str] = output.images assert image.shape == (1, 5_1_2, 7_6_8, 3)
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( __snake_case ): __lowerCamelCase: Tuple = ['image_processor'] __lowerCamelCase: List[Any] = 'SamImageProcessor' def __init__( self : Tuple , a : str ): '''simple docstring''' super().__init__(__UpperCamelCase ) lowercase_ : Optional[int] = self.image_processor lowercase_ : Tuple = -1_0 lowercase_ : Optional[int] = self.image_processor.size["longest_edge"] def __call__( self : Dict , a : List[str]=None , a : Tuple=None , a : int=None , a : Optional[Any]=None , a : int = None , **a : List[str] , ): '''simple docstring''' lowercase_ : List[str] = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # pop arguments that are not used in the foward but used nevertheless lowercase_ : Tuple = encoding_image_processor["original_sizes"] if hasattr(__UpperCamelCase , "numpy" ): # Checks if Torch or TF tensor lowercase_ : Optional[int] = original_sizes.numpy() lowercase_ , lowercase_ , lowercase_ : int = self._check_and_preprocess_points( input_points=__UpperCamelCase , input_labels=__UpperCamelCase , input_boxes=__UpperCamelCase , ) lowercase_ : int = self._normalize_and_convert( __UpperCamelCase , __UpperCamelCase , input_points=__UpperCamelCase , input_labels=__UpperCamelCase , input_boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) return encoding_image_processor def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str] , a : Tuple , a : Optional[int]=None , a : List[str]=None , a : Dict=None , a : List[str]="pt" , ): '''simple docstring''' if input_points is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): lowercase_ : Optional[int] = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , original_sizes[0] ) for point in input_points ] else: lowercase_ : int = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , __UpperCamelCase ) for point, original_size in zip(__UpperCamelCase , __UpperCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: lowercase_ , lowercase_ : Optional[Any] = self._pad_points_and_labels(__UpperCamelCase , __UpperCamelCase ) lowercase_ : Dict = np.array(__UpperCamelCase ) if input_labels is not None: lowercase_ : int = np.array(__UpperCamelCase ) if input_boxes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): lowercase_ : Union[str, Any] = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , original_sizes[0] , is_bounding_box=__UpperCamelCase ) for box in input_boxes ] else: lowercase_ : int = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , __UpperCamelCase , is_bounding_box=__UpperCamelCase ) for box, original_size in zip(__UpperCamelCase , __UpperCamelCase ) ] lowercase_ : Dict = np.array(__UpperCamelCase ) if input_boxes is not None: if return_tensors == "pt": lowercase_ : int = torch.from_numpy(__UpperCamelCase ) # boxes batch size of 1 by default lowercase_ : Optional[Any] = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": lowercase_ : Union[str, Any] = tf.convert_to_tensor(__UpperCamelCase ) # boxes batch size of 1 by default lowercase_ : Optional[Any] = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes} ) if input_points is not None: if return_tensors == "pt": lowercase_ : str = torch.from_numpy(__UpperCamelCase ) # point batch size of 1 by default lowercase_ : List[str] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": lowercase_ : List[Any] = tf.convert_to_tensor(__UpperCamelCase ) # point batch size of 1 by default lowercase_ : Union[str, Any] = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"input_points": input_points} ) if input_labels is not None: if return_tensors == "pt": lowercase_ : List[str] = torch.from_numpy(__UpperCamelCase ) # point batch size of 1 by default lowercase_ : Tuple = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": lowercase_ : str = tf.convert_to_tensor(__UpperCamelCase ) # point batch size of 1 by default lowercase_ : Dict = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels} ) return encoding_image_processor def lowerCAmelCase__ ( self : Optional[int] , a : Optional[int] , a : Optional[int] ): '''simple docstring''' lowercase_ : List[Any] = max([point.shape[0] for point in input_points] ) lowercase_ : List[Any] = [] for i, point in enumerate(__UpperCamelCase ): if point.shape[0] != expected_nb_points: lowercase_ : Any = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) lowercase_ : Optional[int] = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__UpperCamelCase ) lowercase_ : Union[str, Any] = processed_input_points return input_points, input_labels def lowerCAmelCase__ ( self : Optional[int] , a : Optional[int] , a : Tuple , a : Optional[int] , a : str=False ): '''simple docstring''' lowercase_ , lowercase_ : int = original_size lowercase_ , lowercase_ : Optional[int] = self.image_processor._get_preprocess_shape(__UpperCamelCase , longest_edge=__UpperCamelCase ) lowercase_ : Any = deepcopy(__UpperCamelCase ).astype(__UpperCamelCase ) if is_bounding_box: lowercase_ : Any = coords.reshape(-1 , 2 , 2 ) lowercase_ : int = coords[..., 0] * (new_w / old_w) lowercase_ : str = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowercase_ : Optional[int] = coords.reshape(-1 , 4 ) return coords def lowerCAmelCase__ ( self : Optional[Any] , a : str=None , a : List[str]=None , a : Optional[int]=None , ): '''simple docstring''' if input_points is not None: if hasattr(__UpperCamelCase , "numpy" ): # Checks for TF or Torch tensor lowercase_ : Optional[int] = input_points.numpy().tolist() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_points[0] , __UpperCamelCase ): raise ValueError("Input points must be a list of list of floating points." ) lowercase_ : Optional[int] = [np.array(__UpperCamelCase ) for input_point in input_points] else: lowercase_ : Optional[int] = None if input_labels is not None: if hasattr(__UpperCamelCase , "numpy" ): lowercase_ : Dict = input_labels.numpy().tolist() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_labels[0] , __UpperCamelCase ): raise ValueError("Input labels must be a list of list integers." ) lowercase_ : Dict = [np.array(__UpperCamelCase ) for label in input_labels] else: lowercase_ : Any = None if input_boxes is not None: if hasattr(__UpperCamelCase , "numpy" ): lowercase_ : Any = input_boxes.numpy().tolist() if ( not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_boxes[0] , __UpperCamelCase ) or not isinstance(input_boxes[0][0] , __UpperCamelCase ) ): raise ValueError("Input boxes must be a list of list of list of floating points." ) lowercase_ : int = [np.array(__UpperCamelCase ).astype(np.floataa ) for box in input_boxes] else: lowercase_ : int = None return input_points, input_labels, input_boxes @property def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(__UpperCamelCase ) ) def lowerCAmelCase__ ( self : Dict , *a : Tuple , **a : List[str] ): '''simple docstring''' return self.image_processor.post_process_masks(*__UpperCamelCase , **__UpperCamelCase )
702
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
0
'''simple docstring''' import os from pathlib import Path def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase_ : Dict = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } lowercase_ : List[Any] = F"""{src_lang}-{tgt_lang}""" lowercase_ : Optional[int] = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowercase_ : int = os.path.join(lowerCAmelCase_ , "README.md" ) print(F"""Generating {path}""" ) with open(lowerCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(lowerCAmelCase_ ) # make sure we are under the root of the project UpperCamelCase__ = Path(__file__).resolve().parent.parent.parent UpperCamelCase__ = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase__ = model_name.split('-') UpperCamelCase__ = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
703
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCamelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowercase_ : List[str] = """lm_head""" lowercase_ : Tuple = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: lowercase_ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: lowercase_ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowercase_ : List[str] = value elif weight_type == "weight_g": lowercase_ : Optional[Any] = value elif weight_type == "weight_v": lowercase_ : List[str] = value elif weight_type == "bias": lowercase_ : Optional[int] = value else: lowercase_ : str = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = [] lowercase_ : Optional[Any] = fairseq_model.state_dict() lowercase_ : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowercase_ : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == "group" , ) lowercase_ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowercase_ : Dict = """unispeech.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ : Dict = True if "*" in mapped_key: lowercase_ : Optional[Any] = name.split(SCREAMING_SNAKE_CASE__ )[0].split("." )[-2] lowercase_ : Union[str, Any] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: lowercase_ : Optional[int] = """weight_g""" elif "weight_v" in name: lowercase_ : Tuple = """weight_v""" elif "bias" in name: lowercase_ : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase_ : str = """weight""" else: lowercase_ : List[str] = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = full_name.split("conv_layers." )[-1] lowercase_ : int = name.split("." ) lowercase_ : List[Any] = int(items[0] ) lowercase_ : Any = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowercase_ : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowercase_ : int = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowercase_ : str = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowercase_ : int = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=True ): """simple docstring""" if config_path is not None: lowercase_ : Union[str, Any] = UniSpeechConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: lowercase_ : Optional[int] = UniSpeechConfig() if is_finetuned: if dict_path: lowercase_ : Optional[int] = Dictionary.load_from_json(SCREAMING_SNAKE_CASE__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ : Union[str, Any] = target_dict.pad_index lowercase_ : List[Any] = target_dict.bos_index lowercase_ : str = target_dict.eos_index lowercase_ : str = len(target_dict.symbols ) lowercase_ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE__ ) ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) lowercase_ : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched lowercase_ : int = 42 lowercase_ : Optional[int] = 43 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase_ : int = WavaVecaPhonemeCTCTokenizer( SCREAMING_SNAKE_CASE__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE__ , ) lowercase_ : str = True if config.feat_extract_norm == """layer""" else False lowercase_ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) lowercase_ : Union[str, Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase_ : List[str] = UniSpeechForCTC(SCREAMING_SNAKE_CASE__ ) else: lowercase_ : Dict = UniSpeechForPreTraining(SCREAMING_SNAKE_CASE__ ) if is_finetuned: lowercase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowercase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowercase_ : Any = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) hf_unispeech.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
704
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 5000_0000 ): """simple docstring""" lowercase_ : int = set() lowercase_ : Union[str, Any] = int((limit - 24) ** (1 / 2) ) lowercase_ : Optional[Any] = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , a_ ) ) ) for primea in primes: lowercase_ : Any = primea * primea for primea in primes: lowercase_ : Union[str, Any] = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: lowercase_ : List[Any] = primea * primea * primea * primea lowercase_ : Dict = square + cube + tetr if total >= limit: break ret.add(a_ ) return len(a_ ) if __name__ == "__main__": print(f"""{solution() = }""")
705
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
640
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = "codegen" __lowerCamelCase: Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : int , a : Optional[int]=5_0_4_0_0 , a : Tuple=2_0_4_8 , a : List[Any]=2_0_4_8 , a : Optional[int]=4_0_9_6 , a : str=2_8 , a : Tuple=1_6 , a : List[Any]=6_4 , a : Dict=None , a : Any="gelu_new" , a : Tuple=0.0 , a : Union[str, Any]=0.0 , a : Optional[Any]=0.0 , a : List[Any]=1e-5 , a : Optional[int]=0.02 , a : Optional[int]=True , a : Union[str, Any]=5_0_2_5_6 , a : str=5_0_2_5_6 , a : List[Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ : Optional[Any] = vocab_size lowercase_ : Optional[Any] = n_ctx lowercase_ : Any = n_positions lowercase_ : List[Any] = n_embd lowercase_ : Optional[Any] = n_layer lowercase_ : str = n_head lowercase_ : Optional[int] = n_inner lowercase_ : Union[str, Any] = rotary_dim lowercase_ : Tuple = activation_function lowercase_ : Optional[Any] = resid_pdrop lowercase_ : str = embd_pdrop lowercase_ : str = attn_pdrop lowercase_ : int = layer_norm_epsilon lowercase_ : List[Any] = initializer_range lowercase_ : Dict = use_cache lowercase_ : Dict = bos_token_id lowercase_ : Optional[Any] = eos_token_id super().__init__( bos_token_id=a , eos_token_id=a , tie_word_embeddings=a , **a ) class _UpperCAmelCase ( snake_case ): def __init__( self : Union[str, Any] , a : PretrainedConfig , a : str = "default" , a : List[PatchingSpec] = None , a : bool = False , ): '''simple docstring''' super().__init__(a , task=a , patching_specs=a , use_past=a ) if not getattr(self._config , "pad_token_id" , a ): # TODO: how to do that better? lowercase_ : List[str] = 0 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(a , direction="inputs" ) lowercase_ : str = {0: "batch", 1: "past_sequence + sequence"} else: lowercase_ : List[str] = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return self._config.n_layer @property def lowerCAmelCase__ ( self : int ): '''simple docstring''' return self._config.n_head def lowerCAmelCase__ ( self : Dict , a : PreTrainedTokenizer , a : int = -1 , a : int = -1 , a : bool = False , a : Optional[TensorType] = None , ): '''simple docstring''' lowercase_ : Union[str, Any] = super(a , self ).generate_dummy_inputs( a , batch_size=a , seq_length=a , is_pair=a , framework=a ) # We need to order the input in the way they appears in the forward() lowercase_ : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowercase_ , lowercase_ : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowercase_ : Any = seqlen + 2 lowercase_ : Tuple = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowercase_ : List[Any] = [ (torch.zeros(a ), torch.zeros(a )) for _ in range(self.num_layers ) ] lowercase_ : Optional[Any] = common_inputs["attention_mask"] if self.use_past: lowercase_ : List[str] = ordered_inputs["attention_mask"].dtype lowercase_ : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a , a , dtype=a )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return 1_3
706
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MultilingualCLIP , a : XLMRobertaTokenizer , a : UNetaDConditionModel , a : Union[DDIMScheduler, DDPMScheduler] , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=a , tokenizer=a , unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] , a : str , a : Tuple , a : List[str] ): '''simple docstring''' if latents is None: lowercase_ : List[str] = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : str = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Union[str, Any] , a : str , a : Tuple=None , ): '''simple docstring''' lowercase_ : Tuple = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( a , padding="max_length" , truncation=a , max_length=7_7 , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : Union[str, Any] = text_inputs.input_ids lowercase_ : Tuple = self.tokenizer(a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a , a ): lowercase_ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase_ : List[str] = text_input_ids.to(a ) lowercase_ : int = text_inputs.attention_mask.to(a ) lowercase_ , lowercase_ : Optional[int] = self.text_encoder( input_ids=a , attention_mask=a ) lowercase_ : str = prompt_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(a , dim=0 ) lowercase_ : int = text_mask.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] if negative_prompt is None: lowercase_ : int = [""] * batch_size elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase_ : Tuple = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: lowercase_ : Dict = negative_prompt lowercase_ : str = self.tokenizer( a , padding="max_length" , max_length=7_7 , truncation=a , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : List[Any] = uncond_input.input_ids.to(a ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(a ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=a , attention_mask=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : List[str] = negative_prompt_embeds.shape[1] lowercase_ : Dict = negative_prompt_embeds.repeat(1 , a ) lowercase_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , a , 1 ) lowercase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , a , -1 ) lowercase_ : List[Any] = uncond_text_mask.repeat_interleave(a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self : Tuple , a : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(a , a , prev_module_hook=a ) if self.safety_checker is not None: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(self.safety_checker , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[str, List[str]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Optional[Union[str, List[str]]] = None , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , a ): lowercase_ : List[str] = 1 elif isinstance(a , a ): lowercase_ : int = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) lowercase_ : Tuple = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : List[str] = self._encode_prompt( a , a , a , a , a ) if isinstance(a , a ): lowercase_ : Optional[int] = torch.cat(a , dim=0 ) if isinstance(a , a ): lowercase_ : int = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[int] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) lowercase_ : List[str] = self.scheduler.timesteps lowercase_ : str = self.unet.config.in_channels lowercase_ , lowercase_ : int = get_new_h_w(a , a , self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( a , a , a , generator=a , ).prev_sample # post-processing lowercase_ : Union[str, Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Optional[int] = image.clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase__ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase__ = {ord(char) for char in VALID_CHARS} UpperCamelCase__ = ['the', 'be', 'to', 'of', 'and', 'in', 'that', 'have'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = "" lowercase_ : int lowercase_ : int lowercase_ : int for keychar, cipherchar in zip(cycle(lowercase_ ) , lowercase_ ): lowercase_ : Dict = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(lowercase_ ) return decoded def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[str] = [] for key in product(lowercase_ , repeat=3 ): lowercase_ : int = try_key(lowercase_ , lowercase_ ) if encoded is not None: possibles.append(lowercase_ ) return possibles def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = "p059_cipher.txt" ): """simple docstring""" lowercase_ : list[int] lowercase_ : list[str] lowercase_ : str lowercase_ : str lowercase_ : str = Path(lowercase_ ).parent.joinpath(lowercase_ ).read_text(encoding="utf-8" ) lowercase_ : Optional[Any] = [int(lowercase_ ) for number in data.strip().split("," )] lowercase_ : List[str] = filter_valid_chars(lowercase_ ) for common_word in COMMON_WORDS: lowercase_ : Union[str, Any] = filter_common_word(lowercase_ , lowercase_ ) if len(lowercase_ ) == 1: break lowercase_ : Union[str, Any] = possibles[0] return sum(ord(lowercase_ ) for char in decoded_text ) if __name__ == "__main__": print(f"""{solution() = }""")
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return max(metric_fn(__UpperCamelCase , __UpperCamelCase ) for gt in ground_truths ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [line.strip() for line in open(__UpperCamelCase , "r" ).readlines()] lowercase_ : Dict = [] if args.gold_data_mode == "qa": lowercase_ : int = pd.read_csv(__UpperCamelCase , sep="\t" , header=__UpperCamelCase ) for answer_list in data[1]: lowercase_ : Optional[Any] = ast.literal_eval(__UpperCamelCase ) answers.append(__UpperCamelCase ) else: lowercase_ : Tuple = [line.strip() for line in open(__UpperCamelCase , "r" ).readlines()] lowercase_ : Any = [[reference] for reference in references] lowercase_ : Any = 0 for prediction, ground_truths in zip(__UpperCamelCase , __UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) fa += metric_max_over_ground_truths(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowercase_ : List[Any] = 100.0 * em / total lowercase_ : List[Any] = 100.0 * fa / total logger.info(F"""F1: {fa:.2f}""" ) logger.info(F"""EM: {em:.2f}""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = args.k lowercase_ : int = [line.strip() for line in open(__UpperCamelCase , "r" ).readlines()] lowercase_ : Dict = [line.strip() for line in open(__UpperCamelCase , "r" ).readlines()] lowercase_ : Optional[Any] = 0 for hypo, reference in zip(__UpperCamelCase , __UpperCamelCase ): lowercase_ : List[str] = set(hypo.split("\t" )[:k] ) lowercase_ : int = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k lowercase_ : Any = 100.0 * em / total logger.info(F"""Precision@{k}: {em: .2f}""" ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def strip_title(_UpperCamelCase ): if title.startswith("\"" ): lowercase_ : Optional[int] = title[1:] if title.endswith("\"" ): lowercase_ : Tuple = title[:-1] return title lowercase_ : Dict = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors="pt" , padding=__UpperCamelCase , truncation=__UpperCamelCase , )["input_ids"].to(args.device ) lowercase_ : Optional[Any] = rag_model.rag.question_encoder(__UpperCamelCase ) lowercase_ : int = question_enc_outputs[0] lowercase_ : Union[str, Any] = rag_model.retriever( __UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) lowercase_ : str = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) lowercase_ : str = [] for docs in all_docs: lowercase_ : List[str] = [strip_title(__UpperCamelCase ) for title in docs["title"]] provenance_strings.append("\t".join(__UpperCamelCase ) ) return provenance_strings def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" with torch.no_grad(): lowercase_ : List[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __UpperCamelCase , return_tensors="pt" , padding=__UpperCamelCase , truncation=__UpperCamelCase ) lowercase_ : Optional[int] = inputs_dict.input_ids.to(args.device ) lowercase_ : List[Any] = inputs_dict.attention_mask.to(args.device ) lowercase_ : Union[str, Any] = rag_model.generate( # rag_model overwrites generate __UpperCamelCase , attention_mask=__UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) lowercase_ : Any = rag_model.retriever.generator_tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) if args.print_predictions: for q, a in zip(__UpperCamelCase , __UpperCamelCase ): logger.info("Q: {} - A: {}".format(__UpperCamelCase , __UpperCamelCase ) ) return answers def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__UpperCamelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__UpperCamelCase , choices=["exact", "compressed", "legacy"] , type=__UpperCamelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__UpperCamelCase , type=__UpperCamelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__UpperCamelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__UpperCamelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__UpperCamelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__UpperCamelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__UpperCamelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__UpperCamelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__UpperCamelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__UpperCamelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__UpperCamelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) lowercase_ : str = parser.parse_args() lowercase_ : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Tuple = {} if args.model_type is None: lowercase_ : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): lowercase_ : List[str] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration lowercase_ : Any = args.n_docs if args.index_name is not None: lowercase_ : Optional[int] = args.index_name if args.index_path is not None: lowercase_ : Dict = args.index_path else: lowercase_ : Optional[Any] = BartForConditionalGeneration lowercase_ : List[str] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __UpperCamelCase ) lowercase_ : Union[str, Any] = get_scores if args.eval_mode == "e2e" else get_precision_at_k lowercase_ : int = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__UpperCamelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): lowercase_ : Union[str, Any] = RagRetriever.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) lowercase_ : Dict = model_class.from_pretrained(__UpperCamelCase , retriever=__UpperCamelCase , **__UpperCamelCase ) model.retriever.init_retrieval() else: lowercase_ : Tuple = model_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: lowercase_ : Optional[Any] = [] for line in tqdm(__UpperCamelCase ): questions.append(line.strip() ) if len(__UpperCamelCase ) == args.eval_batch_size: lowercase_ : Union[str, Any] = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write("\n".join(__UpperCamelCase ) + "\n" ) preds_file.flush() lowercase_ : Any = [] if len(__UpperCamelCase ) > 0: lowercase_ : List[Any] = evaluate_batch_fn(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) preds_file.write("\n".join(__UpperCamelCase ) ) preds_file.flush() score_fn(__UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase__ = get_args() main(args)
708
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = ['image_processor', 'tokenizer'] __lowerCamelCase: Dict = 'Pix2StructImageProcessor' __lowerCamelCase: Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : str , a : Dict , a : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = False super().__init__(a , a ) def __call__( self : Tuple , a : int=None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : Optional[int] = 2_0_4_8 , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase_ : Dict = self.tokenizer lowercase_ : Tuple = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase_ : Optional[int] = self.image_processor( a , return_tensors=a , max_patches=a , **a ) else: # add pixel_values and bbox lowercase_ : Any = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a ) if text is not None and not self.image_processor.is_vqa: lowercase_ : int = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: lowercase_ : str = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase_ : Dict = text_encoding.pop("input_ids" ) else: lowercase_ : str = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def lowerCAmelCase__ ( self : Any , *a : str , **a : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def lowerCAmelCase__ ( self : str , *a : Optional[int] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
640
0
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class _UpperCAmelCase : def __init__( self : List[Any] , a : Dict , a : List[str]=2 , a : List[Any]=True , a : Union[str, Any]=False , a : int=1_0 , a : Tuple=3 , a : Any=3_2 * 4 , a : str=3_2 * 6 , a : str=4 , a : Union[str, Any]=3_2 , ): '''simple docstring''' lowercase_ : List[Any] = parent lowercase_ : Dict = batch_size lowercase_ : int = is_training lowercase_ : Dict = use_auxiliary_loss lowercase_ : Dict = num_queries lowercase_ : Tuple = num_channels lowercase_ : List[Any] = min_size lowercase_ : Optional[int] = max_size lowercase_ : List[str] = num_labels lowercase_ : Union[str, Any] = mask_feature_size def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _lowerCAmelCase ) lowercase_ : Union[str, Any] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_lowerCAmelCase ) lowercase_ : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_lowerCAmelCase ) > 0.5 ).float() lowercase_ : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=_lowerCAmelCase ) > 0.5).long() lowercase_ : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Tuple = self.prepare_config_and_inputs() lowercase_ : Any = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowerCAmelCase__ ( self : List[Any] , a : int , a : Dict ): '''simple docstring''' lowercase_ : Union[str, Any] = output.encoder_hidden_states lowercase_ : List[str] = output.pixel_decoder_hidden_states lowercase_ : Optional[Any] = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_lowerCAmelCase ) , config.decoder_config.decoder_layers ) def lowerCAmelCase__ ( self : Optional[Any] , a : Optional[Any] , a : Dict , a : Any , a : List[Any]=False ): '''simple docstring''' with torch.no_grad(): lowercase_ : str = MaskFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase_ : int = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) lowercase_ : Optional[int] = model(_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] , a : int , a : Any , a : int , a : Any , a : int ): '''simple docstring''' lowercase_ : Dict = MaskFormerForInstanceSegmentation(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() def comm_check_on_output(a : List[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowercase_ : Any = model(pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase ) lowercase_ : List[Any] = model(_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) lowercase_ : Optional[Any] = model( pixel_values=_lowerCAmelCase , pixel_mask=_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) comm_check_on_output(_lowerCAmelCase ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __lowerCamelCase: str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowerCamelCase: Tuple = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowerCamelCase: Tuple = False __lowerCamelCase: List[str] = False __lowerCamelCase: List[str] = False __lowerCamelCase: List[str] = False def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : str = MaskFormerModelTester(self ) lowercase_ : Optional[Any] = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ , lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_lowerCAmelCase ) @unittest.skip(reason="MaskFormer does not use inputs_embeds" ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="MaskFormer does not have a get_input_embeddings method" ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="MaskFormer is not a generative model" ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip(reason="MaskFormer does not use token embeddings" ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ , lowercase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[int] = model_class(_lowerCAmelCase ) lowercase_ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) @slow def lowerCAmelCase__ ( self : Any ): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: lowercase_ : Tuple = MaskFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Optional[int] = (self.model_tester.min_size,) * 2 lowercase_ : List[str] = { "pixel_values": torch.randn((2, 3, *size) , device=_lowerCAmelCase ), "mask_labels": torch.randn((2, 1_0, *size) , device=_lowerCAmelCase ), "class_labels": torch.zeros(2 , 1_0 , device=_lowerCAmelCase ).long(), } lowercase_ : Dict = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_lowerCAmelCase ) lowercase_ : int = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_lowerCAmelCase , **_lowerCAmelCase , output_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ , lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ : Optional[Any] = model_class(_lowerCAmelCase ).to(_lowerCAmelCase ) lowercase_ : Dict = model(**_lowerCAmelCase , output_attentions=_lowerCAmelCase ) self.assertTrue(outputs.attentions is not None ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowercase_ : Union[str, Any] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() lowercase_ : Dict = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase_ : List[str] = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ).loss loss.backward() def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : List[str] = self.all_model_classes[1] lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : Any = self.model_tester.prepare_config_and_inputs() lowercase_ : List[Any] = True lowercase_ : Optional[int] = True lowercase_ : Union[str, Any] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.train() lowercase_ : List[str] = model(_lowerCAmelCase , mask_labels=_lowerCAmelCase , class_labels=_lowerCAmelCase ) lowercase_ : Optional[Any] = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowercase_ : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowercase_ : Tuple = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowercase_ : str = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_lowerCAmelCase ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase__ = 1e-4 def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class _UpperCAmelCase ( unittest.TestCase ): @cached_property def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained("facebook/maskformer-swin-small-coco" ) if is_vision_available() else None ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Union[str, Any] = MaskFormerModel.from_pretrained("facebook/maskformer-swin-small-coco" ).to(_lowerCAmelCase ) lowercase_ : str = self.default_image_processor lowercase_ : int = prepare_img() lowercase_ : Tuple = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) lowercase_ : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowercase_ : int = model(**_lowerCAmelCase ) lowercase_ : Tuple = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) lowercase_ : int = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) lowercase_ : List[str] = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(_lowerCAmelCase ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_lowerCAmelCase ) .eval() ) lowercase_ : Union[str, Any] = self.default_image_processor lowercase_ : str = prepare_img() lowercase_ : List[Any] = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) lowercase_ : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowercase_ : str = model(**_lowerCAmelCase ) # masks_queries_logits lowercase_ : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : List[str] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] lowercase_ : List[str] = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits lowercase_ : Dict = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : List[Any] = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-resnet101-coco-stuff" ) .to(_lowerCAmelCase ) .eval() ) lowercase_ : Optional[int] = self.default_image_processor lowercase_ : List[str] = prepare_img() lowercase_ : Tuple = image_processor(_lowerCAmelCase , return_tensors="pt" ).to(_lowerCAmelCase ) lowercase_ : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0 ) # check size self.assertEqual(_lowerCAmelCase , (1, 3, 8_0_0, 1_0_8_8) ) with torch.no_grad(): lowercase_ : Any = model(**_lowerCAmelCase ) # masks_queries_logits lowercase_ : Optional[Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowercase_ : str = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] lowercase_ : Union[str, Any] = torch.tensor(_lowerCAmelCase ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) # class_queries_logits lowercase_ : Optional[Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) lowercase_ : Optional[int] = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _lowerCAmelCase , atol=_lowerCAmelCase ) ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = ( MaskFormerForInstanceSegmentation.from_pretrained("facebook/maskformer-swin-small-coco" ) .to(_lowerCAmelCase ) .eval() ) lowercase_ : int = self.default_image_processor lowercase_ : int = image_processor( [np.zeros((3, 8_0_0, 1_3_3_3) ), np.zeros((3, 8_0_0, 1_3_3_3) )] , segmentation_maps=[np.zeros((3_8_4, 3_8_4) ).astype(np.floataa ), np.zeros((3_8_4, 3_8_4) ).astype(np.floataa )] , return_tensors="pt" , ) lowercase_ : Optional[int] = inputs["pixel_values"].to(_lowerCAmelCase ) lowercase_ : Optional[int] = [el.to(_lowerCAmelCase ) for el in inputs["mask_labels"]] lowercase_ : Tuple = [el.to(_lowerCAmelCase ) for el in inputs["class_labels"]] with torch.no_grad(): lowercase_ : str = model(**_lowerCAmelCase ) self.assertTrue(outputs.loss is not None )
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): UpperCamelCase__ = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: UpperCamelCase__ = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : int = (images / 2 + 0.5).clamp(0 , 1 ) lowercase_ : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase_ : List[str] = numpy_to_pil(snake_case_ ) return images def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if images.ndim == 3: lowercase_ : List[str] = images[None, ...] lowercase_ : int = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase_ : str = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowercase_ : Tuple = [Image.fromarray(snake_case_ ) for image in images] return pil_images
710
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
0
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __lowerCamelCase: int = BertJapaneseTokenizer __lowerCamelCase: Tuple = False __lowerCamelCase: str = True def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' super().setUp() lowercase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] lowercase_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self : Union[str, Any] , a : Any ): '''simple docstring''' lowercase_ : Any = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase_ : Dict = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def lowerCAmelCase__ ( self : str , a : Optional[Any] ): '''simple docstring''' lowercase_ : Dict = self.get_input_output_texts(UpperCamelCase__ ) lowercase_ : List[str] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowercase_ : Dict = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) return text, ids def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : int ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : int = self.tokenizer_class(self.vocab_file ) lowercase_ : Any = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。" ) self.assertListEqual(UpperCamelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab" ) self.assertIsNotNone(UpperCamelCase__ ) lowercase_ : Dict = '''こんにちは、世界。\nこんばんは、世界。''' lowercase_ : Dict = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) lowercase_ : Optional[int] = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCamelCase__ , "wb" ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , "rb" ) as handle: lowercase_ : Tuple = pickle.load(UpperCamelCase__ ) lowercase_ : str = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Dict = MecabTokenizer(mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' try: lowercase_ : Tuple = MecabTokenizer(mecab_dic="unidic_lite" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' try: lowercase_ : Optional[int] = MecabTokenizer(mecab_dic="unidic" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Tuple = MecabTokenizer(do_lower_case=UpperCamelCase__ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' try: lowercase_ : Dict = MecabTokenizer( do_lower_case=UpperCamelCase__ , normalize_text=UpperCamelCase__ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = MecabTokenizer(normalize_text=UpperCamelCase__ , mecab_dic="ipadic" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi" ) self.assertIsNotNone(UpperCamelCase__ ) lowercase_ : int = '''こんにちは、世界。\nこんばんは、世界。''' lowercase_ : Any = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) lowercase_ : str = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCamelCase__ , "wb" ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , "rb" ) as handle: lowercase_ : Optional[int] = pickle.load(UpperCamelCase__ ) lowercase_ : Any = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_sudachi def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = SudachiTokenizer(sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国", "人", "参政", "権"] ) @require_sudachi def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人", "参政権"] ) @require_sudachi def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : str = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C" ) self.assertListEqual(tokenizer.tokenize("外国人参政権" ) , ["外国人参政権"] ) @require_sudachi def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[int] = SudachiTokenizer(do_lower_case=UpperCamelCase__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[int] = SudachiTokenizer(normalize_text=UpperCamelCase__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[int] = SudachiTokenizer(trim_whitespace=UpperCamelCase__ , sudachi_dict_type="core" ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp" ) self.assertIsNotNone(UpperCamelCase__ ) lowercase_ : Dict = '''こんにちは、世界。\nこんばんは、世界。''' lowercase_ : List[str] = tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) lowercase_ : Dict = os.path.join(self.tmpdirname , "tokenizer.bin" ) with open(UpperCamelCase__ , "wb" ) as handle: pickle.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(UpperCamelCase__ , "rb" ) as handle: lowercase_ : Dict = pickle.load(UpperCamelCase__ ) lowercase_ : Any = tokenizer_new.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @require_jumanpp def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Any = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Union[str, Any] = JumanppTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : int = JumanppTokenizer(normalize_text=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Dict = JumanppTokenizer(trim_whitespace=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 " ) , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : str = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。" ) , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] lowercase_ : str = {} for i, token in enumerate(UpperCamelCase__ ): lowercase_ : str = i lowercase_ : Union[str, Any] = WordpieceTokenizer(vocab=UpperCamelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こんにちは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは" ) , ["こん", "##ばんは"] ) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは" ) , ["こん", "##ばんは", "[UNK]", "こんにちは"] ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Optional[Any] = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp" ) lowercase_ : str = tokenizer.subword_tokenizer lowercase_ : Tuple = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。" ) self.assertListEqual(UpperCamelCase__ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"] ) lowercase_ : Tuple = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは" ) self.assertListEqual(UpperCamelCase__ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"] ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese" ) lowercase_ : Optional[int] = tokenizer.encode("ありがとう。" , add_special_tokens=UpperCamelCase__ ) lowercase_ : Any = tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCamelCase__ ) lowercase_ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) lowercase_ : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): __lowerCamelCase: Optional[int] = BertJapaneseTokenizer __lowerCamelCase: Union[str, Any] = False def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' super().setUp() lowercase_ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase_ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self : Optional[int] , **a : Dict ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **UpperCamelCase__ ) def lowerCAmelCase__ ( self : Optional[Any] , a : str ): '''simple docstring''' lowercase_ : int = '''こんにちは、世界。 \nこんばんは、世界。''' lowercase_ : Dict = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def lowerCAmelCase__ ( self : int ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : str ): '''simple docstring''' pass # TODO add if relevant def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character" ) lowercase_ : str = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。" ) self.assertListEqual( UpperCamelCase__ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] lowercase_ : Optional[int] = {} for i, token in enumerate(UpperCamelCase__ ): lowercase_ : Optional[Any] = i lowercase_ : Dict = CharacterTokenizer(vocab=UpperCamelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("こんにちは" ) , ["こ", "ん", "に", "ち", "は"] ) self.assertListEqual(tokenizer.tokenize("こんにちほ" ) , ["こ", "ん", "に", "ち", "[UNK]"] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[Any] = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char" ) lowercase_ : Any = tokenizer.encode("ありがとう。" , add_special_tokens=UpperCamelCase__ ) lowercase_ : str = tokenizer.encode("どういたしまして。" , add_special_tokens=UpperCamelCase__ ) lowercase_ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) lowercase_ : int = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Tuple = '''cl-tohoku/bert-base-japanese''' lowercase_ : str = AutoTokenizer.from_pretrained(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = '''cl-tohoku/bert-base-japanese''' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertTokenizer.from_pretrained(UpperCamelCase__ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) ) lowercase_ : Any = '''bert-base-cased''' with self.assertLogs("transformers" , level="WARNING" ) as cm: BertJapaneseTokenizer.from_pretrained(UpperCamelCase__ ) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from." ) )
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , a : List[str] , a : str=7 , a : str=3 , a : int=1_8 , a : Tuple=3_0 , a : Tuple=4_0_0 , a : Union[str, Any]=True , a : Optional[int]=None , a : Optional[int]=True , ): '''simple docstring''' lowercase_ : str = size if size is not None else {"height": 1_8, "width": 1_8} lowercase_ : Tuple = parent lowercase_ : Union[str, Any] = batch_size lowercase_ : Tuple = num_channels lowercase_ : int = image_size lowercase_ : int = min_resolution lowercase_ : Tuple = max_resolution lowercase_ : Dict = do_resize lowercase_ : Union[str, Any] = size lowercase_ : str = do_normalize def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class _UpperCAmelCase ( lowerCAmelCase__ , unittest.TestCase ): __lowerCamelCase: Any = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Tuple = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , "clusters" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_resize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "size" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_normalize" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 1_8, "width": 1_8} ) lowercase_ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"height": 4_2, "width": 4_2} ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) lowercase_ : Optional[int] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , _lowerCamelCase ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase_ : Tuple = os.path.join(_lowerCamelCase , "image_processor.json" ) image_processor_first.to_json_file(_lowerCamelCase ) lowercase_ : List[str] = self.image_processing_class.from_json_file(_lowerCamelCase ).to_dict() lowercase_ : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCamelCase ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(_lowerCamelCase ) lowercase_ : List[Any] = self.image_processing_class.from_pretrained(_lowerCamelCase ).to_dict() lowercase_ : int = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(_lowerCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , _lowerCamelCase ) @unittest.skip("ImageGPT requires clusters at initialization" ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' pass def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Dict = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) lowercase_ : Tuple = Image.open(dataset[4]["file"] ) lowercase_ : Dict = Image.open(dataset[5]["file"] ) lowercase_ : List[Any] = [imagea, imagea] return images @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[str] = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) lowercase_ : Dict = prepare_images() # test non-batched lowercase_ : Union[str, Any] = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) lowercase_ : Union[str, Any] = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , _lowerCamelCase ) # test batched lowercase_ : str = image_processing(_lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) lowercase_ : Tuple = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , _lowerCamelCase )
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Optional[Any] , a : Any ): '''simple docstring''' lowercase_ : List[Any] = str(id_ ) lowercase_ : List[str] = None lowercase_ : Tuple = None lowercase_ : Dict = [] lowercase_ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : Optional[Any] , a : int ): '''simple docstring''' return self.key < other.key def __repr__( self : Union[str, Any] ): '''simple docstring''' return self.id def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[int] ): '''simple docstring''' self.neighbors.append(a ) def lowerCAmelCase__ ( self : Dict , a : int , a : Optional[int] ): '''simple docstring''' lowercase_ : int = weight def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = [] for u in graph: lowercase_ : List[Any] = math.inf lowercase_ : str = None lowercase_ : Tuple = 0 lowercase_ : Tuple = graph[:] while q: lowercase_ : List[Any] = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase_ : Optional[int] = u lowercase_ : Union[str, Any] = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for u in graph: lowercase_ : str = math.inf lowercase_ : int = None lowercase_ : List[Any] = 0 lowercase_ : str = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: lowercase_ : List[Any] = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase_ : str = u lowercase_ : Optional[int] = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
640
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase__ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } UpperCamelCase__ = { "google/realm-cc-news-pretrained-embedder": 512, "google/realm-cc-news-pretrained-encoder": 512, "google/realm-cc-news-pretrained-scorer": 512, "google/realm-cc-news-pretrained-openqa": 512, "google/realm-orqa-nq-openqa": 512, "google/realm-orqa-nq-reader": 512, "google/realm-orqa-wq-openqa": 512, "google/realm-orqa-wq-reader": 512, } UpperCamelCase__ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class _UpperCAmelCase ( _A ): __lowerCamelCase: Any = VOCAB_FILES_NAMES __lowerCamelCase: Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: Tuple = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase: Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: List[Any] = RealmTokenizer def __init__( self : Dict , a : Tuple=None , a : Dict=None , a : Union[str, Any]=True , a : List[Any]="[UNK]" , a : List[str]="[SEP]" , a : int="[PAD]" , a : Optional[Any]="[CLS]" , a : Dict="[MASK]" , a : Any=True , a : Optional[int]=None , **a : str , ): '''simple docstring''' super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase_ : List[str] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a ) != do_lower_case or normalizer_state.get("strip_accents" , a ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a ) != tokenize_chinese_chars ): lowercase_ : str = getattr(a , normalizer_state.pop("type" ) ) lowercase_ : Tuple = do_lower_case lowercase_ : Union[str, Any] = strip_accents lowercase_ : List[Any] = tokenize_chinese_chars lowercase_ : Any = normalizer_class(**a ) lowercase_ : Any = do_lower_case def lowerCAmelCase__ ( self : Any , a : Dict , **a : int ): '''simple docstring''' lowercase_ : Optional[int] = PaddingStrategy.MAX_LENGTH lowercase_ : Any = text lowercase_ : List[Any] = kwargs.pop("text_pair" , a ) lowercase_ : Optional[int] = kwargs.pop("return_tensors" , a ) lowercase_ : List[Any] = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(a ): if batch_text_pair is not None: lowercase_ : Tuple = batch_text_pair[idx] else: lowercase_ : str = None lowercase_ : Optional[Any] = super().__call__(a , a , return_tensors=a , **a ) lowercase_ : Union[str, Any] = encoded_candidates.get("input_ids" ) lowercase_ : Optional[Any] = encoded_candidates.get("attention_mask" ) lowercase_ : int = encoded_candidates.get("token_type_ids" ) if encoded_input_ids is not None: output_data["input_ids"].append(a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(a ) lowercase_ : str = {key: item for key, item in output_data.items() if len(a ) != 0} return BatchEncoding(a , tensor_type=a ) def lowerCAmelCase__ ( self : str , a : List[Any] , a : Dict=None ): '''simple docstring''' lowercase_ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : int , a : List[Any] , a : List[Any] = None ): '''simple docstring''' lowercase_ : List[str] = [self.sep_token_id] lowercase_ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : Any , a : Dict , a : List[str] = None ): '''simple docstring''' lowercase_ : Tuple = self._tokenizer.model.save(a , name=a ) return tuple(a )
713
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Any = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
640
0
'''simple docstring''' import os import platform import sys UpperCamelCase__ = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=None ): """simple docstring""" lowercase_ : int = argparse.ArgumentParser(add_help=UpperCamelCase__ , allow_abbrev=UpperCamelCase__ ) # The main config parser lowercase_ : Tuple = config_command_parser(UpperCamelCase__ ) # The subparser to add commands to lowercase_ : Optional[int] = config_parser.add_subparsers(title="subcommands" , dest="subcommand" ) # Then add other parsers with the parent parser default_command_parser(UpperCamelCase__ , parents=[parent_parser] ) update_command_parser(UpperCamelCase__ , parents=[parent_parser] ) return config_parser def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[str] = get_config_parser() lowercase_ : int = config_parser.parse_args() if not hasattr(UpperCamelCase__ , "func" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
715
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ = 'scheduler_config.json' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: int = 1 __lowerCamelCase: List[Any] = 2 __lowerCamelCase: Optional[Any] = 3 __lowerCamelCase: int = 4 __lowerCamelCase: Optional[int] = 5 @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: jnp.ndarray class _UpperCAmelCase : __lowerCamelCase: List[str] = SCHEDULER_CONFIG_NAME __lowerCamelCase: Optional[int] = ['dtype'] __lowerCamelCase: int = [] __lowerCamelCase: Dict = True @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Dict[str, Any] = None , a : Optional[str] = None , a : Union[str, Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ , lowercase_ : Any = cls.load_config( pretrained_model_name_or_path=a , subfolder=a , return_unused_kwargs=a , **a , ) lowercase_ , lowercase_ : Union[str, Any] = cls.from_config(a , return_unused_kwargs=a , **a ) if hasattr(a , "create_state" ) and getattr(a , "has_state" , a ): lowercase_ : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : int , a : Union[str, os.PathLike] , a : bool = False , **a : int ): '''simple docstring''' self.save_config(save_directory=a , push_to_hub=a , **a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase_ : str = importlib.import_module(__name__.split("." )[0] ) lowercase_ : Optional[Any] = [ getattr(a , a ) for c in compatible_classes_str if hasattr(a , a ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowercase_ : int = [] for i in range(_UpperCamelCase ): lowercase_ : Union[str, Any] = i / num_diffusion_timesteps lowercase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class _UpperCAmelCase : __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Optional[int] ): '''simple docstring''' lowercase_ : Any = scheduler.config if config.trained_betas is not None: lowercase_ : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase_ : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase_ : str = 1.0 - betas lowercase_ : Dict = jnp.cumprod(a , axis=0 ) return cls( alphas=a , betas=a , alphas_cumprod=a , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = state.alphas_cumprod lowercase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase_ : int = sqrt_alpha_prod.flatten() lowercase_ : Union[str, Any] = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) lowercase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() lowercase_ : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
640
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = "cpu" , _UpperCamelCase = None ): """simple docstring""" lowercase_ : List[str] = torch.load(_UpperCAmelCase , map_location=_UpperCAmelCase ) for k, v in tqdm(state_dict.items() ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise TypeError("FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin" ) lowercase_ : str = v.half() if save_path is None: # overwrite src_path lowercase_ : List[str] = src_path torch.save(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": fire.Fire(convert)
716
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
0
'''simple docstring''' import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter UpperCamelCase__ = True except ImportError: UpperCamelCase__ = False UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _UpperCAmelCase ( UpperCamelCase_ ): @staticmethod def lowerCAmelCase__ ( a : Union[str, Any] ): '''simple docstring''' lowercase_ : Optional[Any] = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=__a , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=__a , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=__a ) def __init__( self : List[str] , a : Dict , a : Dict , a : List[str]=None , *a : List[Any] ): '''simple docstring''' lowercase_ : Optional[int] = testing lowercase_ : List[str] = testing_file lowercase_ : Optional[Any] = path def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory lowercase_ : Any = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:2_2]] if len(__a ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) lowercase_ : Union[str, Any] = ( Path(__a ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) lowercase_ : str = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(__a ) ) else: with open(self._testing_file , "r" ) as configuration_file: lowercase_ : List[Any] = json.load(__a ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__a , extra_context=__a , ) lowercase_ : Union[str, Any] = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:2_2]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: lowercase_ : List[str] = json.load(__a ) lowercase_ : Optional[Any] = configuration['lowercase_modelname'] lowercase_ : List[Any] = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(f"""{directory}/configuration.json""" ) lowercase_ : str = 'PyTorch' in generate_tensorflow_pytorch_and_flax lowercase_ : str = 'TensorFlow' in generate_tensorflow_pytorch_and_flax lowercase_ : Any = 'Flax' in generate_tensorflow_pytorch_and_flax lowercase_ : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__a , exist_ok=__a ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__a ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , "w" ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(a : Any ): with open(__a , "r" ) as f: lowercase_ : Optional[int] = f.readlines() with open(__a , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__a ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(a : Union[str, Any] , a : str , a : Tuple ): # Create temp file lowercase_ : Any = mkstemp() lowercase_ : Any = False with fdopen(__a , "w" ) as new_file: with open(__a ) as old_file: for line in old_file: new_file.write(__a ) if line_to_copy_below in line: lowercase_ : Union[str, Any] = True for line_to_copy in lines_to_copy: new_file.write(__a ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__a , __a ) # Remove original file remove(__a ) # Move new file move(__a , __a ) def skip_units(a : Tuple ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(a : Any ): with open(__a ) as datafile: lowercase_ : Optional[Any] = [] lowercase_ : Optional[int] = False lowercase_ : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: lowercase_ : Optional[int] = line.split("\"" )[1] lowercase_ : Dict = skip_units(__a ) elif "# Below: " in line and "##" not in line: lowercase_ : Optional[Any] = line.split("\"" )[1] lowercase_ : Union[str, Any] = skip_units(__a ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__a , __a , __a ) lowercase_ : List[Any] = [] elif "# Replace with" in line and "##" not in line: lowercase_ : List[str] = [] elif "##" not in line: lines_to_copy.append(__a ) remove(__a ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__a )
717
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] UpperCamelCase__ = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] UpperCamelCase__ = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): UpperCamelCase__ = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCamelCase__ = 16 UpperCamelCase__ = 32 def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = 16 ): """simple docstring""" lowercase_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowercase_ : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) lowercase_ : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase_ : List[str] = datasets.map( _lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase_ : Optional[int] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase_ : List[str] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase_ : List[Any] = 16 elif accelerator.mixed_precision != "no": lowercase_ : int = 8 else: lowercase_ : Dict = None return tokenizer.pad( _lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowercase_ : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) lowercase_ : int = DataLoader( tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCamelCase__ = mocked_dataloaders # noqa: F811 def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1": lowercase_ : List[Any] = 2 # Initialize accelerator lowercase_ : int = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ : Dict = config["""lr"""] lowercase_ : Any = int(config["num_epochs"] ) lowercase_ : Optional[int] = int(config["seed"] ) lowercase_ : List[Any] = int(config["batch_size"] ) lowercase_ : Optional[Any] = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_lowerCamelCase ) def inner_training_loop(_UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ : str = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ : str = model.to(accelerator.device ) # Instantiate optimizer lowercase_ : Optional[Any] = AdamW(params=model.parameters() , lr=_lowerCamelCase ) lowercase_ : List[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase ) # Instantiate scheduler lowercase_ : Dict = get_linear_schedule_with_warmup( optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ : Optional[Any] = accelerator.prepare( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # Now we train the model for epoch in range(_lowerCamelCase ): model.train() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowercase_ : Any = model(**_lowerCamelCase ) lowercase_ : Union[str, Any] = outputs.loss accelerator.backward(_lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase_ : Optional[int] = model(**_lowerCamelCase ) lowercase_ : Tuple = outputs.logits.argmax(dim=-1 ) lowercase_ : Any = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_lowerCamelCase , references=_lowerCamelCase , ) lowercase_ : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , _lowerCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : Any = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": main()
719
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class _UpperCAmelCase ( snake_case ): def __init__( self : Optional[int] , a : List[str] , a : str=7_6_8 ): '''simple docstring''' super().__init__(A__ ) lowercase_ : Tuple = proj_size lowercase_ : int = CLIPVisionModel(A__ ) lowercase_ : Union[str, Any] = PaintByExampleMapper(A__ ) lowercase_ : Any = nn.LayerNorm(config.hidden_size ) lowercase_ : List[str] = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling lowercase_ : str = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def lowerCAmelCase__ ( self : Any , a : Optional[int] , a : Dict=False ): '''simple docstring''' lowercase_ : Optional[int] = self.model(pixel_values=A__ ) lowercase_ : Dict = clip_output.pooler_output lowercase_ : Union[str, Any] = self.mapper(latent_states[:, None] ) lowercase_ : Optional[Any] = self.final_layer_norm(A__ ) lowercase_ : Any = self.proj_out(A__ ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class _UpperCAmelCase ( nn.Module ): def __init__( self : Tuple , a : List[Any] ): '''simple docstring''' super().__init__() lowercase_ : Optional[int] = (config.num_hidden_layers + 1) // 5 lowercase_ : List[Any] = config.hidden_size lowercase_ : Optional[int] = 1 lowercase_ : Tuple = nn.ModuleList( [ BasicTransformerBlock(A__ , A__ , A__ , activation_fn="gelu" , attention_bias=A__ ) for _ in range(A__ ) ] ) def lowerCAmelCase__ ( self : Optional[int] , a : str ): '''simple docstring''' for block in self.blocks: lowercase_ : str = block(A__ ) return hidden_states
720
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ = 'UperNetConfig' class _UpperCAmelCase ( nn.Module ): def __init__( self : Any , a : Union[str, Any] , a : Union[str, Any] , a : List[str] , a : int = 0 , a : List[Any] = False , a : str = 1 , ): '''simple docstring''' super().__init__() lowercase_ : Any = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , padding=_a , bias=_a , dilation=_a , ) lowercase_ : str = nn.BatchNormad(_a ) lowercase_ : Optional[int] = nn.ReLU() def lowerCAmelCase__ ( self : Dict , a : Optional[Any] ): '''simple docstring''' lowercase_ : str = self.conv(_a ) lowercase_ : List[str] = self.batch_norm(_a ) lowercase_ : Dict = self.activation(_a ) return output class _UpperCAmelCase ( nn.Module ): def __init__( self : str , a : Tuple , a : Any , a : Union[str, Any] ): '''simple docstring''' super().__init__() lowercase_ : Any = [ nn.AdaptiveAvgPoolad(_a ), UperNetConvModule(_a , _a , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_a ) , _a ) def lowerCAmelCase__ ( self : Optional[Any] , a : Dict ): '''simple docstring''' lowercase_ : int = input for layer in self.layers: lowercase_ : Any = layer(_a ) return hidden_state class _UpperCAmelCase ( nn.Module ): def __init__( self : List[str] , a : Any , a : Dict , a : int , a : List[str] ): '''simple docstring''' super().__init__() lowercase_ : Optional[Any] = pool_scales lowercase_ : int = align_corners lowercase_ : Any = in_channels lowercase_ : str = channels lowercase_ : int = [] for i, pool_scale in enumerate(_a ): lowercase_ : Any = UperNetPyramidPoolingBlock(pool_scale=_a , in_channels=_a , channels=_a ) self.blocks.append(_a ) self.add_module(str(_a ) , _a ) def lowerCAmelCase__ ( self : Any , a : Dict ): '''simple docstring''' lowercase_ : Any = [] for ppm in self.blocks: lowercase_ : Optional[int] = ppm(_a ) lowercase_ : List[str] = nn.functional.interpolate( _a , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(_a ) return ppm_outs class _UpperCAmelCase ( nn.Module ): def __init__( self : List[str] , a : Union[str, Any] , a : Dict ): '''simple docstring''' super().__init__() lowercase_ : Dict = config lowercase_ : Any = config.pool_scales # e.g. (1, 2, 3, 6) lowercase_ : Union[str, Any] = in_channels lowercase_ : str = config.hidden_size lowercase_ : Tuple = False lowercase_ : Dict = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowercase_ : Optional[int] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowercase_ : int = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowercase_ : Union[str, Any] = nn.ModuleList() lowercase_ : Optional[int] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowercase_ : Tuple = UperNetConvModule(_a , self.channels , kernel_size=1 ) lowercase_ : str = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_a ) self.fpn_convs.append(_a ) lowercase_ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.apply(self._init_weights ) def lowerCAmelCase__ ( self : Dict , a : Any ): '''simple docstring''' if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCAmelCase__ ( self : List[Any] , a : Optional[Any] ): '''simple docstring''' lowercase_ : Tuple = inputs[-1] lowercase_ : str = [x] psp_outs.extend(self.psp_modules(_a ) ) lowercase_ : Any = torch.cat(_a , dim=1 ) lowercase_ : List[str] = self.bottleneck(_a ) return output def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict ): '''simple docstring''' lowercase_ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_a ) ) # build top-down path lowercase_ : str = len(_a ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase_ : Dict = laterals[i - 1].shape[2:] lowercase_ : Optional[int] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_a , mode="bilinear" , align_corners=self.align_corners ) # build outputs lowercase_ : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowercase_ : Any = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) lowercase_ : Dict = torch.cat(_a , dim=1 ) lowercase_ : Optional[int] = self.fpn_bottleneck(_a ) lowercase_ : Optional[int] = self.classifier(_a ) return output class _UpperCAmelCase ( nn.Module ): def __init__( self : Dict , a : Optional[Any] , a : Optional[Any] = 2 , a : Optional[int] = 3 , a : Union[str, Any] = 1 ): '''simple docstring''' super().__init__() lowercase_ : Any = config lowercase_ : str = config.auxiliary_in_channels lowercase_ : List[Any] = config.auxiliary_channels lowercase_ : Optional[int] = config.auxiliary_num_convs lowercase_ : List[Any] = config.auxiliary_concat_input lowercase_ : Dict = in_index lowercase_ : List[str] = (kernel_size // 2) * dilation lowercase_ : Optional[Any] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_a , padding=_a , dilation=_a ) ) if self.num_convs == 0: lowercase_ : List[Any] = nn.Identity() else: lowercase_ : int = nn.Sequential(*_a ) if self.concat_input: lowercase_ : Tuple = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_a , padding=kernel_size // 2 ) lowercase_ : int = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.apply(self._init_weights ) def lowerCAmelCase__ ( self : Any , a : Tuple ): '''simple docstring''' if isinstance(_a , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowerCAmelCase__ ( self : int , a : int ): '''simple docstring''' lowercase_ : List[Any] = encoder_hidden_states[self.in_index] lowercase_ : List[Any] = self.convs(_a ) if self.concat_input: lowercase_ : Dict = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowercase_ : Optional[Any] = self.classifier(_a ) return output class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __lowerCamelCase: str = UperNetConfig __lowerCamelCase: Optional[Any] = 'pixel_values' __lowerCamelCase: List[str] = True def lowerCAmelCase__ ( self : Optional[Any] , a : Tuple ): '''simple docstring''' if isinstance(_a , _a ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowerCAmelCase__ ( self : Any , a : Tuple , a : Optional[int]=False ): '''simple docstring''' if isinstance(_a , _a ): lowercase_ : List[str] = value UpperCamelCase__ = r'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' UpperCamelCase__ = r'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , __SCREAMING_SNAKE_CASE , ) class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , a : Optional[Any] ): '''simple docstring''' super().__init__(_a ) lowercase_ : List[Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowercase_ : Optional[Any] = UperNetHead(_a , in_channels=self.backbone.channels ) lowercase_ : List[str] = UperNetFCNHead(_a ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=_a , config_class=_CONFIG_FOR_DOC ) def lowerCAmelCase__ ( self : Optional[Any] , a : str = None , a : str = None , a : List[Any] = None , a : Any = None , a : Optional[Any] = None , ): '''simple docstring''' lowercase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ : Dict = output_attentions if output_attentions is not None else self.config.output_attentions lowercase_ : str = self.backbone.forward_with_filtered_kwargs( _a , output_hidden_states=_a , output_attentions=_a ) lowercase_ : Optional[int] = outputs.feature_maps lowercase_ : Dict = self.decode_head(_a ) lowercase_ : str = nn.functional.interpolate(_a , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_a ) lowercase_ : Optional[int] = None if self.auxiliary_head is not None: lowercase_ : List[str] = self.auxiliary_head(_a ) lowercase_ : List[str] = nn.functional.interpolate( _a , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_a ) lowercase_ : List[str] = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss lowercase_ : Dict = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowercase_ : int = loss_fct(_a , _a ) lowercase_ : Union[str, Any] = loss_fct(_a , _a ) lowercase_ : List[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowercase_ : str = (logits,) + outputs[1:] else: lowercase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_a , logits=_a , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
'''simple docstring''' from __future__ import annotations import requests def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(_lowerCamelCase ).json() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 10 ): """simple docstring""" lowercase_ : Tuple = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" lowercase_ : Optional[int] = requests.get(_lowerCamelCase ).json()[:max_stories] return [get_hackernews_story(_lowerCamelCase ) for story_id in story_ids] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 10 ): """simple docstring""" lowercase_ : int = hackernews_top_stories(_lowerCamelCase ) return "\n".join("* [{title}]({url})".format(**_lowerCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
700
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/data2vec-vision-base-ft""": ( """https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json""" ), } class _UpperCAmelCase ( snake_case_ ): __lowerCamelCase: Any = """data2vec-vision""" def __init__( self : int , a : Tuple=7_6_8 , a : Dict=1_2 , a : Optional[int]=1_2 , a : Tuple=3_0_7_2 , a : Any="gelu" , a : Union[str, Any]=0.0 , a : str=0.0 , a : Union[str, Any]=0.02 , a : Union[str, Any]=1e-12 , a : List[Any]=2_2_4 , a : List[Any]=1_6 , a : Optional[Any]=3 , a : Tuple=False , a : Optional[int]=False , a : Union[str, Any]=False , a : List[Any]=False , a : List[Any]=0.1 , a : Dict=0.1 , a : List[Any]=True , a : str=[3, 5, 7, 1_1] , a : Dict=[1, 2, 3, 6] , a : Any=True , a : Tuple=0.4 , a : Union[str, Any]=2_5_6 , a : Any=1 , a : str=False , a : Tuple=2_5_5 , **a : str , ): '''simple docstring''' super().__init__(**a ) lowercase_ : int = hidden_size lowercase_ : List[Any] = num_hidden_layers lowercase_ : Optional[Any] = num_attention_heads lowercase_ : List[Any] = intermediate_size lowercase_ : Dict = hidden_act lowercase_ : Union[str, Any] = hidden_dropout_prob lowercase_ : Optional[Any] = attention_probs_dropout_prob lowercase_ : int = initializer_range lowercase_ : int = layer_norm_eps lowercase_ : Optional[Any] = image_size lowercase_ : Tuple = patch_size lowercase_ : List[Any] = num_channels lowercase_ : Union[str, Any] = use_mask_token lowercase_ : List[Any] = use_absolute_position_embeddings lowercase_ : List[str] = use_relative_position_bias lowercase_ : Any = use_shared_relative_position_bias lowercase_ : Optional[Any] = layer_scale_init_value lowercase_ : int = drop_path_rate lowercase_ : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) lowercase_ : Tuple = out_indices lowercase_ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) lowercase_ : List[Any] = use_auxiliary_head lowercase_ : List[Any] = auxiliary_loss_weight lowercase_ : Optional[int] = auxiliary_channels lowercase_ : List[Any] = auxiliary_num_convs lowercase_ : str = auxiliary_concat_input lowercase_ : List[str] = semantic_loss_ignore_index class _UpperCAmelCase ( snake_case_ ): __lowerCamelCase: Optional[Any] = version.parse('1.11' ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return 1e-4
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _UpperCAmelCase ( _UpperCAmelCase , unittest.TestCase ): __lowerCamelCase: str = BertTokenizer __lowerCamelCase: Optional[int] = BertTokenizerFast __lowerCamelCase: Any = True __lowerCamelCase: int = True __lowerCamelCase: Dict = filter_non_english def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' super().setUp() lowercase_ : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self : Optional[Any] , a : List[Any] ): '''simple docstring''' lowercase_ : Tuple = "UNwant\u00E9d,running" lowercase_ : str = "unwanted, running" return input_text, output_text def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : str = self.tokenizer_class(self.vocab_file ) lowercase_ : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowercase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowercase_ : Any = self.get_tokenizer() lowercase_ : Union[str, Any] = self.get_rust_tokenizer() lowercase_ : List[str] = "UNwant\u00E9d,running" lowercase_ : Tuple = tokenizer.tokenize(lowercase__ ) lowercase_ : List[Any] = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase_ : Optional[Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase_ : Union[str, Any] = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase_ : Optional[int] = self.get_rust_tokenizer() lowercase_ : Dict = tokenizer.encode(lowercase__ ) lowercase_ : Union[str, Any] = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) # With lower casing lowercase_ : Union[str, Any] = self.get_tokenizer(do_lower_case=lowercase__ ) lowercase_ : List[Any] = self.get_rust_tokenizer(do_lower_case=lowercase__ ) lowercase_ : Optional[Any] = "UNwant\u00E9d,running" lowercase_ : Optional[Any] = tokenizer.tokenize(lowercase__ ) lowercase_ : Any = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase_ : Union[str, Any] = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase_ : List[Any] = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase_ : int = self.get_rust_tokenizer() lowercase_ : List[Any] = tokenizer.encode(lowercase__ ) lowercase_ : List[Any] = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Tuple = BasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Dict = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = BasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[int] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Union[str, Any] = BasicTokenizer(do_lower_case=lowercase__ , strip_accents=lowercase__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = BasicTokenizer(do_lower_case=lowercase__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : Optional[int] = BasicTokenizer() lowercase_ : Optional[Any] = "a\n'll !!to?'d of, can't." lowercase_ : List[Any] = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(lowercase__ ) , lowercase__ ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[str] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowercase_ : Dict = {} for i, token in enumerate(lowercase__ ): lowercase_ : List[Any] = i lowercase_ : str = WordpieceTokenizer(vocab=lowercase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[Any] = self.get_tokenizer() lowercase_ : Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[Any] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) lowercase_ : Union[str, Any] = tokenizer.encode("sequence builders" , add_special_tokens=lowercase__ ) lowercase_ : str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase__ ) lowercase_ : Dict = tokenizer.build_inputs_with_special_tokens(lowercase__ ) lowercase_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase_ : List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowercase_ : Tuple = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowercase_ : str = tokenizer_r.encode_plus( lowercase__ , return_attention_mask=lowercase__ , return_token_type_ids=lowercase__ , return_offsets_mapping=lowercase__ , add_special_tokens=lowercase__ , ) lowercase_ : int = tokenizer_r.do_lower_case if hasattr(lowercase__ , "do_lower_case" ) else False lowercase_ : Tuple = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "Allen"), ((2_1, 2_3), "##NL"), ((2_3, 2_4), "##P"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), "allen"), ((2_1, 2_3), "##nl"), ((2_3, 2_4), "##p"), ((2_5, 3_3), "sentence"), ((3_3, 3_4), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = ["的", "人", "有"] lowercase_ : Optional[int] = "".join(lowercase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase_ : Optional[Any] = True lowercase_ : int = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowercase_ : Any = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowercase_ : Any = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase_ : Optional[Any] = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase_ : Optional[int] = tokenizer_r.convert_ids_to_tokens(lowercase__ ) lowercase_ : List[str] = tokenizer_p.convert_ids_to_tokens(lowercase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) lowercase_ : Optional[Any] = False lowercase_ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowercase_ : Union[str, Any] = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) lowercase_ : List[str] = tokenizer_r.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase_ : Dict = tokenizer_p.encode(lowercase__ , add_special_tokens=lowercase__ ) lowercase_ : Dict = tokenizer_r.convert_ids_to_tokens(lowercase__ ) lowercase_ : Any = tokenizer_p.convert_ids_to_tokens(lowercase__ ) # it is expected that only the first Chinese character is not preceded by "##". lowercase_ : Optional[int] = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase__ ) ] self.assertListEqual(lowercase__ , lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ )
702
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'microsoft/focalnet-tiny': 'https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json', } class _UpperCAmelCase ( snake_case , snake_case ): __lowerCamelCase: Optional[Any] = 'focalnet' def __init__( self : List[str] , a : str=2_2_4 , a : List[Any]=4 , a : str=3 , a : List[str]=9_6 , a : str=False , a : List[str]=[1_9_2, 3_8_4, 7_6_8, 7_6_8] , a : Optional[int]=[2, 2, 6, 2] , a : List[Any]=[2, 2, 2, 2] , a : List[str]=[3, 3, 3, 3] , a : Dict="gelu" , a : Any=4.0 , a : Dict=0.0 , a : List[str]=0.1 , a : str=False , a : str=1e-4 , a : str=False , a : Optional[int]=False , a : Any=False , a : Dict=0.02 , a : str=1e-5 , a : int=3_2 , a : Union[str, Any]=None , a : Optional[int]=None , **a : Optional[Any] , ): '''simple docstring''' super().__init__(**a ) lowercase_ : int = image_size lowercase_ : List[str] = patch_size lowercase_ : int = num_channels lowercase_ : Any = embed_dim lowercase_ : str = use_conv_embed lowercase_ : int = hidden_sizes lowercase_ : Any = depths lowercase_ : str = focal_levels lowercase_ : Tuple = focal_windows lowercase_ : Union[str, Any] = hidden_act lowercase_ : Any = mlp_ratio lowercase_ : Any = hidden_dropout_prob lowercase_ : str = drop_path_rate lowercase_ : Any = use_layerscale lowercase_ : List[str] = layerscale_value lowercase_ : str = use_post_layernorm lowercase_ : Optional[Any] = use_post_layernorm_in_modulation lowercase_ : List[Any] = normalize_modulator lowercase_ : str = initializer_range lowercase_ : Tuple = layer_norm_eps lowercase_ : Any = encoder_stride lowercase_ : Any = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowercase_ : Tuple = get_aligned_output_features_output_indices( out_features=a , out_indices=a , stage_names=self.stage_names )
703
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _UpperCAmelCase : __lowerCamelCase: List[Any] = LEDConfig __lowerCamelCase: Union[str, Any] = {} __lowerCamelCase: Any = 'gelu' def __init__( self : List[Any] , a : int , a : Optional[int]=1_3 , a : List[str]=7 , a : int=True , a : Dict=False , a : Optional[Any]=9_9 , a : Tuple=3_2 , a : Dict=2 , a : Dict=4 , a : Dict=3_7 , a : List[str]=0.1 , a : Optional[int]=0.1 , a : Optional[Any]=2_0 , a : Tuple=2 , a : List[Any]=1 , a : str=0 , a : str=4 , ): '''simple docstring''' lowercase_ : Union[str, Any] = parent lowercase_ : Optional[int] = batch_size lowercase_ : int = seq_length lowercase_ : str = is_training lowercase_ : Any = use_labels lowercase_ : Union[str, Any] = vocab_size lowercase_ : Dict = hidden_size lowercase_ : Tuple = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : Dict = intermediate_size lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : Tuple = attention_probs_dropout_prob lowercase_ : List[Any] = max_position_embeddings lowercase_ : int = eos_token_id lowercase_ : Dict = pad_token_id lowercase_ : Optional[Any] = bos_token_id lowercase_ : int = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after lowercase_ : str = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests lowercase_ : str = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase_ : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase_ : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) lowercase_ : int = prepare_led_inputs_dict(a , a , a ) lowercase_ : Tuple = tf.concat( [tf.zeros_like(a )[:, :-1], tf.ones_like(a )[:, -1:]] , axis=-1 , ) lowercase_ : List[Any] = global_attention_mask return config, inputs_dict def lowerCAmelCase__ ( self : str , a : List[str] , a : Tuple ): '''simple docstring''' lowercase_ : str = TFLEDModel(config=a ).get_decoder() lowercase_ : Optional[int] = inputs_dict['input_ids'] lowercase_ : Dict = input_ids[:1, :] lowercase_ : Tuple = inputs_dict['attention_mask'][:1, :] lowercase_ : int = 1 # first forward pass lowercase_ : str = model(a , attention_mask=a , use_cache=a ) lowercase_ : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase_ : str = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase_ : List[Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase_ : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase_ : Dict = model(a , attention_mask=a )[0] lowercase_ : str = model(a , attention_mask=a , past_key_values=a )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase_ : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase_ : Dict = output_from_no_past[:, -3:, random_slice_idx] lowercase_ : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(a , a , rtol=1e-3 ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=None , ): """simple docstring""" if attention_mask is None: lowercase_ : Dict = tf.cast(tf.math.not_equal(__lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowercase_ : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowercase_ : Dict = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase_ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _UpperCAmelCase ( __A , __A , unittest.TestCase ): __lowerCamelCase: Any = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __lowerCamelCase: Any = (TFLEDForConditionalGeneration,) if is_tf_available() else () __lowerCamelCase: Optional[Any] = ( { 'conversational': TFLEDForConditionalGeneration, 'feature-extraction': TFLEDModel, 'summarization': TFLEDForConditionalGeneration, 'text2text-generation': TFLEDForConditionalGeneration, 'translation': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __lowerCamelCase: str = True __lowerCamelCase: List[str] = False __lowerCamelCase: Tuple = False __lowerCamelCase: str = False def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = TFLEDModelTester(self ) lowercase_ : str = ConfigTester(self , config_class=a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ : Tuple = tf.zeros_like(inputs_dict["attention_mask"] ) lowercase_ : Tuple = 2 lowercase_ : Any = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) lowercase_ : List[str] = True lowercase_ : Dict = self.model_tester.seq_length lowercase_ : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(a : Dict ): lowercase_ : Dict = outputs.decoder_attentions self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(a : int ): lowercase_ : Optional[int] = [t.numpy() for t in outputs.encoder_attentions] lowercase_ : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(a ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: lowercase_ : List[str] = True lowercase_ : Union[str, Any] = False lowercase_ : List[Any] = False lowercase_ : Any = model_class(a ) lowercase_ : Any = model(self._prepare_for_class(a , a ) ) lowercase_ : Any = len(a ) self.assertEqual(config.output_hidden_states , a ) check_encoder_attentions_output(a ) if self.is_encoder_decoder: lowercase_ : Dict = model_class(a ) lowercase_ : int = model(self._prepare_for_class(a , a ) ) self.assertEqual(config.output_hidden_states , a ) check_decoder_attentions_output(a ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowercase_ : Tuple = True lowercase_ : Tuple = model_class(a ) lowercase_ : Tuple = model(self._prepare_for_class(a , a ) ) self.assertEqual(config.output_hidden_states , a ) check_encoder_attentions_output(a ) # Check attention is always last and order is fine lowercase_ : List[str] = True lowercase_ : Optional[int] = True lowercase_ : str = model_class(a ) lowercase_ : int = model(self._prepare_for_class(a , a ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(a ) ) self.assertEqual(model.config.output_hidden_states , a ) check_encoder_attentions_output(a ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' pass def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' pass def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return tf.constant(__lowercase , dtype=tf.intaa ) UpperCamelCase__ = 1e-4 @slow @require_tf class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here lowercase_ : Any = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowercase_ : int = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowercase_ : List[str] = prepare_led_inputs_dict(model.config , a , a ) lowercase_ : str = model(**a )[0] lowercase_ : Union[str, Any] = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , a ) # change to expected output here lowercase_ : int = tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-3 ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here lowercase_ : Union[str, Any] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowercase_ : List[str] = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) lowercase_ : List[Any] = prepare_led_inputs_dict(model.config , a , a ) lowercase_ : List[str] = model(**a )[0] lowercase_ : Dict = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , a ) # change to expected output here lowercase_ : Any = tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , a , atol=1e-3 , rtol=1e-3 )
704
'''simple docstring''' import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase__ = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = _TestCommandArgs(dataset=_UpperCamelCase , all_configs=_UpperCamelCase , save_infos=_UpperCamelCase ) lowercase_ : int = TestCommand(*_UpperCamelCase ) test_command.run() lowercase_ : List[str] = os.path.join(_UpperCamelCase , "README.md" ) assert os.path.exists(_UpperCamelCase ) lowercase_ : Any = DatasetInfosDict.from_directory(_UpperCamelCase ) lowercase_ : Optional[int] = DatasetInfosDict( { "default": DatasetInfo( features=Features( { "tokens": Sequence(Value("string" ) ), "ner_tags": Sequence( ClassLabel(names=["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] ) ), "langs": Sequence(Value("string" ) ), "spans": Sequence(Value("string" ) ), } ) , splits=[ { "name": "train", "num_bytes": 235_1563, "num_examples": 1_0000, }, { "name": "validation", "num_bytes": 23_8418, "num_examples": 1000, }, ] , download_size=394_0680 , dataset_size=258_9981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowercase_ , lowercase_ : Optional[int] = getattr(dataset_infos["default"] , _UpperCamelCase ), getattr(expected_dataset_infos["default"] , _UpperCamelCase ) if key == "num_bytes": assert is_apercent_close(_UpperCamelCase , _UpperCamelCase ) elif key == "splits": assert list(_UpperCamelCase ) == list(_UpperCamelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
640
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" lowercase_ : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): lowercase_ : Tuple = "segformer.encoder." + key if key.startswith("backbone" ): lowercase_ : Union[str, Any] = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowercase_ : Dict = key[key.find("patch_embed" ) + len("patch_embed" )] lowercase_ : List[Any] = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(__snake_case )-1}""" ) if "norm" in key: lowercase_ : int = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowercase_ : List[str] = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] lowercase_ : Union[str, Any] = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(__snake_case )-1}""" ) if "layer_norm1" in key: lowercase_ : Dict = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: lowercase_ : str = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 lowercase_ : Tuple = key[key.find("block" ) + len("block" )] lowercase_ : str = key.replace(F"""block{idx}""" , F"""block.{int(__snake_case )-1}""" ) if "attn.q" in key: lowercase_ : Union[str, Any] = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: lowercase_ : Optional[int] = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: lowercase_ : Tuple = key.replace("attn" , "attention.self" ) if "fc1" in key: lowercase_ : Optional[Any] = key.replace("fc1" , "dense1" ) if "fc2" in key: lowercase_ : List[str] = key.replace("fc2" , "dense2" ) if "linear_pred" in key: lowercase_ : Dict = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: lowercase_ : int = key.replace("linear_fuse.conv" , "linear_fuse" ) lowercase_ : Any = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowercase_ : Dict = key[key.find("linear_c" ) + len("linear_c" )] lowercase_ : Dict = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(__snake_case )-1}""" ) if key.startswith("head" ): lowercase_ : Tuple = key.replace("head" , "classifier" ) lowercase_ : Dict = value return new_state_dict def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowercase_ : Optional[int] = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.weight""" ) lowercase_ : int = state_dict.pop(F"""segformer.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict lowercase_ : List[str] = kv_weight[ : config.hidden_sizes[i], : ] lowercase_ : List[Any] = kv_bias[: config.hidden_sizes[i]] lowercase_ : List[str] = kv_weight[ config.hidden_sizes[i] :, : ] lowercase_ : Tuple = kv_bias[ config.hidden_sizes[i] : ] def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase_ : List[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return image @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : int = SegformerConfig() lowercase_ : Any = False # set attributes based on model_name lowercase_ : int = "huggingface/label-files" if "segformer" in model_name: lowercase_ : Optional[int] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: lowercase_ : Dict = 150 lowercase_ : Dict = "ade20k-id2label.json" lowercase_ : Dict = (1, 150, 128, 128) elif "city" in model_name: lowercase_ : int = 19 lowercase_ : List[str] = "cityscapes-id2label.json" lowercase_ : Optional[int] = (1, 19, 128, 128) else: raise ValueError(F"""Model {model_name} not supported""" ) elif "mit" in model_name: lowercase_ : Any = True lowercase_ : List[Any] = model_name[4:6] lowercase_ : Tuple = 1000 lowercase_ : int = "imagenet-1k-id2label.json" lowercase_ : List[str] = (1, 1000) else: raise ValueError(F"""Model {model_name} not supported""" ) # set config attributes lowercase_ : int = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) lowercase_ : Optional[int] = {int(__snake_case ): v for k, v in idalabel.items()} lowercase_ : Dict = idalabel lowercase_ : List[Any] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": lowercase_ : Tuple = [64, 128, 320, 512] lowercase_ : int = 256 elif size == "b2": lowercase_ : Union[str, Any] = [64, 128, 320, 512] lowercase_ : Dict = 768 lowercase_ : List[Any] = [3, 4, 6, 3] elif size == "b3": lowercase_ : Dict = [64, 128, 320, 512] lowercase_ : int = 768 lowercase_ : Optional[int] = [3, 4, 18, 3] elif size == "b4": lowercase_ : Optional[int] = [64, 128, 320, 512] lowercase_ : List[Any] = 768 lowercase_ : Optional[int] = [3, 8, 27, 3] elif size == "b5": lowercase_ : Any = [64, 128, 320, 512] lowercase_ : Tuple = 768 lowercase_ : Optional[int] = [3, 6, 40, 3] else: raise ValueError(F"""Size {size} not supported""" ) # load image processor (only resize + normalize) lowercase_ : Optional[int] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=__snake_case , align=__snake_case , do_random_crop=__snake_case ) # prepare image lowercase_ : List[Any] = prepare_img() lowercase_ : Tuple = image_processor(images=__snake_case , return_tensors="pt" ).pixel_values logger.info(F"""Converting model {model_name}...""" ) # load original state dict if encoder_only: lowercase_ : Dict = torch.load(__snake_case , map_location=torch.device("cpu" ) ) else: lowercase_ : Optional[Any] = torch.load(__snake_case , map_location=torch.device("cpu" ) )["state_dict"] # rename keys lowercase_ : str = rename_keys(__snake_case , encoder_only=__snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(__snake_case , __snake_case ) # create HuggingFace model and load state dict if encoder_only: lowercase_ : List[str] = False lowercase_ : Dict = SegformerForImageClassification(__snake_case ) else: lowercase_ : Any = SegformerForSemanticSegmentation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # forward pass lowercase_ : str = model(__snake_case ) lowercase_ : Dict = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": lowercase_ : str = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": lowercase_ : str = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": lowercase_ : Tuple = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": lowercase_ : Optional[int] = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": lowercase_ : Any = torch.tensor( [ [ [-1.1372e01, -1.2787e01, -1.3477e01], [-1.2536e01, -1.4194e01, -1.4409e01], [-1.3217e01, -1.4888e01, -1.5327e01], ], [ [-1.4791e01, -1.7122e01, -1.8277e01], [-1.7163e01, -1.9192e01, -1.9533e01], [-1.7897e01, -1.9991e01, -2.0315e01], ], [ [7.6723e-01, 4.1921e-01, -7.7878e-02], [4.7772e-01, 9.5557e-03, -2.8082e-01], [3.6032e-01, -2.4826e-01, -5.1168e-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": lowercase_ : List[str] = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": lowercase_ : List[str] = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": lowercase_ : Union[str, Any] = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": lowercase_ : Optional[Any] = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": lowercase_ : List[str] = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: lowercase_ : Dict = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1e-2 ) # finally, save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCamelCase__ = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
705
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image UpperCamelCase__ = ['text', 'image', 'audio'] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[Any] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(_UpperCamelCase , _UpperCamelCase ): inputs.append(create_inputs(_UpperCamelCase ) ) else: raise ValueError(F"""Invalid type requested: {input_type}""" ) return inputs def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [] for output in outputs: if isinstance(_UpperCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(F"""Invalid output: {output}""" ) return output_types @is_tool_test class _UpperCAmelCase : def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowercase_ : Optional[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowercase_ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : List[str] = create_inputs(self.tool.inputs ) lowercase_ : List[str] = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: lowercase_ : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : Any = create_inputs(self.tool.inputs ) lowercase_ : str = self.tool(*a ) if not isinstance(a , a ): lowercase_ : List[Any] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): lowercase_ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Dict = create_inputs(self.tool.inputs ) lowercase_ : Optional[int] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowercase_ : Any = self.tool(*a ) if not isinstance(a , a ): lowercase_ : Any = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
640
0
'''simple docstring''' import argparse from collections import defaultdict import yaml UpperCamelCase__ = '''docs/source/en/_toctree.yml''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = defaultdict(lowerCAmelCase__ ) lowercase_ : Tuple = [] lowercase_ : Optional[int] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(lowerCAmelCase__ ) lowercase_ : Optional[Any] = new_doc_list lowercase_ : Optional[Any] = [key for key, value in counts.items() if value > 1] lowercase_ : Tuple = [] for duplicate_key in duplicates: lowercase_ : Any = list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) lowercase_ : Tuple = sorted(lowerCAmelCase__ , key=lambda _UpperCamelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding="utf-8" ) as f: lowercase_ : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : List[str] = content[api_idx]["sections"] # Then to the model doc lowercase_ : int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase_ : str = api_doc[scheduler_idx]["sections"] lowercase_ : Any = clean_doc_toc(lowerCAmelCase__ ) lowercase_ : List[str] = False if new_scheduler_doc != scheduler_doc: lowercase_ : Optional[int] = True if overwrite: lowercase_ : List[Any] = new_scheduler_doc if diff: if overwrite: lowercase_ : List[Any] = api_doc with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding="utf-8" ) as f: lowercase_ : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc lowercase_ : int = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase_ : str = content[api_idx]["sections"] # Then to the model doc lowercase_ : Union[str, Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase_ : Tuple = False lowercase_ : int = api_doc[pipeline_idx]["sections"] lowercase_ : Any = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase_ : Dict = pipeline_doc["section"] lowercase_ : Optional[Any] = clean_doc_toc(lowerCAmelCase__ ) if overwrite: lowercase_ : Optional[Any] = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc lowercase_ : Dict = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: lowercase_ : Optional[int] = True if overwrite: lowercase_ : Tuple = new_pipeline_docs if diff: if overwrite: lowercase_ : Any = api_doc with open(lowerCAmelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') UpperCamelCase__ = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
706
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowercase_ : str = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _UpperCAmelCase ( snake_case ): def __init__( self : int , a : MultilingualCLIP , a : XLMRobertaTokenizer , a : UNetaDConditionModel , a : Union[DDIMScheduler, DDPMScheduler] , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=a , tokenizer=a , unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : List[Any] , a : Tuple , a : List[str] , a : Optional[Any] , a : str , a : Tuple , a : List[str] ): '''simple docstring''' if latents is None: lowercase_ : List[str] = randn_tensor(a , generator=a , device=a , dtype=a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowercase_ : Optional[int] = latents.to(a ) lowercase_ : str = latents * scheduler.init_noise_sigma return latents def lowerCAmelCase__ ( self : Optional[Any] , a : List[str] , a : List[Any] , a : Union[str, Any] , a : str , a : Tuple=None , ): '''simple docstring''' lowercase_ : Tuple = len(a ) if isinstance(a , a ) else 1 # get prompt text embeddings lowercase_ : Any = self.tokenizer( a , padding="max_length" , truncation=a , max_length=7_7 , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : Union[str, Any] = text_inputs.input_ids lowercase_ : Tuple = self.tokenizer(a , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(a , a ): lowercase_ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowercase_ : List[str] = text_input_ids.to(a ) lowercase_ : int = text_inputs.attention_mask.to(a ) lowercase_ , lowercase_ : Optional[int] = self.text_encoder( input_ids=a , attention_mask=a ) lowercase_ : str = prompt_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = text_encoder_hidden_states.repeat_interleave(a , dim=0 ) lowercase_ : int = text_mask.repeat_interleave(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : List[str] if negative_prompt is None: lowercase_ : int = [""] * batch_size elif type(a ) is not type(a ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(a )} !=""" f""" {type(a )}.""" ) elif isinstance(a , a ): lowercase_ : Tuple = [negative_prompt] elif batch_size != len(a ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(a )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: lowercase_ : Dict = negative_prompt lowercase_ : str = self.tokenizer( a , padding="max_length" , max_length=7_7 , truncation=a , return_attention_mask=a , add_special_tokens=a , return_tensors="pt" , ) lowercase_ : List[Any] = uncond_input.input_ids.to(a ) lowercase_ : Optional[int] = uncond_input.attention_mask.to(a ) lowercase_ , lowercase_ : int = self.text_encoder( input_ids=a , attention_mask=a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowercase_ : List[str] = negative_prompt_embeds.shape[1] lowercase_ : Dict = negative_prompt_embeds.repeat(1 , a ) lowercase_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , a ) lowercase_ : Any = uncond_text_encoder_hidden_states.shape[1] lowercase_ : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , a , 1 ) lowercase_ : Tuple = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , a , -1 ) lowercase_ : List[Any] = uncond_text_mask.repeat_interleave(a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase_ : Optional[int] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowercase_ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowercase_ : Any = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def lowerCAmelCase__ ( self : Tuple , a : Optional[Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Union[str, Any] , a : List[str]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : List[str] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : List[str] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(a , a , prev_module_hook=a ) if self.safety_checker is not None: lowercase_ , lowercase_ : Optional[int] = cpu_offload_with_hook(self.safety_checker , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Tuple , a : Union[str, List[str]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Optional[Union[str, List[str]]] = None , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[torch.FloatTensor] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' if isinstance(a , a ): lowercase_ : List[str] = 1 elif isinstance(a , a ): lowercase_ : int = len(a ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(a )}""" ) lowercase_ : Tuple = self._execution_device lowercase_ : Dict = batch_size * num_images_per_prompt lowercase_ : Dict = guidance_scale > 1.0 lowercase_ , lowercase_ , lowercase_ : List[str] = self._encode_prompt( a , a , a , a , a ) if isinstance(a , a ): lowercase_ : Optional[int] = torch.cat(a , dim=0 ) if isinstance(a , a ): lowercase_ : int = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[int] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=a ) self.scheduler.set_timesteps(a , device=a ) lowercase_ : List[str] = self.scheduler.timesteps lowercase_ : str = self.unet.config.in_channels lowercase_ , lowercase_ : int = get_new_h_w(a , a , self.movq_scale_factor ) # create initial latent lowercase_ : str = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , a , a , a , self.scheduler , ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : Optional[Any] = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : str = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Tuple = self.scheduler.step( a , a , a , generator=a , ).prev_sample # post-processing lowercase_ : Union[str, Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : List[Any] = image * 0.5 + 0.5 lowercase_ : Optional[int] = image.clamp(0 , 1 ) lowercase_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : List[str] = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): __lowerCamelCase: Optional[datasets.Features] = None def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , ): """simple docstring""" import pyspark def generate_fn(): lowercase_ : Dict = df.select("*" , pyspark.sql.functions.spark_partition_id().alias("part_id" ) ) for partition_id in partition_order: lowercase_ : Dict = df_with_partition_id.select("*" ).where(F"""part_id = {partition_id}""" ).drop("part_id" ) lowercase_ : Dict = partition_df.collect() lowercase_ : Dict = 0 for row in rows: yield F"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _UpperCAmelCase ( _BaseExamplesIterable ): def __init__( self : Tuple , a : Optional[int] , a : Any=None , ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Dict = df lowercase_ : Optional[Any] = partition_order or range(self.df.rdd.getNumPartitions() ) lowercase_ : int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self : int ) -> Tuple: '''simple docstring''' yield from self.generate_examples_fn() def lowerCAmelCase__ ( self : Optional[Any] , a : int ) -> Union[str, Any]: '''simple docstring''' lowercase_ : Optional[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(a_ ) return SparkExamplesIterable(self.df , partition_order=a_ ) def lowerCAmelCase__ ( self : List[Any] , a : List[str] , a : Tuple ) -> int: '''simple docstring''' lowercase_ : Dict = self.split_shard_indices_by_worker(a_ , a_ ) return SparkExamplesIterable(self.df , partition_order=a_ ) @property def lowerCAmelCase__ ( self : List[str] ) -> List[str]: '''simple docstring''' return len(self.partition_order ) class _UpperCAmelCase ( datasets.DatasetBuilder ): __lowerCamelCase: Any = SparkConfig def __init__( self : List[str] , a : List[Any] , a : Dict = None , a : Dict = None , **a : Union[str, Any] , ) -> Dict: '''simple docstring''' import pyspark lowercase_ : str = pyspark.sql.SparkSession.builder.getOrCreate() lowercase_ : Optional[Any] = df lowercase_ : List[Any] = working_dir super().__init__( cache_dir=a_ , config_name=str(self.df.semanticHash() ) , **a_ , ) def lowerCAmelCase__ ( self : Optional[int] ) -> str: '''simple docstring''' def create_cache_and_write_probe(a : Any ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=a_ ) lowercase_ : Optional[Any] = os.path.join(self._cache_dir , "fs_test" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(a_ , "a" ) return [probe_file] if self._spark.conf.get("spark.master" , "" ).startswith("local" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowercase_ : List[str] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(a_ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( "When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir" ) def lowerCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : Union[str, Any] , a : Any ) -> List[Any]: '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCAmelCase__ ( self : str , a : List[Any] ) -> Optional[int]: '''simple docstring''' import pyspark def get_arrow_batch_size(a : Union[str, Any] ): for batch in it: yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]} ) lowercase_ : str = self.df.count() lowercase_ : List[Any] = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowercase_ : Any = ( self.df.limit(a_ ) .repartition(1 ) .mapInArrow(a_ , "batch_bytes: long" ) .agg(pyspark.sql.functions.sum("batch_bytes" ).alias("sample_bytes" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowercase_ : int = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowercase_ : Union[str, Any] = min(a_ , int(approx_total_size / max_shard_size ) ) lowercase_ : int = self.df.repartition(a_ ) def lowerCAmelCase__ ( self : Tuple , a : Optional[Any] , a : str , a : List[str] , ) -> Optional[int]: '''simple docstring''' import pyspark lowercase_ : str = ParquetWriter if file_format == "parquet" else ArrowWriter lowercase_ : int = os.path.join(self._working_dir , os.path.basename(a_ ) ) if self._working_dir else fpath lowercase_ : Optional[Any] = file_format == "parquet" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowercase_ : int = self.config.features lowercase_ : Any = self._writer_batch_size lowercase_ : Tuple = self._fs.storage_options def write_arrow(a : str ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowercase_ : List[Any] = pyspark.TaskContext().taskAttemptId() lowercase_ : Optional[int] = next(a_ , a_ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["task_id", "num_examples", "num_bytes"] , ) lowercase_ : List[Any] = 0 lowercase_ : Optional[int] = writer_class( features=a_ , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=a_ , storage_options=a_ , embed_local_files=a_ , ) lowercase_ : Optional[Any] = pa.Table.from_batches([first_batch] ) writer.write_table(a_ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowercase_ : List[str] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) shard_id += 1 lowercase_ : List[str] = writer_class( features=writer._features , path=working_fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , writer_batch_size=a_ , storage_options=a_ , embed_local_files=a_ , ) lowercase_ : Optional[int] = pa.Table.from_batches([batch] ) writer.write_table(a_ ) if writer._num_bytes > 0: lowercase_ : Dict = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["task_id", "num_examples", "num_bytes"] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(a_ ) ): lowercase_ : str = os.path.join(os.path.dirname(a_ ) , os.path.basename(a_ ) ) shutil.move(a_ , a_ ) lowercase_ : int = ( self.df.mapInArrow(a_ , "task_id: long, num_examples: long, num_bytes: long" ) .groupBy("task_id" ) .agg( pyspark.sql.functions.sum("num_examples" ).alias("total_num_examples" ) , pyspark.sql.functions.sum("num_bytes" ).alias("total_num_bytes" ) , pyspark.sql.functions.count("num_bytes" ).alias("num_shards" ) , pyspark.sql.functions.collect_list("num_examples" ).alias("shard_lengths" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCAmelCase__ ( self : List[str] , a : int , a : Dict = "arrow" , a : List[Any] = None , a : Dict = None , **a : Optional[Any] , ) -> List[Any]: '''simple docstring''' self._validate_cache_dir() lowercase_ : Union[str, Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(a_ ) lowercase_ : Dict = not is_remote_filesystem(self._fs ) lowercase_ : List[str] = os.path.join if is_local else posixpath.join lowercase_ : Any = "-TTTTT-SSSSS-of-NNNNN" lowercase_ : List[Any] = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" lowercase_ : int = path_join(self._output_dir , a_ ) lowercase_ : int = 0 lowercase_ : Optional[Any] = 0 lowercase_ : int = 0 lowercase_ : Dict = [] lowercase_ : Any = [] for task_id, content in self._prepare_split_single(a_ , a_ , a_ ): ( lowercase_ ) : Tuple = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(a_ ) lowercase_ : Dict = total_num_examples lowercase_ : Any = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: lowercase_ : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowercase_ : Any = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( a : int , a : Any , a : Union[str, Any] , ): rename( a_ , fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace("TTTTT-SSSSS" , f"""{global_shard_id:05d}""" ).replace("NNNNN" , f"""{total_shards:05d}""" ) , ) lowercase_ : Optional[int] = [] lowercase_ : Dict = 0 for i in range(len(a_ ) ): lowercase_ : Tuple = task_id_and_num_shards[i] for shard_id in range(a_ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(a_ , len(a_ ) ).map(lambda a : _rename_shard(*a_ ) ).collect() else: # don't use any pattern lowercase_ : int = 0 lowercase_ : Optional[int] = task_id_and_num_shards[0][0] self._rename( fpath.replace("SSSSS" , f"""{shard_id:05d}""" ).replace("TTTTT" , f"""{task_id:05d}""" ) , fpath.replace(a_ , "" ) , ) def lowerCAmelCase__ ( self : int , a : str , ) -> Any: '''simple docstring''' return SparkExamplesIterable(self.df )
707
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCamelCase__ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): """simple docstring""" lowercase_ : Union[str, Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Union[str, Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=512 , _UpperCamelCase=512 ): """simple docstring""" lowercase_ : Union[str, Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : str = np.array(pil_image.convert("RGB" ) ) lowercase_ : Optional[int] = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : int = np.transpose(_UpperCamelCase , [2, 0, 1] ) lowercase_ : str = torch.from_numpy(_UpperCamelCase ).unsqueeze(0 ) return image class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , a : UNetaDConditionModel , a : DDPMScheduler , a : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=a , scheduler=a , movq=a , ) lowercase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowerCAmelCase__ ( self : Union[str, Any] , a : Tuple , a : List[str] , a : List[Any] ): '''simple docstring''' lowercase_ : Dict = min(int(num_inference_steps * strength ) , a ) lowercase_ : str = max(num_inference_steps - init_timestep , 0 ) lowercase_ : Tuple = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase__ ( self : Union[str, Any] , a : int , a : List[Any] , a : Tuple , a : Union[str, Any] , a : int , a : Tuple , a : Optional[Any]=None ): '''simple docstring''' if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}""" ) lowercase_ : str = image.to(device=a , dtype=a ) lowercase_ : Any = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : str = image else: if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(a )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(a , a ): lowercase_ : str = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(a ) ] lowercase_ : List[Any] = torch.cat(a , dim=0 ) else: lowercase_ : Tuple = self.movq.encode(a ).latent_dist.sample(a ) lowercase_ : Union[str, Any] = self.movq.config.scaling_factor * init_latents lowercase_ : Tuple = torch.cat([init_latents] , dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Union[str, Any] = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents lowercase_ : Dict = self.scheduler.add_noise(a , a , a ) lowercase_ : Tuple = init_latents return latents def lowerCAmelCase__ ( self : List[Any] , a : str=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase_ : Optional[Any] = torch.device(f"""cuda:{gpu_id}""" ) lowercase_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(a , a ) def lowerCAmelCase__ ( self : Optional[int] , a : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) lowercase_ : Any = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ , lowercase_ : Union[str, Any] = cpu_offload_with_hook(a , a , prev_module_hook=a ) # We'll offload the last model manually. lowercase_ : List[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase__ ( self : int ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(a , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(a ) def __call__( self : Optional[int] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] , a : Union[torch.FloatTensor, List[torch.FloatTensor]] , a : int = 5_1_2 , a : int = 5_1_2 , a : int = 1_0_0 , a : float = 4.0 , a : float = 0.3 , a : int = 1 , a : Optional[Union[torch.Generator, List[torch.Generator]]] = None , a : Optional[str] = "pil" , a : bool = True , ): '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : Dict = guidance_scale > 1.0 if isinstance(a , a ): lowercase_ : Dict = torch.cat(a , dim=0 ) lowercase_ : Dict = image_embeds.shape[0] if isinstance(a , a ): lowercase_ : str = torch.cat(a , dim=0 ) if do_classifier_free_guidance: lowercase_ : Optional[Any] = image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = negative_image_embeds.repeat_interleave(a , dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=a ) if not isinstance(a , a ): lowercase_ : List[Any] = [image] if not all(isinstance(a , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f"""Input is in incorrect format: {[type(a ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) lowercase_ : List[Any] = torch.cat([prepare_image(a , a , a ) for i in image] , dim=0 ) lowercase_ : List[Any] = image.to(dtype=image_embeds.dtype , device=a ) lowercase_ : Optional[int] = self.movq.encode(a )["latents"] lowercase_ : Dict = latents.repeat_interleave(a , dim=0 ) self.scheduler.set_timesteps(a , device=a ) lowercase_ , lowercase_ : List[Any] = self.get_timesteps(a , a , a ) lowercase_ : Tuple = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ , lowercase_ : Optional[Any] = downscale_height_and_width(a , a , self.movq_scale_factor ) lowercase_ : Tuple = self.prepare_latents( a , a , a , a , image_embeds.dtype , a , a ) for i, t in enumerate(self.progress_bar(a ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Tuple = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : int = {"image_embeds": image_embeds} lowercase_ : Optional[int] = self.unet( sample=a , timestep=a , encoder_hidden_states=a , added_cond_kwargs=a , return_dict=a , )[0] if do_classifier_free_guidance: lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) lowercase_ , lowercase_ : int = noise_pred.chunk(2 ) lowercase_ , lowercase_ : Any = variance_pred.chunk(2 ) lowercase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Optional[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ , lowercase_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Dict = self.scheduler.step( a , a , a , generator=a , )[0] # post-processing lowercase_ : Optional[Any] = self.movq.decode(a , force_not_quantize=a )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowercase_ : Tuple = image * 0.5 + 0.5 lowercase_ : Any = image.clamp(0 , 1 ) lowercase_ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(a ) if not return_dict: return (image,) return ImagePipelineOutput(images=a )
640
0
'''simple docstring''' import math def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = [] lowercase_ : Optional[Any] = 2 lowercase_ : Optional[Any] = int(math.sqrt(_snake_case ) ) # Size of every segment lowercase_ : Dict = [True] * (end + 1) lowercase_ : Optional[Any] = [] while start <= end: if temp[start] is True: in_prime.append(_snake_case ) for i in range(start * start , end + 1 , _snake_case ): lowercase_ : int = False start += 1 prime += in_prime lowercase_ : Optional[int] = end + 1 lowercase_ : Dict = min(2 * end , _snake_case ) while low <= n: lowercase_ : int = [True] * (high - low + 1) for each in in_prime: lowercase_ : Union[str, Any] = math.floor(low / each ) * each if t < low: t += each for j in range(_snake_case , high + 1 , _snake_case ): lowercase_ : List[str] = False for j in range(len(_snake_case ) ): if temp[j] is True: prime.append(j + low ) lowercase_ : Tuple = high + 1 lowercase_ : int = min(high + end , _snake_case ) return prime print(sieve(10**6))
708
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( snake_case ): __lowerCamelCase: str = ['image_processor', 'tokenizer'] __lowerCamelCase: Dict = 'Pix2StructImageProcessor' __lowerCamelCase: Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : str , a : Dict , a : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = False super().__init__(a , a ) def __call__( self : Tuple , a : int=None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : Optional[int] = 2_0_4_8 , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None and not self.image_processor.is_vqa: lowercase_ : Dict = self.tokenizer lowercase_ : Tuple = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values lowercase_ : Optional[int] = self.image_processor( a , return_tensors=a , max_patches=a , **a ) else: # add pixel_values and bbox lowercase_ : Any = self.image_processor( a , return_tensors=a , max_patches=a , header_text=a , **a ) if text is not None and not self.image_processor.is_vqa: lowercase_ : int = self.tokenizer( text=a , add_special_tokens=a , padding=a , truncation=a , max_length=a , stride=a , pad_to_multiple_of=a , return_attention_mask=a , return_overflowing_tokens=a , return_special_tokens_mask=a , return_offsets_mapping=a , return_token_type_ids=a , return_length=a , verbose=a , return_tensors=a , **a , ) if "attention_mask" in text_encoding: lowercase_ : str = text_encoding.pop("attention_mask" ) if "input_ids" in text_encoding: lowercase_ : Dict = text_encoding.pop("input_ids" ) else: lowercase_ : str = None if text_encoding is not None: encoding_image_processor.update(a ) return encoding_image_processor def lowerCAmelCase__ ( self : Any , *a : str , **a : Tuple ): '''simple docstring''' return self.tokenizer.batch_decode(*a , **a ) def lowerCAmelCase__ ( self : str , *a : Optional[int] , **a : Any ): '''simple docstring''' return self.tokenizer.decode(*a , **a ) @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.tokenizer.model_input_names lowercase_ : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
640
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if not isinstance(A_ , A_ ) or number < 0: raise ValueError("Input must be a non-negative integer" ) lowercase_ : Optional[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from __future__ import annotations UpperCamelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] UpperCamelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : str = [] lowercase_ : List[str] = len(_UpperCamelCase ) for i in range(_UpperCamelCase ): lowercase_ : float = -1 for j in range(i + 1 , _UpperCamelCase ): if arr[i] < arr[j]: lowercase_ : Union[str, Any] = arr[j] break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = [] for i, outer in enumerate(_UpperCamelCase ): lowercase_ : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowercase_ : Optional[Any] = inner break result.append(_UpperCamelCase ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = len(_UpperCamelCase ) lowercase_ : list[float] = [] lowercase_ : list[float] = [-1] * arr_size for index in reversed(range(_UpperCamelCase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowercase_ : Optional[Any] = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) UpperCamelCase__ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
640
0
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black UpperCamelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. UpperCamelCase__ = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class _UpperCAmelCase ( unittest.TestCase ): def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) lowercase_ : List[str] = self.transformer_dir shutil.copy( os.path.join(_A , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def lowerCAmelCase__ ( self : Optional[int] , a : int , a : int , a : Optional[Any] , a : Dict=None ): '''simple docstring''' lowercase_ : int = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase_ : Dict = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase_ : List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) lowercase_ : List[str] = black.format_str(_A , mode=_A ) lowercase_ : List[Any] = os.path.join(self.transformer_dir , "new_code.py" ) with open(_A , "w" , newline="\n" ) as f: f.write(_A ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_A ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_A ) with open(_A , "r" ) as f: self.assertTrue(f.read() , _A ) def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Optional[int] = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(_A , _A ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , _A , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , _A ) , ) # Copy consistency with a really long name lowercase_ : Any = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub("Bert" , _A , _A ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , _A , overwrite_result=re.sub("Bert" , "TestModel" , _A ) , ) def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] lowercase_ : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) lowercase_ : Optional[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowercase_ : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) lowercase_ : Union[str, Any] = check_copies.convert_to_localized_md( _A , _A , localized_readme["format_model_list"] ) self.assertFalse(_A ) self.assertEqual(_A , _A ) lowercase_ : Any = check_copies.convert_to_localized_md( _A , _A , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_A ) lowercase_ : int = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) lowercase_ : int = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowercase_ : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) lowercase_ : Union[str, Any] = check_copies.convert_to_localized_md( _A , _A , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(_A , _A )
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg" lowercase_ : Tuple = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("RGB" ) lowercase_ : List[str] = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) lowercase_ : Dict = transform(__snake_case ).unsqueeze(0 ).to(__snake_case ) return image def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if "visual_encoder" in key: lowercase_ : Tuple = re.sub("visual_encoder*" , "vision_model.encoder" , __snake_case ) if "blocks" in key: lowercase_ : Union[str, Any] = re.sub(R"blocks" , "layers" , __snake_case ) if "attn" in key: lowercase_ : List[str] = re.sub(R"attn" , "self_attn" , __snake_case ) if "norm1" in key: lowercase_ : Optional[int] = re.sub(R"norm1" , "layer_norm1" , __snake_case ) if "norm2" in key: lowercase_ : Optional[int] = re.sub(R"norm2" , "layer_norm2" , __snake_case ) if "encoder.norm" in key: lowercase_ : Dict = re.sub(R"encoder.norm" , "post_layernorm" , __snake_case ) if "encoder.patch_embed.proj" in key: lowercase_ : Dict = re.sub(R"encoder.patch_embed.proj" , "embeddings.patch_embedding" , __snake_case ) if "encoder.pos_embed" in key: lowercase_ : List[str] = re.sub(R"encoder.pos_embed" , "embeddings.position_embedding" , __snake_case ) if "encoder.cls_token" in key: lowercase_ : Union[str, Any] = re.sub(R"encoder.cls_token" , "embeddings.class_embedding" , __snake_case ) if "self_attn" in key: lowercase_ : Union[str, Any] = re.sub(R"self_attn.proj" , "self_attn.projection" , __snake_case ) return key @torch.no_grad() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" if config_path is not None: lowercase_ : Union[str, Any] = BlipConfig.from_pretrained(__snake_case ) else: lowercase_ : Optional[int] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase_ : Any = BlipForConditionalGeneration(__snake_case ).eval() lowercase_ : Dict = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth" lowercase_ : Dict = blip_decoder(pretrained=__snake_case , image_size=384 , vit="base" ) lowercase_ : str = pt_model.eval() lowercase_ : List[str] = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase_ : int = modified_state_dict.pop(__snake_case ) lowercase_ : Optional[int] = rename_key(__snake_case ) lowercase_ : int = value hf_model.load_state_dict(__snake_case ) lowercase_ : List[str] = 384 lowercase_ : Tuple = load_demo_image(image_size=__snake_case , device="cpu" ) lowercase_ : str = BertTokenizer.from_pretrained("bert-base-uncased" ) lowercase_ : Dict = tokenizer(["a picture of"] ).input_ids lowercase_ : Dict = hf_model.generate(__snake_case , __snake_case ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase_ : str = hf_model.generate(__snake_case ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__snake_case ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase_ : Optional[int] = ( "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth" ) lowercase_ : List[Any] = blip_vqa(pretrained=__snake_case , image_size=__snake_case , vit="base" ) vqa_model.eval() lowercase_ : Optional[Any] = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase_ : Union[str, Any] = modified_state_dict.pop(__snake_case ) lowercase_ : Dict = rename_key(__snake_case ) lowercase_ : Optional[int] = value lowercase_ : Tuple = BlipForQuestionAnswering(__snake_case ) hf_vqa_model.load_state_dict(__snake_case ) lowercase_ : str = ["How many dogs are in this image?"] lowercase_ : Dict = tokenizer(__snake_case , return_tensors="pt" ).input_ids lowercase_ : int = hf_vqa_model.generate(__snake_case , __snake_case ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + "_vqa" ) lowercase_ : List[str] = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth" lowercase_ : List[str] = blip_itm(pretrained=__snake_case , image_size=__snake_case , vit="base" ) itm_model.eval() lowercase_ : Dict = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase_ : Optional[Any] = modified_state_dict.pop(__snake_case ) lowercase_ : int = rename_key(__snake_case ) lowercase_ : Dict = value lowercase_ : Optional[int] = BlipForImageTextRetrieval(__snake_case ) lowercase_ : Tuple = ["A picture of a woman with a dog sitting in a beach"] lowercase_ : List[str] = tokenizer( __snake_case , return_tensors="pt" , padding="max_length" , truncation=__snake_case , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__snake_case ) hf_itm_model.eval() lowercase_ : Union[str, Any] = hf_itm_model(__snake_case , __snake_case , use_itm_head=__snake_case ) lowercase_ : Tuple = hf_itm_model(__snake_case , __snake_case , use_itm_head=__snake_case ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + "_itm" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') UpperCamelCase__ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
712
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class _UpperCAmelCase : def __init__( self : Optional[Any] , a : Any ): '''simple docstring''' lowercase_ : List[Any] = str(id_ ) lowercase_ : List[str] = None lowercase_ : Tuple = None lowercase_ : Dict = [] lowercase_ : Union[str, Any] = {} # {vertex:distance} def __lt__( self : Optional[Any] , a : int ): '''simple docstring''' return self.key < other.key def __repr__( self : Union[str, Any] ): '''simple docstring''' return self.id def lowerCAmelCase__ ( self : Union[str, Any] , a : Optional[int] ): '''simple docstring''' self.neighbors.append(a ) def lowerCAmelCase__ ( self : Dict , a : int , a : Optional[int] ): '''simple docstring''' lowercase_ : int = weight def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _UpperCamelCase ) graph[b - 1].add_edge(graph[a - 1] , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = [] for u in graph: lowercase_ : List[Any] = math.inf lowercase_ : str = None lowercase_ : Tuple = 0 lowercase_ : Tuple = graph[:] while q: lowercase_ : List[Any] = min(_UpperCamelCase ) q.remove(_UpperCamelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): lowercase_ : Optional[int] = u lowercase_ : Union[str, Any] = u.edges[v.id] for i in range(1 , len(_UpperCamelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for u in graph: lowercase_ : str = math.inf lowercase_ : int = None lowercase_ : List[Any] = 0 lowercase_ : str = list(_UpperCamelCase ) hq.heapify(_UpperCamelCase ) while h: lowercase_ : List[Any] = hq.heappop(_UpperCamelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): lowercase_ : str = u lowercase_ : Optional[int] = u.edges[v.id] hq.heapify(_UpperCamelCase ) for i in range(1 , len(_UpperCamelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
640
0
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: lowercase_ : List[str] = mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: lowercase_ : Dict = max( mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , mf_knapsack(i - 1 , lowerCamelCase_ , lowerCamelCase_ , j - wt[i - 1] ) + val[i - 1] , ) lowercase_ : str = val return f[i][j] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Any = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: lowercase_ : Any = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: lowercase_ : Union[str, Any] = dp[i - 1][w_] return dp[n][w_], dp def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if not (isinstance(lowerCamelCase_ , (list, tuple) ) and isinstance(lowerCamelCase_ , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) lowercase_ : str = len(lowerCamelCase_ ) if num_items != len(lowerCamelCase_ ): lowercase_ : str = ( """The number of weights must be the same as the number of values.\n""" F"""But got {num_items} weights and {len(lowerCamelCase_ )} values""" ) raise ValueError(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): if not isinstance(wt[i] , lowerCamelCase_ ): lowercase_ : Tuple = ( """All weights must be integers but got weight of """ F"""type {type(wt[i] )} at index {i}""" ) raise TypeError(lowerCamelCase_ ) lowercase_ : List[str] = knapsack(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase_ : set = set() _construct_solution(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return optimal_val, example_optional_set def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , lowerCamelCase_ , lowerCamelCase_ ) else: optimal_set.add(lowerCamelCase_ ) _construct_solution(lowerCamelCase_ , lowerCamelCase_ , i - 1 , j - wt[i - 1] , lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ = [3, 2, 4, 4] UpperCamelCase__ = [4, 3, 2, 3] UpperCamelCase__ = 4 UpperCamelCase__ = 6 UpperCamelCase__ = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] UpperCamelCase__, UpperCamelCase__ = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 UpperCamelCase__, UpperCamelCase__ = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print('optimal_value = ', optimal_solution) print('An optimal subset corresponding to the optimal value', optimal_subset)
713
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Any = False while is_sorted is False: # Until all the indices are traversed keep looping lowercase_ : List[str] = True for i in range(0 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Union[str, Any] = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : Any = False for i in range(1 , len(_UpperCamelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: lowercase_ , lowercase_ : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order lowercase_ : List[Any] = False return input_list if __name__ == "__main__": print('Enter list to be sorted') UpperCamelCase__ = [int(x) for x in input().split()] # inputing elements of the list in one line UpperCamelCase__ = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
640
0
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = len(A__ ) + 1 lowercase_ : Tuple = len(A__ ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase_ : List[Any] = [[0 for i in range(A__ )] for j in range(A__ )] # since string of zero length match pattern of zero length lowercase_ : str = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , A__ ): lowercase_ : Tuple = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , A__ ): lowercase_ : str = dp[0][j - 2] if pattern[j - 1] == "*" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , A__ ): for j in range(1 , A__ ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase_ : Any = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase_ : List[Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase_ : int = dp[i - 1][j] else: lowercase_ : Dict = 0 else: lowercase_ : int = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") UpperCamelCase__ = 'aab' UpperCamelCase__ = 'c*a*b' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f"""{input_string} matches the given pattern {pattern}""") else: print(f"""{input_string} does not match with the given pattern {pattern}""")
714
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Dict = 0 lowercase_ : Optional[Any] = len(_UpperCamelCase ) # No of vertices in graph lowercase_ : Union[str, Any] = [0] * n lowercase_ : Optional[int] = [False] * n def dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): lowercase_ : Union[str, Any] = True lowercase_ : Dict = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , id_ ) lowercase_ : str = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase_ : Optional[int] = min(low[at] , low[to] ) lowercase_ : list[tuple[int, int]] = [] for i in range(_UpperCamelCase ): if not visited[i]: dfs(_UpperCamelCase , -1 , _UpperCamelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): __lowerCamelCase: Dict = 'falcon' __lowerCamelCase: Dict = ['past_key_values'] def __init__( self : List[Any] , a : int=6_5_0_2_4 , a : int=4_5_4_4 , a : List[Any]=3_2 , a : str=7_1 , a : Optional[Any]=1e-5 , a : List[Any]=0.02 , a : Any=True , a : Optional[int]=0.0 , a : str=0.0 , a : Optional[int]=None , a : Optional[int]=False , a : int=False , a : Union[str, Any]=True , a : List[Any]=True , a : str=False , a : Union[str, Any]=1_1 , a : Optional[Any]=1_1 , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ : str = vocab_size # Backward compatibility with n_embed kwarg lowercase_ : Dict = kwargs.pop("n_embed" , a ) lowercase_ : List[str] = hidden_size if n_embed is None else n_embed lowercase_ : List[str] = num_hidden_layers lowercase_ : Optional[int] = num_attention_heads lowercase_ : int = layer_norm_epsilon lowercase_ : Optional[Any] = initializer_range lowercase_ : Optional[Any] = use_cache lowercase_ : Union[str, Any] = hidden_dropout lowercase_ : str = attention_dropout lowercase_ : Dict = bos_token_id lowercase_ : List[str] = eos_token_id lowercase_ : Dict = num_attention_heads if num_kv_heads is None else num_kv_heads lowercase_ : List[Any] = alibi lowercase_ : List[str] = new_decoder_architecture lowercase_ : Tuple = multi_query # Ignored when new_decoder_architecture is True lowercase_ : Optional[int] = parallel_attn lowercase_ : str = bias super().__init__(bos_token_id=a , eos_token_id=a , **a ) @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return not self.alibi
715
'''simple docstring''' import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCamelCase__ = 'scheduler_config.json' class _UpperCAmelCase ( snake_case ): __lowerCamelCase: int = 1 __lowerCamelCase: List[Any] = 2 __lowerCamelCase: Optional[Any] = 3 __lowerCamelCase: int = 4 __lowerCamelCase: Optional[int] = 5 @dataclass class _UpperCAmelCase ( snake_case ): __lowerCamelCase: jnp.ndarray class _UpperCAmelCase : __lowerCamelCase: List[str] = SCHEDULER_CONFIG_NAME __lowerCamelCase: Optional[int] = ['dtype'] __lowerCamelCase: int = [] __lowerCamelCase: Dict = True @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Dict[str, Any] = None , a : Optional[str] = None , a : Union[str, Any]=False , **a : Union[str, Any] , ): '''simple docstring''' lowercase_ , lowercase_ : Any = cls.load_config( pretrained_model_name_or_path=a , subfolder=a , return_unused_kwargs=a , **a , ) lowercase_ , lowercase_ : Union[str, Any] = cls.from_config(a , return_unused_kwargs=a , **a ) if hasattr(a , "create_state" ) and getattr(a , "has_state" , a ): lowercase_ : Tuple = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def lowerCAmelCase__ ( self : int , a : Union[str, os.PathLike] , a : bool = False , **a : int ): '''simple docstring''' self.save_config(save_directory=a , push_to_hub=a , **a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._get_compatibles() @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' lowercase_ : str = list(set([cls.__name__] + cls._compatibles ) ) lowercase_ : str = importlib.import_module(__name__.split("." )[0] ) lowercase_ : Optional[Any] = [ getattr(a , a ) for c in compatible_classes_str if hasattr(a , a ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" assert len(_UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(_UpperCamelCase ) - x.ndim) ) , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=0.999 , _UpperCamelCase=jnp.floataa ): """simple docstring""" def alpha_bar(_UpperCamelCase ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 lowercase_ : int = [] for i in range(_UpperCamelCase ): lowercase_ : Union[str, Any] = i / num_diffusion_timesteps lowercase_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(_UpperCamelCase ) / alpha_bar(_UpperCamelCase ) , _UpperCamelCase ) ) return jnp.array(_UpperCamelCase , dtype=_UpperCamelCase ) @flax.struct.dataclass class _UpperCAmelCase : __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray __lowerCamelCase: jnp.ndarray @classmethod def lowerCAmelCase__ ( cls : Tuple , a : Optional[int] ): '''simple docstring''' lowercase_ : Any = scheduler.config if config.trained_betas is not None: lowercase_ : Union[str, Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": lowercase_ : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ : Tuple = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ : Union[str, Any] = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f"""beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}""" ) lowercase_ : str = 1.0 - betas lowercase_ : Dict = jnp.cumprod(a , axis=0 ) return cls( alphas=a , betas=a , alphas_cumprod=a , ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : List[str] = state.alphas_cumprod lowercase_ : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 lowercase_ : int = sqrt_alpha_prod.flatten() lowercase_ : Union[str, Any] = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) lowercase_ : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase_ : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten() lowercase_ : Any = broadcast_to_shape_from_left(_UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : str = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ , lowercase_ : int = get_sqrt_alpha_prod(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
640
0
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase : def __init__( self : List[Any] , a : str = None , a : uuid.UUID = None , a : List[Any]=None , a : int=None ): '''simple docstring''' if not conversation_id: lowercase_ : Any = uuid.uuida() if past_user_inputs is None: lowercase_ : List[str] = [] if generated_responses is None: lowercase_ : Optional[Any] = [] lowercase_ : Tuple = conversation_id lowercase_ : str = past_user_inputs lowercase_ : Optional[Any] = generated_responses lowercase_ : Any = text def __eq__( self : Optional[Any] , a : Optional[Any] ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase__ ( self : List[Any] , a : str , a : bool = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) lowercase_ : Tuple = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: lowercase_ : Any = text def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowercase_ : List[Any] = None def lowerCAmelCase__ ( self : Dict , a : str ): '''simple docstring''' self.generated_responses.append(lowercase_ ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Union[str, Any] = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): lowercase_ : Any = "user" if is_user else "bot" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( snake_case , r'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , ) class _UpperCAmelCase ( snake_case ): def __init__( self : List[Any] , *a : Optional[Any] , **a : str ): '''simple docstring''' super().__init__(*lowercase_ , **lowercase_ ) if self.tokenizer.pad_token_id is None: lowercase_ : List[Any] = self.tokenizer.eos_token def lowerCAmelCase__ ( self : Union[str, Any] , a : Union[str, Any]=None , a : int=None , a : str=None , **a : str ): '''simple docstring''' lowercase_ : Union[str, Any] = {} lowercase_ : Union[str, Any] = {} lowercase_ : List[Any] = {} if min_length_for_response is not None: lowercase_ : List[str] = min_length_for_response if minimum_tokens is not None: lowercase_ : Optional[int] = minimum_tokens if "max_length" in generate_kwargs: lowercase_ : Union[str, Any] = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowercase_ : Union[str, Any] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , a : Union[Conversation, List[Conversation]] , a : str=0 , **a : Union[str, Any] ): '''simple docstring''' lowercase_ : str = super().__call__(lowercase_ , num_workers=lowercase_ , **lowercase_ ) if isinstance(lowercase_ , lowercase_ ) and len(lowercase_ ) == 1: return outputs[0] return outputs def lowerCAmelCase__ ( self : List[Any] , a : Conversation , a : Any=3_2 ): '''simple docstring''' if not isinstance(lowercase_ , lowercase_ ): raise ValueError("ConversationalPipeline, expects Conversation as inputs" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ "Add user inputs with the conversation's `add_user_input` method" ) if hasattr(self.tokenizer , "_build_conversation_input_ids" ): lowercase_ : Dict = self.tokenizer._build_conversation_input_ids(lowercase_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowercase_ : Dict = self._legacy_parse_and_tokenize(lowercase_ ) if self.framework == "pt": lowercase_ : Optional[int] = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowercase_ : Any = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase__ ( self : Union[str, Any] , a : Any , a : Optional[int]=1_0 , **a : Dict ): '''simple docstring''' lowercase_ : Any = generate_kwargs.get("max_length" , self.model.config.max_length ) lowercase_ : List[Any] = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) lowercase_ : Any = max_length - minimum_tokens lowercase_ : Union[str, Any] = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: lowercase_ : Dict = model_inputs["attention_mask"][:, -trim:] lowercase_ : str = model_inputs.pop("conversation" ) lowercase_ : Tuple = max_length lowercase_ : List[str] = self.model.generate(**lowercase_ , **lowercase_ ) if self.model.config.is_encoder_decoder: lowercase_ : Optional[int] = 1 else: lowercase_ : Union[str, Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase__ ( self : Optional[Any] , a : Union[str, Any] , a : int=True ): '''simple docstring''' lowercase_ : Optional[Any] = model_outputs["output_ids"] lowercase_ : List[str] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) lowercase_ : List[Any] = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowercase_ ) return conversation def lowerCAmelCase__ ( self : Any , a : Conversation ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer.eos_token_id lowercase_ : Any = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_ ) ) if len(lowercase_ ) > self.tokenizer.model_max_length: lowercase_ : List[str] = input_ids[-self.tokenizer.model_max_length :] return input_ids
716
'''simple docstring''' import heapq def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(_UpperCamelCase , [-1 * len(_UpperCamelCase ), (key, value)] ) # chosen_vertices = set of chosen vertices lowercase_ : Optional[Any] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowercase_ : Any = heapq.heappop(_UpperCamelCase )[1][0] chosen_vertices.add(_UpperCamelCase ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowercase_ : str = elem[1][1].index(_UpperCamelCase ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(_UpperCamelCase ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
640
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase : def __init__( self : Any , a : List[str] , a : int ): '''simple docstring''' lowercase_ : str = question_encoder lowercase_ : List[str] = generator lowercase_ : Dict = self.question_encoder def lowerCAmelCase__ ( self : Optional[int] , a : str ): '''simple docstring''' if os.path.isfile(lowerCAmelCase_ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) lowercase_ : Union[str, Any] = os.path.join(lowerCAmelCase_ , "question_encoder_tokenizer" ) lowercase_ : Tuple = os.path.join(lowerCAmelCase_ , "generator_tokenizer" ) self.question_encoder.save_pretrained(lowerCAmelCase_ ) self.generator.save_pretrained(lowerCAmelCase_ ) @classmethod def lowerCAmelCase__ ( cls : Dict , a : Tuple , **a : Dict ): '''simple docstring''' from ..auto.tokenization_auto import AutoTokenizer lowercase_ : List[str] = kwargs.pop("config" , lowerCAmelCase_ ) if config is None: lowercase_ : Dict = RagConfig.from_pretrained(lowerCAmelCase_ ) lowercase_ : Optional[Any] = AutoTokenizer.from_pretrained( lowerCAmelCase_ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) lowercase_ : Optional[int] = AutoTokenizer.from_pretrained( lowerCAmelCase_ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=lowerCAmelCase_ , generator=lowerCAmelCase_ ) def __call__( self : int , *a : int , **a : Tuple ): '''simple docstring''' return self.current_tokenizer(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : int , *a : Optional[int] , **a : List[str] ): '''simple docstring''' return self.generator.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : Tuple , *a : List[Any] , **a : Union[str, Any] ): '''simple docstring''' return self.generator.decode(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : List[Any] = self.question_encoder def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = self.generator def lowerCAmelCase__ ( self : Optional[int] , a : List[str] , a : Optional[Any] = None , a : int = None , a : List[Any] = None , a : List[str] = "longest" , a : Union[str, Any] = None , a : Optional[Any] = True , **a : Optional[int] , ): '''simple docstring''' warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , lowerCAmelCase_ , ) if max_length is None: lowercase_ : Any = self.current_tokenizer.model_max_length lowercase_ : Dict = self( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowercase_ : List[str] = self.current_tokenizer.model_max_length lowercase_ : List[str] = self( text_target=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding=lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowercase_ : Union[str, Any] = labels["input_ids"] return model_inputs
717
'''simple docstring''' # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
640
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if gpta_config_file == "": lowercase_ : List[Any] = GPTaConfig() else: lowercase_ : str = GPTaConfig.from_json_file(_UpperCamelCase ) lowercase_ : str = GPTaModel(_UpperCamelCase ) # Load weights from numpy load_tf_weights_in_gpta(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase_ : Dict = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) UpperCamelCase__ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
718
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging UpperCamelCase__ = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): """simple docstring""" lowercase_ : Tuple = XLNetConfig.from_json_file(_UpperCamelCase ) lowercase_ : Union[str, Any] = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"""Building PyTorch XLNetForSequenceClassification model from configuration: {config}""" ) lowercase_ : Dict = finetuning_task lowercase_ : Any = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Any = XLNetForSequenceClassification(_UpperCamelCase ) elif "squad" in finetuning_task: lowercase_ : Optional[int] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(_UpperCamelCase ) else: lowercase_ : Union[str, Any] = XLNetLMHeadModel(_UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Save pytorch-model lowercase_ : Optional[Any] = os.path.join(_UpperCamelCase , _UpperCamelCase ) lowercase_ : Dict = os.path.join(_UpperCamelCase , _UpperCamelCase ) print(F"""Save PyTorch model to {os.path.abspath(_UpperCamelCase )}""" ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {os.path.abspath(_UpperCamelCase )}""" ) with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) UpperCamelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
640
0
'''simple docstring''' import string import numpy def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" return b if a == 0 else greatest_common_divisor(b % a , _UpperCamelCase ) class _UpperCAmelCase : __lowerCamelCase: Dict = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) __lowerCamelCase: str = numpy.vectorize(lambda snake_case : x % 36 ) __lowerCamelCase: Union[str, Any] = numpy.vectorize(SCREAMING_SNAKE_CASE__ ) def __init__( self : Any , a : Any ): '''simple docstring''' lowercase_ : Dict = self.modulus(snake_case__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase_ : Tuple = encrypt_key.shape[0] def lowerCAmelCase__ ( self : List[Any] , a : Tuple ): '''simple docstring''' return self.key_string.index(snake_case__ ) def lowerCAmelCase__ ( self : Optional[int] , a : Any ): '''simple docstring''' return self.key_string[round(snake_case__ )] def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Optional[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ : List[Any] = det % len(self.key_string ) lowercase_ : Dict = len(self.key_string ) if greatest_common_divisor(snake_case__ , len(self.key_string ) ) != 1: lowercase_ : Optional[Any] = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(snake_case__ ) def lowerCAmelCase__ ( self : int , a : str ): '''simple docstring''' lowercase_ : List[str] = [char for char in text.upper() if char in self.key_string] lowercase_ : str = chars[-1] while len(snake_case__ ) % self.break_key != 0: chars.append(snake_case__ ) return "".join(snake_case__ ) def lowerCAmelCase__ ( self : int , a : Any ): '''simple docstring''' lowercase_ : Any = self.process_text(text.upper() ) lowercase_ : Tuple = "" for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ): lowercase_ : Optional[int] = text[i : i + self.break_key] lowercase_ : List[str] = [self.replace_letters(snake_case__ ) for char in batch] lowercase_ : Optional[int] = numpy.array([vec] ).T lowercase_ : List[str] = self.modulus(self.encrypt_key.dot(snake_case__ ) ).T.tolist()[ 0 ] lowercase_ : List[str] = "".join( self.replace_digits(snake_case__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : int = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ : Optional[Any] = det % len(self.key_string ) lowercase_ : Dict = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase_ : Tuple = i break lowercase_ : List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(snake_case__ ) ) def lowerCAmelCase__ ( self : List[str] , a : List[str] ): '''simple docstring''' lowercase_ : str = self.make_decrypt_key() lowercase_ : int = self.process_text(text.upper() ) lowercase_ : Union[str, Any] = "" for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ): lowercase_ : Optional[Any] = text[i : i + self.break_key] lowercase_ : Union[str, Any] = [self.replace_letters(snake_case__ ) for char in batch] lowercase_ : Optional[int] = numpy.array([vec] ).T lowercase_ : Union[str, Any] = self.modulus(decrypt_key.dot(snake_case__ ) ).T.tolist()[0] lowercase_ : Optional[int] = "".join( self.replace_digits(snake_case__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Optional[int] = int(input("Enter the order of the encryption key: " ) ) lowercase_ : Tuple = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(_UpperCamelCase ): lowercase_ : Optional[Any] = [int(_UpperCamelCase ) for x in input().split()] hill_matrix.append(_UpperCamelCase ) lowercase_ : Union[str, Any] = HillCipher(numpy.array(_UpperCamelCase ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowercase_ : List[Any] = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowercase_ : Optional[int] = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(_UpperCamelCase ) ) elif option == "2": lowercase_ : Dict = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
640
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ = direct_transformers_import(PATH_TO_TRANSFORMERS) UpperCamelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase__ = re.compile(r'\[(.+?)\]\((https://huggingface\.co/.+?)\)') UpperCamelCase__ = { 'DecisionTransformerConfig', 'EncoderDecoderConfig', 'MusicgenConfig', 'RagConfig', 'SpeechEncoderDecoderConfig', 'TimmBackboneConfig', 'VisionEncoderDecoderConfig', 'VisionTextDualEncoderConfig', 'LlamaConfig', } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[Any] = None # source code of `config_class` lowercase_ : List[Any] = inspect.getsource(__a ) lowercase_ : Optional[int] = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("/" ): lowercase_ : List[Any] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link lowercase_ : Optional[Any] = F"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowercase_ : Dict = ckpt_name break return checkpoint def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : Union[str, Any] = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue lowercase_ : int = get_checkpoint_from_config_class(__a ) lowercase_ : Dict = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: lowercase_ : Any = "\n".join(sorted(__a ) ) raise ValueError(F"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
720
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right UpperCamelCase__ = 50003 UpperCamelCase__ = 50002 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Optional[int] = PLBartTokenizer __lowerCamelCase: Any = None __lowerCamelCase: Dict = False def lowerCAmelCase__ ( self : int ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase_ : Any = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : List[str] = PLBartTokenizer(a , language_codes="base" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : List[str] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Union[str, Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : Optional[int] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : str = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 4 , a )] self.assertListEqual(a , ["__java__", "__python__", "__en_XX__", "<mask>"] ) lowercase_ : int = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : str = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : str = PLBartTokenizer(a , language_codes="multi" , keep_accents=a ) lowercase_ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) lowercase_ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowercase_ : Optional[Any] = tokenizer.convert_tokens_to_ids(a ) self.assertListEqual( a , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) lowercase_ : List[str] = tokenizer.convert_ids_to_tokens(a ) self.assertListEqual( a , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) lowercase_ : Dict = tokenizer.vocab_size lowercase_ : Union[str, Any] = [tokenizer.convert_ids_to_tokens(a ) for x in range(end - 7 , a )] self.assertListEqual( a , ["__java__", "__python__", "__en_XX__", "__javascript__", "__php__", "__ruby__", "__go__"] ) lowercase_ : Any = "java.lang.Exception, python.lang.Exception, javascript, php, ruby, go" lowercase_ : List[Any] = tokenizer(a ).input_ids self.assertEqual( tokenizer.decode(a , skip_special_tokens=a , clean_up_tokenization_spaces=a ) , a , ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): __lowerCamelCase: int = 'uclanlp/plbart-python-en_XX' __lowerCamelCase: Tuple = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __lowerCamelCase: List[str] = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __lowerCamelCase: List[str] = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowerCAmelCase__ ( cls : str ): '''simple docstring''' lowercase_ : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="base" , src_lang="python" , tgt_lang="en_XX" ) lowercase_ : List[str] = 1 return cls def lowerCAmelCase__ ( self : int ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__java__"] , 5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__python__"] , 5_0_0_0_2 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["__en_XX__"] , 5_0_0_0_3 ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' self.assertIn(a , self.tokenizer.all_special_ids ) lowercase_ : List[Any] = [EN_CODE, 9_0_3_7, 3_3_4_4_2, 5_7, 7_5_2, 1_5_3, 1_4, 5_6, 1_8, 9, 2] lowercase_ : Optional[int] = self.tokenizer.decode(a , skip_special_tokens=a ) lowercase_ : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a ) self.assertEqual(a , a ) self.assertNotIn(self.tokenizer.eos_token , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Optional[int] = ["def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])" * 2_0] self.assertIsInstance(src_text[0] , a ) lowercase_ : Tuple = 1_0 lowercase_ : int = self.tokenizer(a , max_length=a , truncation=a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , a ) self.assertEqual(len(a ) , a ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "__java__"] ) , [5_0_0_0_4, 5_0_0_0_1] ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[int] = tempfile.mkdtemp() lowercase_ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a ) lowercase_ : Tuple = PLBartTokenizer.from_pretrained(a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a ) @require_torch def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=a , return_tensors="pt" ) lowercase_ : List[str] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a , truncation=a , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowercase_ : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(a , a ) self.assertEqual((2, 2_6) , batch.input_ids.shape ) self.assertEqual((2, 2_6) , batch.attention_mask.shape ) lowercase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowerCAmelCase__ ( self : int ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer(self.src_text , padding=a , truncation=a , max_length=3 , return_tensors="pt" ) lowercase_ : List[str] = self.tokenizer( text_target=self.tgt_text , padding=a , truncation=a , max_length=1_0 , return_tensors="pt" ) lowercase_ : Dict = targets["input_ids"] lowercase_ : str = shift_tokens_right(a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="java" ) self.assertEqual( nested_simplify(a ) , { # A, test, EOS, en_XX "input_ids": [[1_5_0, 2_4_2, 2, 5_0_0_0_3]], "attention_mask": [[1, 1, 1, 1]], # java "forced_bos_token_id": 5_0_0_0_1, } , )
640
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __SCREAMING_SNAKE_CASE ( lowerCamelCase ): """simple docstring""" def wrapper(*lowerCamelCase , **lowerCamelCase ): lowercase_ : Dict = timeit.default_timer() lowercase_ : int = func(*lowerCamelCase , **lowerCamelCase ) lowercase_ : Any = timeit.default_timer() - starttime return delta lowercase_ : Tuple = func.__name__ return wrapper def __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase=100 , lowerCamelCase=None ): """simple docstring""" lowercase_ : Any = [] lowercase_ : Optional[int] = seq_shapes or {} for i in range(lowerCamelCase ): lowercase_ : Union[str, Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(lowerCamelCase , _ArrayXD ): lowercase_ : Any = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(lowerCamelCase , datasets.Value ): if v.dtype == "string": lowercase_ : str = "The small grey turtle was surprisingly fast when challenged." else: lowercase_ : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(lowerCamelCase , datasets.Sequence ): while isinstance(lowerCamelCase , datasets.Sequence ): lowercase_ : int = v.feature lowercase_ : int = seq_shapes[k] lowercase_ : Dict = np.random.rand(*lowerCamelCase ).astype(v.dtype ) lowercase_ : Dict = data dummy_data.append((i, example) ) return dummy_data def __SCREAMING_SNAKE_CASE ( lowerCamelCase , lowerCamelCase , lowerCamelCase=100 , lowerCamelCase=None ): """simple docstring""" lowercase_ : Any = generate_examples(lowerCamelCase , num_examples=lowerCamelCase , seq_shapes=lowerCamelCase ) with ArrowWriter(features=lowerCamelCase , path=lowerCamelCase ) as writer: for key, record in dummy_data: lowercase_ : List[Any] = features.encode_example(lowerCamelCase ) writer.write(lowerCamelCase ) lowercase_ : Tuple = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) lowercase_ : List[str] = datasets.Dataset.from_file(filename=lowerCamelCase , info=datasets.DatasetInfo(features=lowerCamelCase ) ) return dataset
721
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
640
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : List[str] , a : int , a : int=1_3 , a : int=3 , a : str=2_2_4 , a : str=3_0 , a : Dict=4_0_0 , a : Any=True , a : Dict=None , a : Optional[int]=True , a : Optional[Any]=[0.5, 0.5, 0.5] , a : Optional[int]=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase_ : Union[str, Any] = size if size is not None else {'''height''': 1_8, '''width''': 1_8} lowercase_ : Optional[Any] = parent lowercase_ : int = batch_size lowercase_ : Union[str, Any] = num_channels lowercase_ : List[str] = image_size lowercase_ : Optional[int] = min_resolution lowercase_ : str = max_resolution lowercase_ : Union[str, Any] = do_resize lowercase_ : Optional[int] = size lowercase_ : Tuple = do_normalize lowercase_ : Optional[int] = image_mean lowercase_ : Union[str, Any] = image_std def lowerCAmelCase__ ( self : int ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( lowercase__ , unittest.TestCase ): __lowerCamelCase: List[str] = ViTImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = EfficientFormerImageProcessorTester(self ) @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "image_std" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase__ , "size" ) ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , Image.Image ) # Test not batched input lowercase_ : int = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowercase_ : int = image_processor(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , numpify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , np.ndarray ) # Test not batched input lowercase_ : str = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowercase_ : Dict = image_processor(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_proc_tester , equal_resolution=UpperCAmelCase__ , torchify=UpperCAmelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase__ , torch.Tensor ) # Test not batched input lowercase_ : int = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched lowercase_ : Tuple = image_processor(UpperCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
700
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging UpperCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Tuple = 'linear' __lowerCamelCase: Any = 'cosine' __lowerCamelCase: Optional[Any] = 'cosine_with_restarts' __lowerCamelCase: Tuple = 'polynomial' __lowerCamelCase: int = 'constant' __lowerCamelCase: Optional[Any] = 'constant_with_warmup' __lowerCamelCase: List[str] = 'piecewise_constant' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" return LambdaLR(_UpperCamelCase , lambda _UpperCamelCase : 1 , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1.0 , _UpperCamelCase ) ) return 1.0 return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = -1 ): """simple docstring""" lowercase_ : List[Any] = {} lowercase_ : Dict = step_rules.split("," ) for rule_str in rule_list[:-1]: lowercase_ , lowercase_ : Any = rule_str.split(":" ) lowercase_ : List[Any] = int(_UpperCamelCase ) lowercase_ : int = float(_UpperCamelCase ) lowercase_ : Optional[int] = value lowercase_ : Union[str, Any] = float(rule_list[-1] ) def create_rules_function(_UpperCamelCase , _UpperCamelCase ): def rule_func(_UpperCamelCase ) -> float: lowercase_ : Optional[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_UpperCamelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func lowercase_ : Optional[int] = create_rules_function(_UpperCamelCase , _UpperCamelCase ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , last_epoch=_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=-1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 0.5 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : List[str] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_UpperCamelCase ) * 2.0 * progress )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = -1 ): """simple docstring""" def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) lowercase_ : Dict = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_UpperCamelCase ) * progress) % 1.0) )) ) return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=1e-7 , _UpperCamelCase=1.0 , _UpperCamelCase=-1 ): """simple docstring""" lowercase_ : Dict = optimizer.defaults["lr"] if not (lr_init > lr_end): raise ValueError(F"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(_UpperCamelCase ): if current_step < num_warmup_steps: return float(_UpperCamelCase ) / float(max(1 , _UpperCamelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: lowercase_ : int = lr_init - lr_end lowercase_ : Optional[int] = num_training_steps - num_warmup_steps lowercase_ : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps lowercase_ : List[Any] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) UpperCamelCase__ = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 1 , _UpperCamelCase = 1.0 , _UpperCamelCase = -1 , ): """simple docstring""" lowercase_ : Any = SchedulerType(_UpperCamelCase ) lowercase_ : List[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_UpperCamelCase , last_epoch=_UpperCamelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_UpperCamelCase , step_rules=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(F"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_UpperCamelCase , num_warmup_steps=_UpperCamelCase , last_epoch=_UpperCamelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(F"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , num_cycles=_UpperCamelCase , last_epoch=_UpperCamelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , power=_UpperCamelCase , last_epoch=_UpperCamelCase , ) return schedule_func( _UpperCamelCase , num_warmup_steps=_UpperCamelCase , num_training_steps=_UpperCamelCase , last_epoch=_UpperCamelCase )
640
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _UpperCAmelCase ( unittest.TestCase ): def __init__( self : Tuple , a : List[str] , a : Tuple=7 , a : Tuple=3 , a : Optional[Any]=3_0 , a : Any=4_0_0 , a : Optional[int]=True , a : Tuple=None , a : Dict=0.9 , a : Dict=None , a : Union[str, Any]=True , a : List[str]=[0.5, 0.5, 0.5] , a : str=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase_ : List[str] = size if size is not None else {"shortest_edge": 3_0} lowercase_ : str = crop_size if crop_size is not None else {"height": 3_0, "width": 3_0} lowercase_ : List[str] = parent lowercase_ : List[Any] = batch_size lowercase_ : Tuple = num_channels lowercase_ : Dict = min_resolution lowercase_ : List[Any] = max_resolution lowercase_ : Dict = do_resize_and_center_crop lowercase_ : Optional[Any] = size lowercase_ : Dict = crop_pct lowercase_ : Tuple = crop_size lowercase_ : Tuple = do_normalize lowercase_ : Optional[int] = image_mean lowercase_ : Tuple = image_std def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _UpperCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __lowerCamelCase: int = PoolFormerImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Tuple = PoolFormerImageProcessingTester(self ) @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , "do_resize_and_center_crop" ) ) self.assertTrue(hasattr(_lowerCamelCase , "size" ) ) self.assertTrue(hasattr(_lowerCamelCase , "crop_pct" ) ) self.assertTrue(hasattr(_lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(_lowerCamelCase , "image_mean" ) ) self.assertTrue(hasattr(_lowerCamelCase , "image_std" ) ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 3_0} ) self.assertEqual(image_processor.crop_size , {"height": 3_0, "width": 3_0} ) lowercase_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 ) self.assertEqual(image_processor.size , {"shortest_edge": 4_2} ) self.assertEqual(image_processor.crop_size , {"height": 8_4, "width": 8_4} ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input lowercase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input lowercase_ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ : str = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input lowercase_ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowercase_ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
701
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 200 ): """simple docstring""" lowercase_ : Optional[int] = [1, 2, 5, 10, 20, 50, 100, 200] lowercase_ : str = [0] * (pence + 1) lowercase_ : Dict = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCamelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73682
640
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class _UpperCAmelCase ( unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def lowerCAmelCase__ ( self : Optional[Any] , a : Optional[int] ): '''simple docstring''' lowercase_ : Optional[int] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase , config_name=__lowerCamelCase ) lowercase_ : Optional[int] = GenerationConfig.from_pretrained(__lowerCamelCase , config_name=__lowerCamelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __lowerCamelCase ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , __lowerCamelCase ) def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : List[Any] = AutoConfig.from_pretrained("gpt2" ) lowercase_ : List[str] = GenerationConfig.from_model_config(__lowerCamelCase ) lowercase_ : Optional[int] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCamelCase , __lowerCamelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : Union[str, Any] = GenerationConfig() lowercase_ : Optional[int] = { '''max_new_tokens''': 1_0_2_4, '''foo''': '''bar''', } lowercase_ : Dict = copy.deepcopy(__lowerCamelCase ) lowercase_ : str = generation_config.update(**__lowerCamelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCamelCase , __lowerCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCamelCase , {"foo": "bar"} ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Optional[Any] = GenerationConfig() lowercase_ : List[str] = '''bar''' with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(__lowerCamelCase ) lowercase_ : Dict = GenerationConfig.from_pretrained(__lowerCamelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) lowercase_ : Union[str, Any] = GenerationConfig.from_model_config(__lowerCamelCase ) assert not hasattr(__lowerCamelCase , "foo" ) # no new kwargs should be initialized if from config def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Any = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , __lowerCamelCase ) self.assertEqual(default_config.num_beams , 1 ) lowercase_ : List[Any] = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , __lowerCamelCase ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCamelCase ) lowercase_ : Dict = GenerationConfig.from_pretrained(__lowerCamelCase , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , __lowerCamelCase ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class _UpperCAmelCase ( unittest.TestCase ): @classmethod def lowerCAmelCase__ ( cls : List[str] ): '''simple docstring''' lowercase_ : Optional[Any] = TOKEN HfFolder.save_token(__lowerCamelCase ) @classmethod def lowerCAmelCase__ ( cls : Dict ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) lowercase_ : Tuple = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="test-generation-config" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) def lowerCAmelCase__ ( self : Any ): '''simple docstring''' lowercase_ : str = GenerationConfig( do_sample=__lowerCamelCase , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) lowercase_ : List[Any] = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCamelCase , repo_id="valid_org/test-generation-config-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token ) lowercase_ : int = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
702
'''simple docstring''' import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _UpperCAmelCase ( snake_case ): def __init__( self : Tuple , a : NestedDataStructureLike[PathLike] , a : Optional[NamedSplit] = None , a : Optional[Features] = None , a : str = None , a : bool = False , a : bool = False , a : Optional[str] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' super().__init__( a , split=a , features=a , cache_dir=a , keep_in_memory=a , streaming=a , num_proc=a , **a , ) lowercase_ : str = field lowercase_ : Optional[Any] = path_or_paths if isinstance(a , a ) else {self.split: path_or_paths} lowercase_ : Any = Json( cache_dir=a , data_files=a , features=a , field=a , **a , ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase_ : Any = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowercase_ : Dict = None lowercase_ : Optional[int] = None lowercase_ : str = None lowercase_ : str = None self.builder.download_and_prepare( download_config=a , download_mode=a , verification_mode=a , base_path=a , num_proc=self.num_proc , ) lowercase_ : int = self.builder.as_dataset( split=self.split , verification_mode=a , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : def __init__( self : str , a : Dataset , a : Union[PathLike, BinaryIO] , a : Optional[int] = None , a : Optional[int] = None , **a : List[Any] , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowercase_ : Dict = dataset lowercase_ : Optional[int] = path_or_buf lowercase_ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowercase_ : Optional[Any] = num_proc lowercase_ : List[Any] = "utf-8" lowercase_ : List[str] = to_json_kwargs def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : str = self.to_json_kwargs.pop("path_or_buf" , a ) lowercase_ : Any = self.to_json_kwargs.pop("orient" , "records" ) lowercase_ : Any = self.to_json_kwargs.pop("lines" , True if orient == "records" else False ) lowercase_ : List[str] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True ) lowercase_ : int = self.to_json_kwargs.pop("compression" , a ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , "wb" , compression=a ) as buffer: lowercase_ : Dict = self._write(file_obj=a , orient=a , lines=a , index=a , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" " was passed. Please provide a local path instead." ) lowercase_ : Dict = self._write( file_obj=self.path_or_buf , orient=a , lines=a , index=a , **self.to_json_kwargs ) return written def lowerCAmelCase__ ( self : Optional[int] , a : List[str] ): '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ : List[Any] = args lowercase_ : Optional[int] = query_table( table=self.dataset.data , key=slice(a , offset + self.batch_size ) , indices=self.dataset._indices , ) lowercase_ : Dict = batch.to_pandas().to_json( path_or_buf=a , orient=a , lines=a , index=a , **a ) if not json_str.endswith("\n" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase__ ( self : int , a : BinaryIO , a : int , a : str , a : Union[str, Any] , **a : str , ): '''simple docstring''' lowercase_ : Union[str, Any] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): lowercase_ : Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(a ) else: lowercase_ , lowercase_ : Any = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , a , a )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(a ) return written
640
0
'''simple docstring''' UpperCamelCase__ = [0, 2, 4, 6, 8] UpperCamelCase__ = [1, 3, 5, 7, 9] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 lowercase_ : Optional[Any] = 0 for digit in range(10 ): lowercase_ : Dict = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , UpperCamelCase__ , UpperCamelCase__ ) return result lowercase_ : List[str] = 0 for digita in range(10 ): lowercase_ : Optional[Any] = digita if (remainder + digita) % 2 == 0: lowercase_ : Optional[int] = ODD_DIGITS else: lowercase_ : Union[str, Any] = EVEN_DIGITS for digita in other_parity_digits: lowercase_ : List[Any] = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , UpperCamelCase__ , UpperCamelCase__ , ) return result def __SCREAMING_SNAKE_CASE ( _UpperCamelCase = 9 ): """simple docstring""" lowercase_ : Any = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(UpperCamelCase__ , 0 , [0] * length , UpperCamelCase__ ) return result if __name__ == "__main__": print(f"""{solution() = }""")
703
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square(_UpperCamelCase , _UpperCamelCase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 lowercase_ : List[str] = update_area_of_max_square(_UpperCamelCase , col + 1 ) lowercase_ : List[Any] = update_area_of_max_square(row + 1 , col + 1 ) lowercase_ : Tuple = update_area_of_max_square(row + 1 , _UpperCamelCase ) if mat[row][col]: lowercase_ : Optional[int] = 1 + min([right, diagonal, down] ) lowercase_ : Any = max(largest_square_area[0] , _UpperCamelCase ) return sub_problem_sol else: return 0 lowercase_ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" def update_area_of_max_square_using_dp_array( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] lowercase_ : Dict = update_area_of_max_square_using_dp_array(_UpperCamelCase , col + 1 , _UpperCamelCase ) lowercase_ : str = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _UpperCamelCase ) lowercase_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , _UpperCamelCase , _UpperCamelCase ) if mat[row][col]: lowercase_ : Tuple = 1 + min([right, diagonal, down] ) lowercase_ : int = max(largest_square_area[0] , _UpperCamelCase ) lowercase_ : Dict = sub_problem_sol return sub_problem_sol else: return 0 lowercase_ : Any = [0] lowercase_ : Optional[int] = [[-1] * cols for _ in range(_UpperCamelCase )] update_area_of_max_square_using_dp_array(0 , 0 , _UpperCamelCase ) return largest_square_area[0] def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] lowercase_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Tuple = dp_array[row][col + 1] lowercase_ : List[str] = dp_array[row + 1][col + 1] lowercase_ : List[Any] = dp_array[row + 1][col] if mat[row][col] == 1: lowercase_ : Any = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : Any = max(dp_array[row][col] , _UpperCamelCase ) else: lowercase_ : int = 0 return largest_square_area def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = [0] * (cols + 1) lowercase_ : Union[str, Any] = [0] * (cols + 1) lowercase_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): lowercase_ : Dict = current_row[col + 1] lowercase_ : List[Any] = next_row[col + 1] lowercase_ : Tuple = next_row[col] if mat[row][col] == 1: lowercase_ : Dict = 1 + min(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowercase_ : int = max(current_row[col] , _UpperCamelCase ) else: lowercase_ : Tuple = 0 lowercase_ : Optional[Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
640
0