code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCamelCase : Optional[int] = 1.0_5457_1817E-34 # unit of ℏ : J * s __UpperCamelCase : str = 3E8 # unit of c : m * s^-1 def snake_case_ ( __lowercase , __lowercase , __lowercase ): if (force, area, distance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if force < 0: raise ValueError('''Magnitude of force can not be negative''' ) if distance < 0: raise ValueError('''Distance can not be negative''' ) if area < 0: raise ValueError('''Area can not be negative''' ) if force == 0: UpperCAmelCase_ : Tuple = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: UpperCAmelCase_ : List[Any] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: UpperCAmelCase_ : Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('''One and only one argument must be 0''' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
__UpperCamelCase : Any = 'Input must be a string of 8 numbers plus letter' __UpperCamelCase : int = 'TRWAGMYFPDXBNJZSQVHLCKE' def snake_case_ ( __lowercase ): if not isinstance(__lowercase , __lowercase ): UpperCAmelCase_ : Any = F'''Expected string as input, found {type(__lowercase ).__name__}''' raise TypeError(__lowercase ) UpperCAmelCase_ : Union[str, Any] = spanish_id.replace('''-''' , '''''' ).upper() if len(__lowercase ) != 9: raise ValueError(__lowercase ) try: UpperCAmelCase_ : Tuple = int(spanish_id_clean[0:8] ) UpperCAmelCase_ : List[str] = spanish_id_clean[8] except ValueError as ex: raise ValueError(__lowercase ) from ex if letter.isdigit(): raise ValueError(__lowercase ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Any = 'EncodecFeatureExtractor' A_ : Dict = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self : Any , __snake_case : Tuple , __snake_case : Any ): '''simple docstring''' super().__init__(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = self.feature_extractor UpperCAmelCase_ : int = False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : Any=None , __snake_case : Tuple=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=__snake_case , language=__snake_case , no_timestamps=__snake_case ) def __call__( self : Optional[Any] , *__snake_case : List[Any] , **__snake_case : str ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__snake_case , **__snake_case ) UpperCAmelCase_ : int = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase_ : Dict = kwargs.pop('''sampling_rate''' , __snake_case ) UpperCAmelCase_ : str = kwargs.pop('''text''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Tuple = args[0] UpperCAmelCase_ : List[str] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if text is not None: UpperCAmelCase_ : Tuple = self.tokenizer(__snake_case , **__snake_case ) if audio is not None: UpperCAmelCase_ : Optional[int] = self.feature_extractor(__snake_case , *__snake_case , sampling_rate=__snake_case , **__snake_case ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase_ : Optional[int] = audio_inputs['''input_values'''] if "padding_mask" in audio_inputs: UpperCAmelCase_ : Dict = audio_inputs['''padding_mask'''] return inputs def _lowerCamelCase ( self : int , *__snake_case : Tuple , **__snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = kwargs.pop('''audio''' , __snake_case ) UpperCAmelCase_ : Optional[Any] = kwargs.pop('''padding_mask''' , __snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = args[0] UpperCAmelCase_ : int = args[1:] if audio_values is not None: return self._decode_audio(__snake_case , padding_mask=__snake_case ) else: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : Optional[int] , *__snake_case : str , **__snake_case : str ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : Tuple , __snake_case : int , __snake_case : Optional = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = to_numpy(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = audio_values.shape if padding_mask is None: return list(__snake_case ) UpperCAmelCase_ : Tuple = to_numpy(__snake_case ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase_ : Dict = seq_len - padding_mask.shape[-1] UpperCAmelCase_ : Optional[Any] = 1 - self.feature_extractor.padding_value UpperCAmelCase_ : str = np.pad(__snake_case , ((0, 0), (0, difference)) , '''constant''' , constant_values=__snake_case ) UpperCAmelCase_ : List[Any] = audio_values.tolist() for i in range(__snake_case ): UpperCAmelCase_ : Union[str, Any] = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase_ : Any = sliced_audio.reshape(__snake_case , -1 ) return audio_values
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def snake_case_ ( __lowercase=None ): if subparsers is not None: UpperCAmelCase_ : List[str] = subparsers.add_parser('''test''' ) else: UpperCAmelCase_ : Dict = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=__lowercase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__lowercase ) return parser def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: UpperCAmelCase_ : Optional[Any] = script_name else: UpperCAmelCase_ : Tuple = F'''--config_file={args.config_file} {script_name}''' UpperCAmelCase_ : Any = ['''accelerate-launch'''] + test_args.split() UpperCAmelCase_ : int = execute_subprocess_async(__lowercase , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def snake_case_ ( ): UpperCAmelCase_ : List[str] = test_command_parser() UpperCAmelCase_ : str = parser.parse_args() test_command(__lowercase ) if __name__ == "__main__": main()
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __UpperCamelCase : Optional[Any] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } __UpperCamelCase : List[str] = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase_ : Any = bs[:] UpperCAmelCase_ : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 UpperCAmelCase_ : str = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = set() UpperCAmelCase_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase_ : Union[str, Any] = char return pairs class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , __snake_case : Any , __snake_case : Tuple , __snake_case : List[Any]="replace" , __snake_case : Union[str, Any]="<s>" , __snake_case : Tuple="</s>" , __snake_case : Tuple="</s>" , __snake_case : Optional[int]="<s>" , __snake_case : int="<unk>" , __snake_case : List[Any]="<pad>" , __snake_case : Tuple="<mask>" , __snake_case : Any=False , **__snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token UpperCAmelCase_ : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token UpperCAmelCase_ : List[str] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token UpperCAmelCase_ : Dict = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token UpperCAmelCase_ : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : List[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase_ : str = json.load(__snake_case ) UpperCAmelCase_ : List[Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ : List[Any] = errors # how to handle errors in decoding UpperCAmelCase_ : Tuple = bytes_to_unicode() UpperCAmelCase_ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase_ : Dict = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase_ : Any = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase_ : List[str] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) UpperCAmelCase_ : Tuple = {} UpperCAmelCase_ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase_ : Optional[Any] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self : Any ): '''simple docstring''' return len(self.encoder ) def _lowerCamelCase ( self : int ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self : str , __snake_case : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase_ : Optional[Any] = tuple(__snake_case ) UpperCAmelCase_ : Optional[int] = get_pairs(__snake_case ) if not pairs: return token while True: UpperCAmelCase_ : Dict = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase_ , UpperCAmelCase_ : str = bigram UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = 0 while i < len(__snake_case ): try: UpperCAmelCase_ : Dict = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase_ : List[Any] = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase_ : List[Any] = tuple(__snake_case ) UpperCAmelCase_ : str = new_word if len(__snake_case ) == 1: break else: UpperCAmelCase_ : Optional[int] = get_pairs(__snake_case ) UpperCAmelCase_ : Any = ''' '''.join(__snake_case ) UpperCAmelCase_ : str = word return word def _lowerCamelCase ( self : List[str] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : str = [] for token in re.findall(self.pat , __snake_case ): UpperCAmelCase_ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(''' ''' ) ) return bpe_tokens def _lowerCamelCase ( self : List[Any] , __snake_case : List[Any] ): '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self : List[str] , __snake_case : str ): '''simple docstring''' return self.decoder.get(__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = ''''''.join(__snake_case ) UpperCAmelCase_ : int = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowerCamelCase ( self : int , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : int = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase_ : Dict = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) UpperCAmelCase_ : Optional[int] = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase_ : Optional[Any] = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : List[str] = [self.sep_token_id] UpperCAmelCase_ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Any=False , **__snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): UpperCAmelCase_ : Dict = ''' ''' + text return (text, kwargs) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : List[Any] , __snake_case : "Conversation" ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(__snake_case ) UpperCAmelCase_ : List[str] = ''' '''.join(__snake_case ) UpperCAmelCase_ : Any = self.encode(__snake_case ) if len(__snake_case ) > self.model_max_length: UpperCAmelCase_ : Dict = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup __UpperCamelCase : str = [ 'kernels/rwkv/wkv_cuda.cu', 'kernels/rwkv/wkv_op.cpp', 'kernels/deformable_detr/ms_deform_attn.h', 'kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh', 'models/graphormer/algos_graphormer.pyx', ] def snake_case_ ( __lowercase ): # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument('--check_lib', action='store_true', help='Whether to check the build or the actual package.') __UpperCamelCase : Dict = parser.parse_args() if args.check_lib: __UpperCamelCase : List[str] = importlib.import_module('transformers') __UpperCamelCase : str = Path(transformers_module.__file__).parent else: __UpperCamelCase : List[Any] = Path.cwd() / 'build/lib/transformers' if not test_custom_files_are_present(transformers_path): raise ValueError('The built release does not contain the custom files. Fix this before going further!')
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , *__snake_case : List[str] , **__snake_case : List[str] ): '''simple docstring''' warnings.warn( '''The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PerceiverImageProcessor instead.''' , __snake_case , ) super().__init__(*__snake_case , **__snake_case )
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(__snake_case ): UpperCAmelCase_ : Union[str, Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase_ : str = FlaxAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(__snake_case ): UpperCAmelCase_ : Dict = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = FlaxAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: UpperCAmelCase_ : int = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase_ : int = FlaxBertModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Tuple = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__snake_case : Optional[Any] ): return model(**__snake_case ) eval(**__snake_case ).block_until_ready() @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained(__snake_case ) UpperCAmelCase_ : Union[str, Any] = FlaxRobertaModel.from_pretrained(__snake_case ) UpperCAmelCase_ : Union[str, Any] = tokenizer('''Do you support jax jitted function?''' , return_tensors=TensorType.JAX ) @jax.jit def eval(**__snake_case : List[str] ): return model(**__snake_case ) eval(**__snake_case ).block_until_ready() def _lowerCamelCase ( self : int ): '''simple docstring''' with self.assertRaisesRegex( __snake_case , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase_ : Any = FlaxAutoModel.from_pretrained('''bert-base''' ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' with self.assertRaisesRegex( __snake_case , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase_ : Tuple = FlaxAutoModel.from_pretrained(__snake_case , revision='''aaaaaa''' ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' with self.assertRaisesRegex( __snake_case , '''hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack''' , ): UpperCAmelCase_ : Optional[Any] = FlaxAutoModel.from_pretrained('''hf-internal-testing/config-no-model''' ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex(__snake_case , '''Use `from_pt=True` to load this model''' ): UpperCAmelCase_ : Optional[int] = FlaxAutoModel.from_pretrained('''hf-internal-testing/tiny-bert-pt-only''' )
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : int ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : str = 1 UpperCAmelCase_ : Any = 3 UpperCAmelCase_ : List[str] = (32, 32) UpperCAmelCase_ : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__snake_case ) return image @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(__snake_case ) @property def _lowerCamelCase ( self : Any ): '''simple docstring''' def extract(*__snake_case : Any , **__snake_case : List[str] ): class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.ones([0] ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] ): '''simple docstring''' self.pixel_values.to(__snake_case ) return self return Out() return extract def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : List[str] = self.dummy_cond_unet UpperCAmelCase_ : Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) UpperCAmelCase_ : int = self.dummy_vae UpperCAmelCase_ : Dict = self.dummy_text_encoder UpperCAmelCase_ : Any = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : int = StableDiffusionPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : int = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : int = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[int] = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : Any = sd_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : str = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__snake_case , )[0] UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : Optional[int] = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ : int = self.dummy_cond_unet UpperCAmelCase_ : int = PNDMScheduler(skip_prk_steps=__snake_case ) UpperCAmelCase_ : List[str] = self.dummy_vae UpperCAmelCase_ : Dict = self.dummy_text_encoder UpperCAmelCase_ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Optional[Any] = StableDiffusionPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : Dict = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Dict = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[Any] = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : List[Any] = sd_pipe([prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Tuple = torch.Generator(device=__snake_case ).manual_seed(0 ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=__snake_case , )[0] UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ : List[Any] = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=__snake_case ) assert isinstance(__snake_case , __snake_case ) assert isinstance(pipe.scheduler , __snake_case ) assert pipe.safety_checker is None UpperCAmelCase_ : List[str] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__snake_case ) UpperCAmelCase_ : List[Any] = StableDiffusionPipeline.from_pretrained(__snake_case ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : int = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.dummy_cond_unet UpperCAmelCase_ : Optional[int] = PNDMScheduler(skip_prk_steps=__snake_case ) UpperCAmelCase_ : Tuple = self.dummy_vae UpperCAmelCase_ : str = self.dummy_text_encoder UpperCAmelCase_ : Optional[int] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 UpperCAmelCase_ : Tuple = unet.half() UpperCAmelCase_ : Dict = vae.half() UpperCAmelCase_ : Tuple = bert.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_ : Tuple = StableDiffusionPipeline( unet=__snake_case , scheduler=__snake_case , vae=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , safety_checker=__snake_case , feature_extractor=self.dummy_extractor , ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Union[str, Any] = '''A painting of a squirrel eating a burger''' UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__snake_case ) UpperCAmelCase_ : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : List[Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Any = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) UpperCAmelCase_ : Optional[Any] = 4_003_660_346 UpperCAmelCase_ : Optional[Any] = 7 # without safety guidance (sld_guidance_scale = 0) UpperCAmelCase_ : List[Any] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ : str = output.images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] UpperCAmelCase_ : str = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) UpperCAmelCase_ : List[str] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Optional[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Any = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=__snake_case ) UpperCAmelCase_ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) UpperCAmelCase_ : Optional[Any] = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = '''padme amidala taking a bath artwork, safe for work, no nudity''' UpperCAmelCase_ : str = 2_734_971_755 UpperCAmelCase_ : Tuple = 7 UpperCAmelCase_ : Any = torch.manual_seed(__snake_case ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Optional[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 UpperCAmelCase_ : Optional[int] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Union[str, Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] UpperCAmelCase_ : int = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Any = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) UpperCAmelCase_ : int = sd_pipe.to(__snake_case ) sd_pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Union[str, Any] = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) UpperCAmelCase_ : Optional[Any] = 1_044_355_234 UpperCAmelCase_ : int = 12 UpperCAmelCase_ : List[Any] = torch.manual_seed(__snake_case ) UpperCAmelCase_ : Optional[int] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCAmelCase_ : Optional[int] = output.images UpperCAmelCase_ : Optional[int] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Tuple = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 UpperCAmelCase_ : Dict = torch.manual_seed(__snake_case ) UpperCAmelCase_ : List[Any] = sd_pipe( [prompt] , generator=__snake_case , guidance_scale=__snake_case , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCAmelCase_ : List[str] = output.images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] UpperCAmelCase_ : Dict = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy __UpperCamelCase : List[str] = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : int , __snake_case : float , **__snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = feature_size UpperCAmelCase_ : Any = sampling_rate UpperCAmelCase_ : Optional[Any] = padding_value UpperCAmelCase_ : List[Any] = kwargs.pop('''padding_side''' , '''right''' ) UpperCAmelCase_ : Optional[Any] = kwargs.pop('''return_attention_mask''' , __snake_case ) super().__init__(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __snake_case : Union[bool, str, PaddingStrategy] = True , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[str, TensorType]] = None , ): '''simple docstring''' # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): UpperCAmelCase_ : List[Any] = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f''' to this method that includes {self.model_input_names[0]}, but you provided''' f''' {list(processed_features.keys() )}''' ) UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : List[str] = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: UpperCAmelCase_ : Any = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch UpperCAmelCase_ : List[Any] = required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. UpperCAmelCase_ : Optional[int] = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): UpperCAmelCase_ : List[Any] = required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): UpperCAmelCase_ : List[Any] = '''tf''' elif is_torch_tensor(__snake_case ): UpperCAmelCase_ : Optional[Any] = '''pt''' elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): UpperCAmelCase_ : str = '''np''' else: raise ValueError( f'''type of {first_element} unknown: {type(__snake_case )}. ''' '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): UpperCAmelCase_ : List[Any] = to_numpy(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = [to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy UpperCAmelCase_ : Any = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]] UpperCAmelCase_ : Any = len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) UpperCAmelCase_ : int = [] for i in range(__snake_case ): UpperCAmelCase_ : List[Any] = {k: v[i] for k, v in processed_features.items()} # truncation UpperCAmelCase_ : Tuple = self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length UpperCAmelCase_ : List[str] = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) UpperCAmelCase_ : Any = PaddingStrategy.MAX_LENGTH UpperCAmelCase_ : Optional[Any] = {} for i in range(__snake_case ): # padding UpperCAmelCase_ : Dict = self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: UpperCAmelCase_ : Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): UpperCAmelCase_ : Dict = value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: UpperCAmelCase_ : List[Any] = len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Tuple = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: UpperCAmelCase_ : str = np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: UpperCAmelCase_ : Dict = max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: UpperCAmelCase_ : str = np.pad( processed_features['''attention_mask'''] , (0, difference) ) UpperCAmelCase_ : Optional[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) UpperCAmelCase_ : Optional[int] = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: UpperCAmelCase_ : List[str] = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) UpperCAmelCase_ : List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) UpperCAmelCase_ : int = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def _lowerCamelCase ( self : List[str] , __snake_case : Union[Dict[str, np.ndarray], BatchFeature] , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): '''simple docstring''' if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) UpperCAmelCase_ : List[Any] = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): UpperCAmelCase_ : str = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of UpperCAmelCase_ : Union[str, Any] = len(__snake_case ) > max_length if needs_to_be_truncated: UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: UpperCAmelCase_ : Any = processed_features['''attention_mask'''][:max_length] return processed_features def _lowerCamelCase ( self : str , __snake_case : Dict=False , __snake_case : Union[str, Any]=None ): '''simple docstring''' # Get padding strategy if padding is not False: if padding is True: UpperCAmelCase_ : int = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : str = PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : List[Any] = padding else: UpperCAmelCase_ : List[str] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
def snake_case_ ( __lowercase , __lowercase , __lowercase ): def update_area_of_max_square(__lowercase , __lowercase ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 UpperCAmelCase_ : int = update_area_of_max_square(__lowercase , col + 1 ) UpperCAmelCase_ : Dict = update_area_of_max_square(row + 1 , col + 1 ) UpperCAmelCase_ : int = update_area_of_max_square(row + 1 , __lowercase ) if mat[row][col]: UpperCAmelCase_ : List[str] = 1 + min([right, diagonal, down] ) UpperCAmelCase_ : str = max(largest_square_area[0] , __lowercase ) return sub_problem_sol else: return 0 UpperCAmelCase_ : List[str] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def snake_case_ ( __lowercase , __lowercase , __lowercase ): def update_area_of_max_square_using_dp_array( __lowercase , __lowercase , __lowercase ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] UpperCAmelCase_ : str = update_area_of_max_square_using_dp_array(__lowercase , col + 1 , __lowercase ) UpperCAmelCase_ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __lowercase ) UpperCAmelCase_ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , __lowercase , __lowercase ) if mat[row][col]: UpperCAmelCase_ : Dict = 1 + min([right, diagonal, down] ) UpperCAmelCase_ : List[Any] = max(largest_square_area[0] , __lowercase ) UpperCAmelCase_ : List[str] = sub_problem_sol return sub_problem_sol else: return 0 UpperCAmelCase_ : List[str] = [0] UpperCAmelCase_ : int = [[-1] * cols for _ in range(__lowercase )] update_area_of_max_square_using_dp_array(0 , 0 , __lowercase ) return largest_square_area[0] def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = [[0] * (cols + 1) for _ in range(rows + 1 )] UpperCAmelCase_ : Tuple = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase_ : List[str] = dp_array[row][col + 1] UpperCAmelCase_ : int = dp_array[row + 1][col + 1] UpperCAmelCase_ : int = dp_array[row + 1][col] if mat[row][col] == 1: UpperCAmelCase_ : Any = 1 + min(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : str = max(dp_array[row][col] , __lowercase ) else: UpperCAmelCase_ : Tuple = 0 return largest_square_area def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = [0] * (cols + 1) UpperCAmelCase_ : Optional[int] = [0] * (cols + 1) UpperCAmelCase_ : Dict = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): UpperCAmelCase_ : int = current_row[col + 1] UpperCAmelCase_ : List[str] = next_row[col + 1] UpperCAmelCase_ : int = next_row[col] if mat[row][col] == 1: UpperCAmelCase_ : Optional[int] = 1 + min(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ : Dict = max(current_row[col] , __lowercase ) else: UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Optional[int] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase : int = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=None , ): if attention_mask is None: UpperCAmelCase_ : int = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase_ : List[str] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase_ : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCAmelCase__: '''simple docstring''' def __init__( self : Any , __snake_case : Dict , __snake_case : str=13 , __snake_case : List[str]=7 , __snake_case : str=True , __snake_case : List[str]=False , __snake_case : str=99 , __snake_case : Optional[Any]=16 , __snake_case : Tuple=2 , __snake_case : Any=4 , __snake_case : Optional[int]=4 , __snake_case : Optional[int]="gelu" , __snake_case : Union[str, Any]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : List[str]=32 , __snake_case : Tuple=2 , __snake_case : int=1 , __snake_case : Dict=0 , __snake_case : Dict=0.02 , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Optional[Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : int = eos_token_id UpperCAmelCase_ : Optional[Any] = pad_token_id UpperCAmelCase_ : Union[str, Any] = bos_token_id UpperCAmelCase_ : Optional[int] = initializer_range def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Any = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ : int = shift_tokens_right(__snake_case , 1 , 2 ) UpperCAmelCase_ : List[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__snake_case , ) UpperCAmelCase_ : Union[str, Any] = prepare_blenderbot_inputs_dict(__snake_case , __snake_case , __snake_case ) return config, inputs_dict def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = 20 UpperCAmelCase_ : Optional[int] = model_class_name(__snake_case ) UpperCAmelCase_ : Tuple = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase_ : str = model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) UpperCAmelCase_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase_ : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) UpperCAmelCase_ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase_ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__snake_case , ) UpperCAmelCase_ : List[str] = model.decode(__snake_case , __snake_case ) UpperCAmelCase_ : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = 20 UpperCAmelCase_ : List[Any] = model_class_name(__snake_case ) UpperCAmelCase_ : Any = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase_ : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , __snake_case , __snake_case ) UpperCAmelCase_ : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ : List[str] = model.decode( decoder_input_ids[:, :-1] , __snake_case , decoder_attention_mask=__snake_case , past_key_values=__snake_case , decoder_position_ids=__snake_case , ) UpperCAmelCase_ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase_ : List[Any] = model.decode( decoder_input_ids[:, -1:] , __snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__snake_case , decoder_position_ids=__snake_case , ) UpperCAmelCase_ : Optional[int] = model.decode(__snake_case , __snake_case , decoder_attention_mask=__snake_case ) UpperCAmelCase_ : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'''Max diff is {diff}''' ) @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : List[str] = 9_9 def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ : List[Any] = input_ids.shape[0] UpperCAmelCase_ : Union[str, Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._get_config_and_data() UpperCAmelCase_ : Dict = FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) UpperCAmelCase_ : int = lm_model(input_ids=__snake_case ) UpperCAmelCase_ : List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ : int = FlaxBlenderbotSmallForConditionalGeneration(__snake_case ) UpperCAmelCase_ : Union[str, Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ : int = lm_model(input_ids=__snake_case , decoder_input_ids=__snake_case ) UpperCAmelCase_ : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , __snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ : Union[str, Any] = shift_tokens_right(__snake_case , 1 , 2 ) UpperCAmelCase_ : Optional[Any] = np.equal(__snake_case , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ : Any = np.equal(__snake_case , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__snake_case , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCAmelCase__( snake_case__ , unittest.TestCase , snake_case__ ): '''simple docstring''' A_ : Tuple = True A_ : Dict = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) A_ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = FlaxBlenderbotSmallModelTester(self ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : List[str] = self._prepare_for_class(__snake_case , __snake_case ) UpperCAmelCase_ : int = model_class(__snake_case ) @jax.jit def encode_jitted(__snake_case : Union[str, Any] , __snake_case : Dict=None , **__snake_case : List[Any] ): return model.encode(input_ids=__snake_case , attention_mask=__snake_case ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ : Dict = encode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ : Optional[Any] = encode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ : Optional[int] = model_class(__snake_case ) UpperCAmelCase_ : Any = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase_ : Any = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] ): return model.decode( decoder_input_ids=__snake_case , decoder_attention_mask=__snake_case , encoder_outputs=__snake_case , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ : int = decode_jitted(**__snake_case ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ : List[Any] = decode_jitted(**__snake_case ).to_tuple() self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for jitted_output, output in zip(__snake_case , __snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase_ : Optional[int] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ : Any = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) self.assertIsNotNone(__snake_case )
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCAmelCase__( unittest.TestCase , snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = load_tool('''text-to-speech''' ) self.tool.setup() def _lowerCamelCase ( self : Tuple ): '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ : Optional[int] = self.tool('''hey''' ) UpperCAmelCase_ : List[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' # SpeechT5 isn't deterministic torch.manual_seed(0 ) UpperCAmelCase_ : Optional[Any] = self.tool('''hey''' ) UpperCAmelCase_ : Union[str, Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_005_966_668_832_115_829, -0.0_003_657_640_190_795_064, -0.00_013_439_502_799_883_485] ) , ) )
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'naver-clova-ix/donut-base-finetuned-docvqa' A_ : int = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) A_ : Any = 'document_qa' A_ : Optional[Any] = AutoProcessor A_ : List[str] = VisionEncoderDecoderModel A_ : Optional[int] = ['image', 'text'] A_ : Any = ['text'] def __init__( self : List[Any] , *__snake_case : int , **__snake_case : str ): '''simple docstring''' if not is_vision_available(): raise ValueError('''Pillow must be installed to use the DocumentQuestionAnsweringTool.''' ) super().__init__(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : Any , __snake_case : "Image" , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : str = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' UpperCAmelCase_ : Union[str, Any] = task_prompt.replace('''{user_input}''' , __snake_case ) UpperCAmelCase_ : Tuple = self.pre_processor.tokenizer( __snake_case , add_special_tokens=__snake_case , return_tensors='''pt''' ).input_ids UpperCAmelCase_ : Optional[Any] = self.pre_processor(__snake_case , return_tensors='''pt''' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _lowerCamelCase ( self : Tuple , __snake_case : List[str] ): '''simple docstring''' return self.model.generate( inputs['''pixel_values'''].to(self.device ) , decoder_input_ids=inputs['''decoder_input_ids'''].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=__snake_case , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=__snake_case , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=__snake_case , ).sequences def _lowerCamelCase ( self : str , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.pre_processor.batch_decode(__snake_case )[0] UpperCAmelCase_ : List[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '''''' ) UpperCAmelCase_ : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '''''' ) UpperCAmelCase_ : Optional[int] = re.sub(R'''<.*?>''' , '''''' , __snake_case , count=1 ).strip() # remove first task start token UpperCAmelCase_ : Optional[Any] = self.pre_processor.tokenajson(__snake_case ) return sequence["answer"]
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def snake_case_ ( ): UpperCAmelCase_ : int = 1_0 UpperCAmelCase_ : Tuple = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) UpperCAmelCase_ : Dict = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [9_7], '''text''': ['''1976''']}] * 1_0, '''id''': list(range(__lowercase ) ), } , features=__lowercase , ) return dataset @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Any = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=__lowercase ) return filename # FILE_CONTENT + files __UpperCamelCase : Optional[int] = '\\n Text data.\n Second line of data.' @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' UpperCAmelCase_ : str = FILE_CONTENT with open(__lowercase , '''w''' ) as f: f.write(__lowercase ) return filename @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): import bza UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' UpperCAmelCase_ : Dict = bytes(__lowercase , '''utf-8''' ) with bza.open(__lowercase , '''wb''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): import gzip UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) UpperCAmelCase_ : Optional[int] = bytes(__lowercase , '''utf-8''' ) with gzip.open(__lowercase , '''wb''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) with lza.frame.open(__lowercase , '''wb''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : Dict = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(__lowercase , '''w''' ) as archive: archive.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): import tarfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(__lowercase , '''w''' ) as f: f.add(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): import lzma UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' UpperCAmelCase_ : List[str] = bytes(__lowercase , '''utf-8''' ) with lzma.open(__lowercase , '''wb''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): import zipfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' UpperCAmelCase_ : List[Any] = bytes(__lowercase , '''utf-8''' ) with zstd.open(__lowercase , '''wb''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' UpperCAmelCase_ : Tuple = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(__lowercase , '''w''' ) as f: f.write(__lowercase ) return filename __UpperCamelCase : Optional[int] = [ {'col_1': '0', 'col_2': 0, 'col_3': 0.0}, {'col_1': '1', 'col_2': 1, 'col_3': 1.0}, {'col_1': '2', 'col_2': 2, 'col_3': 2.0}, {'col_1': '3', 'col_2': 3, 'col_3': 3.0}, ] __UpperCamelCase : Union[str, Any] = [ {'col_1': '4', 'col_2': 4, 'col_3': 4.0}, {'col_1': '5', 'col_2': 5, 'col_3': 5.0}, ] __UpperCamelCase : Union[str, Any] = { 'col_1': ['0', '1', '2', '3'], 'col_2': [0, 1, 2, 3], 'col_3': [0.0, 1.0, 2.0, 3.0], } __UpperCamelCase : Optional[Any] = [ {'col_3': 0.0, 'col_1': '0', 'col_2': 0}, {'col_3': 1.0, 'col_1': '1', 'col_2': 1}, ] __UpperCamelCase : Tuple = [ {'col_1': 's0', 'col_2': 0, 'col_3': 0.0}, {'col_1': 's1', 'col_2': 1, 'col_3': 1.0}, {'col_1': 's2', 'col_2': 2, 'col_3': 2.0}, {'col_1': 's3', 'col_2': 3, 'col_3': 3.0}, ] @pytest.fixture(scope='''session''' ) def snake_case_ ( ): return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Dict = datasets.Dataset.from_dict(__lowercase ) UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(__lowercase ) ) as con: UpperCAmelCase_ : int = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(__lowercase , '''w''' , newline='''''' ) as f: UpperCAmelCase_ : Any = csv.DictWriter(__lowercase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(__lowercase , '''w''' , newline='''''' ) as f: UpperCAmelCase_ : Union[str, Any] = csv.DictWriter(__lowercase , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(__lowercase , '''rb''' ) as f: UpperCAmelCase_ : Optional[int] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__lowercase , '''wb''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(__lowercase , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowercase ) ) ) f.write(__lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) UpperCAmelCase_ : Tuple = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(__lowercase , '''wb''' ) as f: UpperCAmelCase_ : Union[str, Any] = pq.ParquetWriter(__lowercase , schema=__lowercase ) UpperCAmelCase_ : List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__lowercase ) )] for k in DATA[0]} , schema=__lowercase ) writer.write_table(__lowercase ) writer.close() return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) UpperCAmelCase_ : Optional[Any] = {'''data''': DATA} with open(__lowercase , '''w''' ) as f: json.dump(__lowercase , __lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) UpperCAmelCase_ : int = {'''data''': DATA_DICT_OF_LISTS} with open(__lowercase , '''w''' ) as f: json.dump(__lowercase , __lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(__lowercase , '''w''' ) as f: for item in DATA: f.write(json.dumps(__lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(__lowercase , '''w''' ) as f: for item in DATA: f.write(json.dumps(__lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(__lowercase , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(__lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(__lowercase , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(__lowercase ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): import gzip UpperCAmelCase_ : Optional[int] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(__lowercase , '''rb''' ) as orig_file: with gzip.open(__lowercase , '''wb''' ) as zipped_file: zipped_file.writelines(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(__lowercase , '''rb''' ) as orig_file: with gzip.open(__lowercase , '''wb''' ) as zipped_file: zipped_file.writelines(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.join('''nested''' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowercase ) ) ) f.write(__lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(__lowercase , '''w''' ) as f: f.add(__lowercase , arcname=os.path.basename(__lowercase ) ) f.add(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(__lowercase , '''w''' ) as f: f.add(__lowercase , arcname=os.path.join('''nested''' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = ['''0''', '''1''', '''2''', '''3'''] UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(__lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = ['''0''', '''1''', '''2''', '''3'''] UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(__lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Dict = ['''0''', '''1''', '''2''', '''3'''] UpperCAmelCase_ : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(__lowercase , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowercase ) ) ) f.write(__lowercase , arcname=os.path.join('''main_dir''' , os.path.basename(__lowercase ) ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : str = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(__lowercase , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(__lowercase ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def snake_case_ ( ): return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(__lowercase , '''w''' ) as f: f.write(__lowercase , arcname=os.path.basename(__lowercase ) ) f.write(__lowercase , arcname=os.path.basename(__lowercase ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 1_0 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 1_0 ) return data_dir
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from __future__ import annotations def snake_case_ ( __lowercase , __lowercase ): print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(__lowercase ): print(F'''{i}\t\t{d}''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): for j in range(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = [float('''inf''' )] * vertex_count UpperCAmelCase_ : Optional[Any] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCAmelCase_ : Tuple = distance[u] + w UpperCAmelCase_ : Dict = check_negative_cycle(__lowercase , __lowercase , __lowercase ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[int] = int(input('Enter number of vertices: ').strip()) __UpperCamelCase : Optional[int] = int(input('Enter number of edges: ').strip()) __UpperCamelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('Edge ', i + 1) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = ( int(x) for x in input('Enter source, destination, weight: ').strip().split(' ') ) __UpperCamelCase : Optional[Any] = {'src': src, 'dst': dest, 'weight': weight} __UpperCamelCase : Union[str, Any] = int(input('\nEnter shortest path source:').strip()) __UpperCamelCase : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
import string def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = '''''' for i in sequence: UpperCAmelCase_ : Optional[Any] = ord(__lowercase ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def snake_case_ ( __lowercase ): UpperCAmelCase_ : Union[str, Any] = string.ascii_letters UpperCAmelCase_ : int = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(__lowercase )] if c in letters else c for c in sequence ) def snake_case_ ( ): from timeit import timeit print('''Running performance benchmarks...''' ) UpperCAmelCase_ : int = '''from string import printable ; from __main__ import atbash, atbash_slow''' print(F'''> atbash_slow(): {timeit('atbash_slow(printable)' , setup=__lowercase )} seconds''' ) print(F'''> atbash(): {timeit('atbash(printable)' , setup=__lowercase )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F'{example} encrypted in atbash: {atbash(example)}') benchmark()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py __UpperCamelCase : Tuple = '.' if __name__ == "__main__": __UpperCamelCase : List[Any] = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') __UpperCamelCase : List[str] = [] __UpperCamelCase : str = [] with open(doctest_file_path) as fp: for line in fp: __UpperCamelCase : Union[str, Any] = line.strip() __UpperCamelCase : Optional[int] = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: __UpperCamelCase : List[Any] = '\n'.join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
from __future__ import annotations def snake_case_ ( __lowercase ): if len(__lowercase ) == 0: return array UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = min(__lowercase ), max(__lowercase ) # Compute the variables UpperCAmelCase_ : Optional[Any] = _max - _min + 1 UpperCAmelCase_ , UpperCAmelCase_ : str = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: UpperCAmelCase_ : Optional[int] = i - _min UpperCAmelCase_ : Optional[int] = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. UpperCAmelCase_ : int = 0 for i in range(__lowercase ): while holes_repeat[i] > 0: UpperCAmelCase_ : List[Any] = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Any = input('Enter numbers separated by comma:\n') __UpperCamelCase : Tuple = [int(x) for x in user_input.split(',')] print(pigeon_sort(unsorted))
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = parent UpperCAmelCase_ : Dict = 13 UpperCAmelCase_ : Any = 7 UpperCAmelCase_ : str = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Any = False UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : List[Any] = 99 UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[int] = 32 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : List[Any] = 0.1 UpperCAmelCase_ : Union[str, Any] = 0.1 UpperCAmelCase_ : Union[str, Any] = 512 UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : Union[str, Any] = 0.02 UpperCAmelCase_ : Any = 3 UpperCAmelCase_ : str = 4 UpperCAmelCase_ : Any = '''last''' UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : int = None UpperCAmelCase_ : Optional[Any] = 0 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Dict = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) UpperCAmelCase_ : int = None if self.use_input_lengths: UpperCAmelCase_ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : str = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None if self.use_labels: UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : str = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[Any] , __snake_case : str , __snake_case : List[Any] , __snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Any = TFFlaubertModel(config=__snake_case ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : str = [input_ids, input_mask] UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Any , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = TFFlaubertWithLMHeadModel(__snake_case ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : int = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : str = TFFlaubertForQuestionAnsweringSimple(__snake_case ) UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : int = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFFlaubertForSequenceClassification(__snake_case ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Tuple , __snake_case : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Dict , __snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Tuple = TFFlaubertForTokenClassification(config=__snake_case ) UpperCAmelCase_ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.num_choices UpperCAmelCase_ : List[str] = TFFlaubertForMultipleChoice(config=__snake_case ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : Optional[int] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : str = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Dict = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Optional[int] = config_and_inputs UpperCAmelCase_ : Optional[int] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) A_ : List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : str = ( { 'feature-extraction': TFFlaubertModel, 'fill-mask': TFFlaubertWithLMHeadModel, 'question-answering': TFFlaubertForQuestionAnsweringSimple, 'text-classification': TFFlaubertForSequenceClassification, 'token-classification': TFFlaubertForTokenClassification, 'zero-shot': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) A_ : Any = False A_ : Any = False def _lowerCamelCase ( self : Tuple , __snake_case : Tuple , __snake_case : Any , __snake_case : str , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = TFFlaubertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__snake_case ) @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = TFFlaubertModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase_ : int = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" UpperCAmelCase_ : Any = model(__snake_case )[0] UpperCAmelCase_ : Dict = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __snake_case ) # compare the actual values for a slice. UpperCAmelCase_ : List[str] = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : int = ProphetNetTokenizer A_ : Union[str, Any] = False def _lowerCamelCase ( self : Any ): '''simple docstring''' super().setUp() UpperCAmelCase_ : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def _lowerCamelCase ( self : List[str] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = '''UNwant\u00E9d,running''' UpperCAmelCase_ : List[str] = '''unwanted, running''' return input_text, output_text def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase_ : str = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(__snake_case , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__snake_case ) , [9, 6, 7, 12, 10, 11] ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = BasicTokenizer(do_lower_case=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = BasicTokenizer(do_lower_case=__snake_case , strip_accents=__snake_case ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = BasicTokenizer(do_lower_case=__snake_case , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCAmelCase_ : Any = {} for i, token in enumerate(__snake_case ): UpperCAmelCase_ : List[str] = i UpperCAmelCase_ : List[Any] = WordpieceTokenizer(vocab=__snake_case , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase_ : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] UpperCAmelCase_ : Optional[int] = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] UpperCAmelCase_ : str = tokenizer(__snake_case , padding=__snake_case , return_tensors='''pt''' ) self.assertIsInstance(__snake_case , __snake_case ) UpperCAmelCase_ : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__snake_case , __snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def _lowerCamelCase ( self : Any ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) UpperCAmelCase_ : int = tokenizer.encode('''sequence builders''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__snake_case ) UpperCAmelCase_ : int = tokenizer.build_inputs_with_special_tokens(__snake_case ) UpperCAmelCase_ : List[Any] = tokenizer.build_inputs_with_special_tokens(__snake_case , __snake_case ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __UpperCamelCase : Tuple = get_logger(__name__) class lowerCAmelCase__( enum.Enum ): '''simple docstring''' A_ : str = 'all_checks' A_ : List[str] = 'basic_checks' A_ : Optional[int] = 'no_checks' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def snake_case_ ( __lowercase , __lowercase , __lowercase=None ): if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(__lowercase ) - set(__lowercase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__lowercase ) - set(__lowercase ) ) ) if len(set(__lowercase ) - set(__lowercase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__lowercase ) - set(__lowercase ) ) ) UpperCAmelCase_ : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase_ : List[str] = ''' for ''' + verification_name if verification_name is not None else '''''' if len(__lowercase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def snake_case_ ( __lowercase , __lowercase ): if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(__lowercase ) - set(__lowercase ) ) > 0: raise ExpectedMoreSplits(str(set(__lowercase ) - set(__lowercase ) ) ) if len(set(__lowercase ) - set(__lowercase ) ) > 0: raise UnexpectedSplits(str(set(__lowercase ) - set(__lowercase ) ) ) UpperCAmelCase_ : Optional[int] = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__lowercase ) > 0: raise NonMatchingSplitsSizesError(str(__lowercase ) ) logger.info('''All the splits matched successfully.''' ) def snake_case_ ( __lowercase , __lowercase = True ): if record_checksum: UpperCAmelCase_ : Dict = shaaaa() with open(__lowercase , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B'''''' ): m.update(__lowercase ) UpperCAmelCase_ : Any = m.hexdigest() else: UpperCAmelCase_ : Optional[int] = None return {"num_bytes": os.path.getsize(__lowercase ), "checksum": checksum} def snake_case_ ( __lowercase ): if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : List[Any] = MODEL_FOR_MASKED_LM_MAPPING A_ : Optional[int] = TF_MODEL_FOR_MASKED_LM_MAPPING def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) UpperCAmelCase_ : str = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 38_015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 25_506, '''token_str''': ''' accuser'''}, ] , ) UpperCAmelCase_ : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 38_015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 25_506, '''token_str''': ''' accuser''', }, ] , ) UpperCAmelCase_ : str = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2_941, '''token_str''': ''' Te'''}, ] , ) @require_torch def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) UpperCAmelCase_ : Dict = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 35_676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 16_416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase_ : str = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 35_676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 16_416, '''token_str''': '''ELS'''}, ] , ) UpperCAmelCase_ : Union[str, Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2_941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 13_606, '''token_str''': ''' Clara'''}, ] , ) UpperCAmelCase_ : Any = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() UpperCAmelCase_ : Optional[int] = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__snake_case , __snake_case ) @slow @require_torch def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(__snake_case ) @slow @require_tf def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(__snake_case ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1_573, '''token_str''': ''' Chris'''}, ] , ) UpperCAmelCase_ : Optional[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(__snake_case ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2_201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 12_790, '''token_str''': ''' Lyon''', }, ] , ) UpperCAmelCase_ : List[str] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2_941, '''token_str''': ''' Te'''}, ] , ) @require_torch def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : int = None self.run_pipeline_test(__snake_case , [] ) @require_tf def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) UpperCAmelCase_ : Any = None UpperCAmelCase_ : int = None self.run_pipeline_test(__snake_case , [] ) def _lowerCamelCase ( self : str , __snake_case : List[Any] , __snake_case : int , __snake_case : List[str] ): '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase_ : Any = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def _lowerCamelCase ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = fill_masker.tokenizer UpperCAmelCase_ : Union[str, Any] = fill_masker.model UpperCAmelCase_ : Any = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase_ : Dict = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase_ : Any = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , ) with self.assertRaises(__snake_case ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__snake_case ): fill_masker('''This is''' ) self.run_test_top_k(__snake_case , __snake_case ) self.run_test_targets(__snake_case , __snake_case ) self.run_test_top_k_targets(__snake_case , __snake_case ) self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case ) self.fill_mask_with_multiple_masks(__snake_case , __snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = tokenizer.get_vocab() UpperCAmelCase_ : Dict = sorted(vocab.keys() )[:2] # Pipeline argument UpperCAmelCase_ : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case ) UpperCAmelCase_ : str = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase_ : List[Any] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase_ : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Call argument UpperCAmelCase_ : str = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase_ : str = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__snake_case ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase_ : List[str] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , __snake_case ) UpperCAmelCase_ : int = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(__snake_case ) ) # Score equivalence UpperCAmelCase_ : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__snake_case ) UpperCAmelCase_ : str = [top_mask['''token_str'''] for top_mask in outputs] UpperCAmelCase_ : Tuple = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ) == set(__snake_case ): UpperCAmelCase_ : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__snake_case ) UpperCAmelCase_ : Optional[Any] = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) # Raises with invalid with self.assertRaises(__snake_case ): UpperCAmelCase_ : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__snake_case ): UpperCAmelCase_ : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def _lowerCamelCase ( self : int , __snake_case : List[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 ) UpperCAmelCase_ : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) UpperCAmelCase_ : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase_ : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( __snake_case , [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ] , ) self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : int , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = tokenizer.get_vocab() UpperCAmelCase_ : Tuple = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) # top_k=2, ntargets=3 UpperCAmelCase_ : int = sorted(vocab.keys() )[:3] UpperCAmelCase_ : int = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=__snake_case ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCAmelCase_ : Optional[int] = [el['''token_str'''] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__snake_case ).issubset(__snake_case ): UpperCAmelCase_ : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=__snake_case ) # They should yield exactly the same result self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) ) def _lowerCamelCase ( self : Any , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase_ : Dict = tokenizer.get_vocab() # String duplicates + id duplicates UpperCAmelCase_ : Optional[int] = sorted(vocab.keys() )[:3] UpperCAmelCase_ : Optional[Any] = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCAmelCase_ : str = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=__snake_case , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__snake_case ) , 3 ) def _lowerCamelCase ( self : Any , __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : str = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case ) UpperCAmelCase_ : str = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( __snake_case , [ [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], [ {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, {'''sequence''': ANY(__snake_case ), '''score''': ANY(__snake_case ), '''token''': ANY(__snake_case ), '''token_str''': ANY(__snake_case )}, ], ] , )
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self : List[str] , __snake_case : List[str] , __snake_case : Union[str, Any]=13 , __snake_case : Any=7 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : Any=True , __snake_case : Optional[Any]=True , __snake_case : List[str]=99 , __snake_case : Optional[int]=32 , __snake_case : List[Any]=5 , __snake_case : List[str]=4 , __snake_case : Any=37 , __snake_case : str="gelu" , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Any=512 , __snake_case : List[Any]=16 , __snake_case : Any=2 , __snake_case : Union[str, Any]=0.02 , __snake_case : str=4 , ): '''simple docstring''' UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Any = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : List[Any] = use_attention_mask UpperCAmelCase_ : int = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : Optional[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Tuple = type_sequence_label_size UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_choices def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = None if self.use_attention_mask: UpperCAmelCase_ : Any = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Any = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : str = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = config_and_inputs UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Any = True A_ : Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = FlaxBertModelTester(self ) @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. UpperCAmelCase_ : Union[str, Any] = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCAmelCase_ : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case )
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[int]=3 , __snake_case : Tuple=32 , __snake_case : Optional[Any]=3 , __snake_case : List[Any]=10 , __snake_case : List[str]=[10, 20, 30, 40] , __snake_case : Tuple=[1, 1, 2, 1] , __snake_case : List[Any]=True , __snake_case : List[str]=True , __snake_case : Tuple="relu" , __snake_case : Optional[Any]=3 , __snake_case : Optional[Any]=None , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : List[str] = batch_size UpperCAmelCase_ : List[Any] = image_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : int = embeddings_size UpperCAmelCase_ : Optional[Any] = hidden_sizes UpperCAmelCase_ : Union[str, Any] = depths UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = hidden_act UpperCAmelCase_ : Optional[Any] = num_labels UpperCAmelCase_ : List[Any] = scope UpperCAmelCase_ : Dict = len(__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = RegNetModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self : Dict , __snake_case : Dict , __snake_case : List[str] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.num_labels UpperCAmelCase_ : Optional[int] = RegNetForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : int = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = config_and_inputs UpperCAmelCase_ : Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () A_ : str = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) A_ : List[str] = False A_ : Dict = False A_ : Tuple = False A_ : Union[str, Any] = False def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = RegNetModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self : Any ): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : List[str] = model_class(__snake_case ) UpperCAmelCase_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : int = [*signature.parameters.keys()] UpperCAmelCase_ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = model_class(config=__snake_case ) for name, module in model.named_modules(): if isinstance(__snake_case , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def _lowerCamelCase ( self : int ): '''simple docstring''' def check_hidden_states_output(__snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict ): UpperCAmelCase_ : str = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase_ : List[str] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCAmelCase_ : str = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase_ : Union[str, Any] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCAmelCase_ : Optional[Any] = layer_type UpperCAmelCase_ : Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Dict = RegNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ): UpperCAmelCase_ : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Tuple = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__snake_case ) UpperCAmelCase_ : Optional[Any] = self.default_image_processor UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : List[str] = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(**__snake_case ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ : int = torch.tensor([-0.4_180, -1.5_051, -3.4_836] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = SMALL_MODEL_IDENTIFIER UpperCAmelCase_ : Union[str, Any] = '''pt''' UpperCAmelCase_ : List[Any] = '''tf''' def _lowerCamelCase ( self : Optional[int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__snake_case ) def _lowerCamelCase ( self : List[str] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : int = TFAutoModel.from_pretrained(self.test_model , from_pt=__snake_case ) model_tf.save_pretrained(__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = '''mock_framework''' # Framework provided - return whatever the user provides UpperCAmelCase_ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model , __snake_case ) self.assertEqual(__snake_case , __snake_case ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__snake_case ) UpperCAmelCase_ : Optional[Any] = FeaturesManager.determine_framework(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__snake_case ) UpperCAmelCase_ : Union[str, Any] = FeaturesManager.determine_framework(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__snake_case ) UpperCAmelCase_ : Tuple = FeaturesManager.determine_framework(__snake_case ) self.assertEqual(__snake_case , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__snake_case ) UpperCAmelCase_ : int = FeaturesManager.determine_framework(__snake_case ) self.assertEqual(__snake_case , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__snake_case ): UpperCAmelCase_ : Optional[Any] = FeaturesManager.determine_framework(__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : str = MagicMock(return_value=__snake_case ) with patch('''transformers.onnx.features.is_tf_available''' , __snake_case ): UpperCAmelCase_ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__snake_case , self.framework_pt ) # PyTorch not in environment -> use TensorFlow UpperCAmelCase_ : Dict = MagicMock(return_value=__snake_case ) with patch('''transformers.onnx.features.is_torch_available''' , __snake_case ): UpperCAmelCase_ : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__snake_case , self.framework_tf ) # Both in environment -> use PyTorch UpperCAmelCase_ : int = MagicMock(return_value=__snake_case ) UpperCAmelCase_ : Tuple = MagicMock(return_value=__snake_case ) with patch('''transformers.onnx.features.is_tf_available''' , __snake_case ), patch( '''transformers.onnx.features.is_torch_available''' , __snake_case ): UpperCAmelCase_ : List[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__snake_case , self.framework_pt ) # Both not in environment -> raise error UpperCAmelCase_ : Dict = MagicMock(return_value=__snake_case ) UpperCAmelCase_ : int = MagicMock(return_value=__snake_case ) with patch('''transformers.onnx.features.is_tf_available''' , __snake_case ), patch( '''transformers.onnx.features.is_torch_available''' , __snake_case ): with self.assertRaises(__snake_case ): UpperCAmelCase_ : str = FeaturesManager.determine_framework(self.test_model )
641
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : List[Any] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'big_bird' def __init__( self : List[str] , __snake_case : List[Any]=50_358 , __snake_case : Any=768 , __snake_case : List[str]=12 , __snake_case : int=12 , __snake_case : Dict=3_072 , __snake_case : Union[str, Any]="gelu_new" , __snake_case : List[Any]=0.1 , __snake_case : List[str]=0.1 , __snake_case : Union[str, Any]=4_096 , __snake_case : str=2 , __snake_case : Any=0.02 , __snake_case : Optional[Any]=1E-12 , __snake_case : int=True , __snake_case : Optional[int]=0 , __snake_case : List[str]=1 , __snake_case : Optional[int]=2 , __snake_case : Tuple=66 , __snake_case : Tuple="block_sparse" , __snake_case : Union[str, Any]=True , __snake_case : int=False , __snake_case : str=64 , __snake_case : Optional[Any]=3 , __snake_case : List[str]=None , **__snake_case : List[str] , ): '''simple docstring''' super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , sep_token_id=__snake_case , **__snake_case , ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : List[Any] = max_position_embeddings UpperCAmelCase_ : Optional[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : List[Any] = initializer_range UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : str = use_cache UpperCAmelCase_ : Union[str, Any] = rescale_embeddings UpperCAmelCase_ : int = attention_type UpperCAmelCase_ : str = use_bias UpperCAmelCase_ : Tuple = block_size UpperCAmelCase_ : int = num_random_blocks UpperCAmelCase_ : Union[str, Any] = classifier_dropout class lowerCAmelCase__( snake_case__ ): '''simple docstring''' @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
641
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
1
def snake_case_ ( __lowercase , __lowercase ): return int((input_a, input_a).count(0 ) == 0 ) def snake_case_ ( ): assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
641
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
1
def snake_case_ ( __lowercase , __lowercase ): return int((input_a, input_a).count(1 ) != 0 ) def snake_case_ ( ): assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
641
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCamelCase : Tuple = logging.get_logger(__name__) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None ): # Recurse if needed if "." in tensor_name: UpperCAmelCase_ : List[str] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCAmelCase_ : Dict = getattr(__lowercase , __lowercase ) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''' ) UpperCAmelCase_ : List[Any] = new_module UpperCAmelCase_ : Tuple = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' ) UpperCAmelCase_ : Optional[Any] = tensor_name in module._buffers UpperCAmelCase_ : Optional[Any] = getattr(__lowercase , __lowercase ) if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None: raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : Any = False if is_buffer or not is_bitsandbytes_available(): UpperCAmelCase_ : str = False UpperCAmelCase_ : Tuple = False else: UpperCAmelCase_ : List[Any] = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) UpperCAmelCase_ : List[Any] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: UpperCAmelCase_ : Optional[Any] = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: UpperCAmelCase_ : Optional[Any] = old_value.to(__lowercase ) elif isinstance(__lowercase , torch.Tensor ): UpperCAmelCase_ : Optional[int] = value.to('''cpu''' ) if value.dtype == torch.inta: UpperCAmelCase_ : Dict = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse( '''0.37.2''' ) if not is_abit_serializable: raise ValueError( '''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ''' '''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' ) else: UpperCAmelCase_ : Dict = torch.tensor(__lowercase , device='''cpu''' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowercase ) and fpaa_statistics is None: UpperCAmelCase_ : Optional[Any] = new_value.T UpperCAmelCase_ : Dict = old_value.__dict__ if is_abit: UpperCAmelCase_ : Dict = bnb.nn.IntaParams(__lowercase , requires_grad=__lowercase , **__lowercase ).to(__lowercase ) elif is_abit: UpperCAmelCase_ : Optional[Any] = bnb.nn.Paramsabit(__lowercase , requires_grad=__lowercase , **__lowercase ).to(__lowercase ) UpperCAmelCase_ : List[str] = new_value if fpaa_statistics is not None: setattr(module.weight , '''SCB''' , fpaa_statistics.to(__lowercase ) ) else: if value is None: UpperCAmelCase_ : Any = old_value.to(__lowercase ) elif isinstance(__lowercase , torch.Tensor ): UpperCAmelCase_ : int = value.to(__lowercase ) else: UpperCAmelCase_ : Any = torch.tensor(__lowercase , device=__lowercase ) if is_buffer: UpperCAmelCase_ : List[str] = new_value else: UpperCAmelCase_ : Union[str, Any] = nn.Parameter(__lowercase , requires_grad=old_value.requires_grad ) UpperCAmelCase_ : Union[str, Any] = new_value def snake_case_ ( __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=False ): for name, module in model.named_children(): if current_key_name is None: UpperCAmelCase_ : int = [] current_key_name.append(__lowercase ) if (isinstance(__lowercase , nn.Linear ) or isinstance(__lowercase , __lowercase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '''.'''.join(__lowercase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : Any = module.weight.shape else: UpperCAmelCase_ : Any = module.in_features UpperCAmelCase_ : Any = module.out_features if quantization_config.quantization_method() == "llm_int8": UpperCAmelCase_ : Tuple = bnb.nn.LinearabitLt( __lowercase , __lowercase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) UpperCAmelCase_ : Optional[int] = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: UpperCAmelCase_ : Any = bnb.nn.Linearabit( __lowercase , __lowercase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) UpperCAmelCase_ : List[Any] = True # Store the module class in case we need to transpose the weight later UpperCAmelCase_ : List[str] = type(__lowercase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowercase ) if len(list(module.children() ) ) > 0: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = _replace_with_bnb_linear( __lowercase , __lowercase , __lowercase , __lowercase , has_been_replaced=__lowercase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def snake_case_ ( __lowercase , __lowercase=None , __lowercase=None , __lowercase=None ): UpperCAmelCase_ : Any = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = _replace_with_bnb_linear( __lowercase , __lowercase , __lowercase , __lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def snake_case_ ( *__lowercase , **__lowercase ): warnings.warn( '''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , __lowercase , ) return replace_with_bnb_linear(*__lowercase , **__lowercase ) def snake_case_ ( *__lowercase , **__lowercase ): warnings.warn( '''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , __lowercase , ) return set_module_quantized_tensor_to_device(*__lowercase , **__lowercase ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : Tuple = deepcopy(__lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() UpperCAmelCase_ : List[Any] = find_tied_parameters(__lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCAmelCase_ : str = sum(__lowercase , [] ) UpperCAmelCase_ : List[Any] = len(__lowercase ) > 0 # Check if it is a base model UpperCAmelCase_ : str = not hasattr(__lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCAmelCase_ : Optional[int] = list(model.named_children() ) UpperCAmelCase_ : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCAmelCase_ : List[Any] = set(__lowercase ) - set(__lowercase ) UpperCAmelCase_ : List[str] = list(set(__lowercase ) ) + list(__lowercase ) # remove ".weight" from the keys UpperCAmelCase_ : int = ['''.weight''', '''.bias'''] UpperCAmelCase_ : int = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCAmelCase_ : int = name.replace(__lowercase , '''''' ) filtered_module_names.append(__lowercase ) return filtered_module_names
641
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : int = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'mctct' def __init__( self : List[str] , __snake_case : Tuple=8_065 , __snake_case : List[str]=1_536 , __snake_case : List[Any]=36 , __snake_case : List[str]=6_144 , __snake_case : Any=4 , __snake_case : List[Any]=384 , __snake_case : str=920 , __snake_case : List[str]=1E-5 , __snake_case : Tuple=0.3 , __snake_case : Tuple="relu" , __snake_case : Any=0.02 , __snake_case : str=0.3 , __snake_case : Optional[int]=0.3 , __snake_case : Dict=1 , __snake_case : Dict=0 , __snake_case : int=2 , __snake_case : str=1 , __snake_case : Dict=0.3 , __snake_case : Dict=1 , __snake_case : List[Any]=(7,) , __snake_case : int=(3,) , __snake_case : List[Any]=80 , __snake_case : Optional[Any]=1 , __snake_case : List[Any]=None , __snake_case : Optional[int]="sum" , __snake_case : Tuple=False , **__snake_case : Any , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : str = intermediate_size UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Tuple = attention_head_dim UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : List[Any] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = layerdrop UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Dict = attention_probs_dropout_prob UpperCAmelCase_ : str = pad_token_id UpperCAmelCase_ : Optional[int] = bos_token_id UpperCAmelCase_ : Optional[int] = eos_token_id UpperCAmelCase_ : Optional[int] = conv_glu_dim UpperCAmelCase_ : Union[str, Any] = conv_dropout UpperCAmelCase_ : List[str] = num_conv_layers UpperCAmelCase_ : List[Any] = input_feat_per_channel UpperCAmelCase_ : List[str] = input_channels UpperCAmelCase_ : Union[str, Any] = conv_channels UpperCAmelCase_ : Dict = ctc_loss_reduction UpperCAmelCase_ : Optional[int] = ctc_zero_infinity # prevents config testing fail with exporting to json UpperCAmelCase_ : str = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f'''but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ''' f'''`config.num_conv_layers = {self.num_conv_layers}`.''' )
641
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case_ ( __lowercase , __lowercase ): assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = tmp_path / '''cache''' UpperCAmelCase_ : List[str] = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Tuple = TextDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = tmp_path / '''cache''' UpperCAmelCase_ : List[str] = {'''text''': '''string'''} UpperCAmelCase_ : str = features.copy() if features else default_expected_features UpperCAmelCase_ : Optional[int] = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : List[str] = TextDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = tmp_path / '''cache''' UpperCAmelCase_ : str = {'''text''': '''string'''} UpperCAmelCase_ : int = TextDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if issubclass(__lowercase , __lowercase ): UpperCAmelCase_ : int = text_path elif issubclass(__lowercase , __lowercase ): UpperCAmelCase_ : Any = [text_path] UpperCAmelCase_ : str = tmp_path / '''cache''' UpperCAmelCase_ : Dict = {'''text''': '''string'''} UpperCAmelCase_ : Dict = TextDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_text_dataset(__lowercase , __lowercase ) def snake_case_ ( __lowercase , __lowercase , __lowercase=("train",) ): assert isinstance(__lowercase , __lowercase ) for split in splits: UpperCAmelCase_ : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : str = tmp_path / '''cache''' UpperCAmelCase_ : Tuple = {'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Any = TextDatasetReader({'''train''': text_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase_ : List[str] = {'''text''': '''string'''} UpperCAmelCase_ : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase_ : Optional[Any] = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : str = TextDatasetReader({'''train''': text_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if split: UpperCAmelCase_ : List[Any] = {split: text_path} else: UpperCAmelCase_ : List[Any] = '''train''' UpperCAmelCase_ : Any = {'''train''': text_path, '''test''': text_path} UpperCAmelCase_ : Optional[Any] = tmp_path / '''cache''' UpperCAmelCase_ : Dict = {'''text''': '''string'''} UpperCAmelCase_ : Optional[int] = TextDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_text_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
641
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
1
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Any = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__snake_case , '''width_multiplier''' ) ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : str , __snake_case : Union[str, Any] , __snake_case : int=13 , __snake_case : Tuple=64 , __snake_case : str=2 , __snake_case : Dict=3 , __snake_case : List[Any]="swish" , __snake_case : Optional[int]=3 , __snake_case : Any=32 , __snake_case : Union[str, Any]=0.1 , __snake_case : Optional[int]=0.02 , __snake_case : str=True , __snake_case : Dict=True , __snake_case : Optional[Any]=10 , __snake_case : str=None , __snake_case : Tuple=0.25 , __snake_case : Dict=0.0 , __snake_case : Any=0.0 , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : List[str] = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : int = num_channels UpperCAmelCase_ : List[Any] = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ : Dict = hidden_act UpperCAmelCase_ : Union[str, Any] = conv_kernel_size UpperCAmelCase_ : Optional[int] = output_stride UpperCAmelCase_ : Optional[int] = classifier_dropout_prob UpperCAmelCase_ : List[Any] = use_labels UpperCAmelCase_ : Optional[Any] = is_training UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : Tuple = initializer_range UpperCAmelCase_ : Dict = scope UpperCAmelCase_ : Optional[int] = width_multiplier UpperCAmelCase_ : int = ffn_dropout UpperCAmelCase_ : Dict = attn_dropout def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : int = None UpperCAmelCase_ : List[str] = None if self.use_labels: UpperCAmelCase_ : Dict = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _lowerCamelCase ( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MobileViTVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : str = MobileViTVaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Dict = self.num_labels UpperCAmelCase_ : int = MobileViTVaForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ : Optional[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = config_and_inputs UpperCAmelCase_ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : List[str] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) A_ : Union[str, Any] = ( { 'feature-extraction': MobileViTVaModel, 'image-classification': MobileViTVaForImageClassification, 'image-segmentation': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) A_ : Union[str, Any] = False A_ : List[str] = False A_ : List[str] = False A_ : List[Any] = False def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = MobileViTVaModelTester(self ) UpperCAmelCase_ : int = MobileViTVaConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''MobileViTV2 does not use inputs_embeds''' ) def _lowerCamelCase ( self : int ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not support input and output embeddings''' ) def _lowerCamelCase ( self : str ): '''simple docstring''' pass @unittest.skip(reason='''MobileViTV2 does not output attentions''' ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''Got `CUDA error: misaligned address` for tests after this one being run.''' ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _lowerCamelCase ( self : str ): '''simple docstring''' pass def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : str = model_class(__snake_case ) UpperCAmelCase_ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : Dict = [*signature.parameters.keys()] UpperCAmelCase_ : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' def check_hidden_states_output(__snake_case : Optional[int] , __snake_case : Any , __snake_case : Union[str, Any] ): UpperCAmelCase_ : Optional[int] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): UpperCAmelCase_ : int = model(**self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase_ : str = outputs.hidden_states UpperCAmelCase_ : Union[str, Any] = 5 self.assertEqual(len(__snake_case ) , __snake_case ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ : List[str] = 2 for i in range(len(__snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Optional[int] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) @slow def _lowerCamelCase ( self : List[str] ): '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Optional[int] = MobileViTVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ): UpperCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = MobileViTVaForImageClassification.from_pretrained('''apple/mobilevitv2-1.0-imagenet1k-256''' ).to( __snake_case ) UpperCAmelCase_ : Union[str, Any] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Optional[int] = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(**__snake_case ) # verify the logits UpperCAmelCase_ : List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __snake_case ) UpperCAmelCase_ : Tuple = torch.tensor([-1.6336E00, -7.3204E-02, -5.1883E-01] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : Union[str, Any] = model.to(__snake_case ) UpperCAmelCase_ : List[str] = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : List[Any] = prepare_img() UpperCAmelCase_ : Any = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(**__snake_case ) UpperCAmelCase_ : Dict = outputs.logits # verify the logits UpperCAmelCase_ : Optional[Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.tensor( [ [[7.0_863, 7.1_525, 6.8_201], [6.6_931, 6.8_770, 6.8_933], [6.2_978, 7.0_366, 6.9_636]], [[-3.7_134, -3.6_712, -3.6_675], [-3.5_825, -3.3_549, -3.4_777], [-3.3_435, -3.3_979, -3.2_857]], [[-2.9_329, -2.8_003, -2.7_369], [-3.0_564, -2.4_780, -2.0_207], [-2.6_889, -1.9_298, -1.7_640]], ] , device=__snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __snake_case , atol=1E-4 ) ) @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : Optional[int] = model.to(__snake_case ) UpperCAmelCase_ : str = MobileViTImageProcessor.from_pretrained('''shehan97/mobilevitv2-1.0-voc-deeplabv3''' ) UpperCAmelCase_ : Optional[int] = prepare_img() UpperCAmelCase_ : Tuple = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**__snake_case ) UpperCAmelCase_ : Any = outputs.logits.detach().cpu() UpperCAmelCase_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case , target_sizes=[(50, 60)] ) UpperCAmelCase_ : int = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __snake_case ) UpperCAmelCase_ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__snake_case ) UpperCAmelCase_ : str = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __snake_case )
641
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : Any , __snake_case : Optional[int] , __snake_case : Optional[int]=13 , __snake_case : Optional[int]=7 , __snake_case : Union[str, Any]=True , __snake_case : str=True , __snake_case : List[Any]=True , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=99 , __snake_case : Tuple=32 , __snake_case : str=2 , __snake_case : str=4 , __snake_case : Union[str, Any]=37 , __snake_case : Dict="gelu" , __snake_case : str=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Any=512 , __snake_case : Any=16 , __snake_case : str=2 , __snake_case : List[str]=0.02 , __snake_case : Dict=3 , __snake_case : Tuple=4 , __snake_case : str=None , ): '''simple docstring''' UpperCAmelCase_ : Tuple = parent UpperCAmelCase_ : Dict = 13 UpperCAmelCase_ : List[Any] = 7 UpperCAmelCase_ : str = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Union[str, Any] = 99 UpperCAmelCase_ : Dict = 32 UpperCAmelCase_ : Tuple = 2 UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : int = 37 UpperCAmelCase_ : Optional[Any] = '''gelu''' UpperCAmelCase_ : List[str] = 0.1 UpperCAmelCase_ : Dict = 0.1 UpperCAmelCase_ : int = 512 UpperCAmelCase_ : Tuple = 16 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Optional[Any] = 0.02 UpperCAmelCase_ : List[Any] = 3 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Any = None def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Any = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Dict = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : List[str] , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = TFRoFormerModel(config=__snake_case ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : Dict = [input_ids, input_mask] UpperCAmelCase_ : Optional[Any] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : Union[str, Any] = TFRoFormerForCausalLM(config=__snake_case ) UpperCAmelCase_ : List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Dict = model(__snake_case )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _lowerCamelCase ( self : str , __snake_case : Tuple , __snake_case : Any , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFRoFormerForMaskedLM(config=__snake_case ) UpperCAmelCase_ : int = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.num_labels UpperCAmelCase_ : Any = TFRoFormerForSequenceClassification(config=__snake_case ) UpperCAmelCase_ : Optional[Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : int = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : int , __snake_case : str , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.num_choices UpperCAmelCase_ : Optional[Any] = TFRoFormerForMultipleChoice(config=__snake_case ) UpperCAmelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : str = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : int = tf.tile(tf.expand_dims(__snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase_ : List[str] = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : Tuple = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : int , __snake_case : Any , __snake_case : int , __snake_case : str , __snake_case : List[str] , __snake_case : Dict , __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : str = TFRoFormerForTokenClassification(config=__snake_case ) UpperCAmelCase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : List[str] = model(__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Dict , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = TFRoFormerForQuestionAnswering(config=__snake_case ) UpperCAmelCase_ : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } UpperCAmelCase_ : Dict = model(__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : int = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) A_ : List[str] = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) A_ : Tuple = False A_ : List[str] = False def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : str , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = TFRoFormerModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def _lowerCamelCase ( self : str ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) @slow def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__snake_case ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) UpperCAmelCase_ : Dict = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase_ : Dict = model(__snake_case )[0] # TODO Replace vocab size UpperCAmelCase_ : List[Any] = 50_000 UpperCAmelCase_ : Tuple = [1, 6, vocab_size] self.assertEqual(output.shape , __snake_case ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase_ : Optional[Any] = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-4 ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = 1E-4 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = tf.constant([[4, 10]] ) UpperCAmelCase_ : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase_ : Any = emba(input_ids.shape ) UpperCAmelCase_ : Optional[int] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(__snake_case , __snake_case , atol=self.tolerance ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) UpperCAmelCase_ : Tuple = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) UpperCAmelCase_ : str = emba.weight[:3, :5] tf.debugging.assert_near(__snake_case , __snake_case , atol=self.tolerance ) @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : Tuple = 1E-4 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' # 2,12,16,64 UpperCAmelCase_ : str = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase_ : Union[str, Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 UpperCAmelCase_ : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase_ : Optional[int] = embed_positions([2, 16, 768] )[None, None, :, :] UpperCAmelCase_ , UpperCAmelCase_ : Dict = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Tuple = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) UpperCAmelCase_ : Any = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __snake_case , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __snake_case , atol=self.tolerance )
641
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 't5' A_ : Optional[Any] = ['past_key_values'] A_ : str = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : str , __snake_case : List[str]=32_128 , __snake_case : Optional[int]=512 , __snake_case : Dict=64 , __snake_case : Union[str, Any]=2_048 , __snake_case : List[str]=6 , __snake_case : Optional[Any]=None , __snake_case : Any=8 , __snake_case : str=32 , __snake_case : List[str]=128 , __snake_case : List[str]=0.1 , __snake_case : Optional[int]=1E-6 , __snake_case : List[Any]=1.0 , __snake_case : Tuple="relu" , __snake_case : str=True , __snake_case : int=True , __snake_case : Optional[Any]=0 , __snake_case : int=1 , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : List[str] = vocab_size UpperCAmelCase_ : Tuple = d_model UpperCAmelCase_ : int = d_kv UpperCAmelCase_ : str = d_ff UpperCAmelCase_ : str = num_layers UpperCAmelCase_ : str = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry UpperCAmelCase_ : List[str] = num_heads UpperCAmelCase_ : Optional[int] = relative_attention_num_buckets UpperCAmelCase_ : int = relative_attention_max_distance UpperCAmelCase_ : List[Any] = dropout_rate UpperCAmelCase_ : Optional[Any] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_factor UpperCAmelCase_ : List[str] = feed_forward_proj UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : Any = self.feed_forward_proj.split('''-''' ) UpperCAmelCase_ : Dict = act_info[-1] UpperCAmelCase_ : int = act_info[0] == '''gated''' if len(__snake_case ) > 1 and act_info[0] != "gated" or len(__snake_case ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": UpperCAmelCase_ : int = '''gelu_new''' super().__init__( pad_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , **__snake_case , ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' @property def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Dict = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: UpperCAmelCase_ : List[Any] = '''past_encoder_sequence + sequence''' UpperCAmelCase_ : Dict = {0: '''batch'''} UpperCAmelCase_ : Union[str, Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: UpperCAmelCase_ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} UpperCAmelCase_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__snake_case , direction='''inputs''' ) return common_inputs @property def _lowerCamelCase ( self : str ): '''simple docstring''' return 13
641
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Any = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys __UpperCamelCase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
1
from sklearn.metrics import fa_score import datasets __UpperCamelCase : Dict = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' __UpperCamelCase : int = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' __UpperCamelCase : List[str] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def _lowerCamelCase ( self : int , __snake_case : Any , __snake_case : List[str] , __snake_case : Any=None , __snake_case : int=1 , __snake_case : Any="binary" , __snake_case : int=None ): '''simple docstring''' UpperCAmelCase_ : Dict = fa_score( __snake_case , __snake_case , labels=__snake_case , pos_label=__snake_case , average=__snake_case , sample_weight=__snake_case ) return {"f1": float(__snake_case ) if score.size == 1 else score}
641
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
1
import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Tuple = 'sequence-classification' def __init__( self : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Dict = Namespace(**__snake_case ) UpperCAmelCase_ : Union[str, Any] = glue_output_modes[hparams.task] UpperCAmelCase_ : Dict = glue_tasks_num_labels[hparams.task] super().__init__(__snake_case , __snake_case , self.mode ) def _lowerCamelCase ( self : List[Any] , **__snake_case : Any ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : Any , __snake_case : str , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase_ : Optional[Any] = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase_ : Optional[int] = self(**__snake_case ) UpperCAmelCase_ : int = outputs[0] UpperCAmelCase_ : Dict = self.trainer.lr_schedulers[0]['''scheduler'''] UpperCAmelCase_ : Optional[Any] = {'''loss''': loss, '''rate''': lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.hparams UpperCAmelCase_ : Dict = processors[args.task]() UpperCAmelCase_ : int = processor.get_labels() for mode in ["train", "dev"]: UpperCAmelCase_ : str = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : List[str] = ( processor.get_dev_examples(args.data_dir ) if mode == '''dev''' else processor.get_train_examples(args.data_dir ) ) UpperCAmelCase_ : List[str] = convert_examples_to_features( __snake_case , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : Any = '''dev''' if mode == '''test''' else mode UpperCAmelCase_ : Any = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Dict = torch.load(__snake_case ) UpperCAmelCase_ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) UpperCAmelCase_ : List[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase_ : List[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase_ : Union[str, Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case , shuffle=__snake_case , ) def _lowerCamelCase ( self : Dict , __snake_case : Union[str, Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCAmelCase_ : Any = batch[2] if self.config.model_type in ['''bert''', '''xlnet''', '''albert'''] else None UpperCAmelCase_ : Tuple = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : str = outputs[:2] UpperCAmelCase_ : List[Any] = logits.detach().cpu().numpy() UpperCAmelCase_ : Union[str, Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : Optional[Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : str = torch.stack([x['''val_loss'''] for x in outputs] ).mean().detach().cpu().item() UpperCAmelCase_ : Optional[Any] = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=1 ) elif self.hparams.glue_output_mode == "regression": UpperCAmelCase_ : Union[str, Any] = np.squeeze(__snake_case ) UpperCAmelCase_ : Optional[int] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Union[str, Any] = {**{'''val_loss''': val_loss_mean}, **compute_metrics(self.hparams.task , __snake_case , __snake_case )} UpperCAmelCase_ : List[str] = dict(results.items() ) UpperCAmelCase_ : Optional[int] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[Any] , __snake_case : list ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self._eval_end(__snake_case ) UpperCAmelCase_ : Dict = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = self._eval_end(__snake_case ) UpperCAmelCase_ : List[str] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Any ): '''simple docstring''' BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--task''' , default='''''' , type=__snake_case , required=__snake_case , help='''The GLUE task to run''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser def snake_case_ ( ): UpperCAmelCase_ : Any = argparse.ArgumentParser() add_generic_args(__lowercase , os.getcwd() ) UpperCAmelCase_ : Tuple = GLUETransformer.add_model_specific_args(__lowercase , os.getcwd() ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCAmelCase_ : int = os.path.join( '''./results''' , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) UpperCAmelCase_ : str = GLUETransformer(__lowercase ) UpperCAmelCase_ : str = generic_train(__lowercase , __lowercase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCAmelCase_ : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , '''checkpoint-epoch=*.ckpt''' ) , recursive=__lowercase ) ) UpperCAmelCase_ : Optional[int] = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(__lowercase ) if __name__ == "__main__": main()
641
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if isinstance(__lowercase , torch.Tensor ): return image elif isinstance(__lowercase , PIL.Image.Image ): UpperCAmelCase_ : List[Any] = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCAmelCase_ : Tuple = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] UpperCAmelCase_ : List[str] = np.concatenate(__lowercase , axis=0 ) UpperCAmelCase_ : Dict = np.array(__lowercase ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase_ : Optional[int] = image.transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ : Optional[Any] = 2.0 * image - 1.0 UpperCAmelCase_ : int = torch.from_numpy(__lowercase ) elif isinstance(image[0] , torch.Tensor ): UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase , dim=0 ) return image def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase=0.9_9_9_5 ): if not isinstance(__lowercase , np.ndarray ): UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : Union[str, Any] = va.device UpperCAmelCase_ : int = va.cpu().numpy() UpperCAmelCase_ : Optional[int] = va.cpu().numpy() UpperCAmelCase_ : Optional[Any] = np.sum(va * va / (np.linalg.norm(__lowercase ) * np.linalg.norm(__lowercase )) ) if np.abs(__lowercase ) > DOT_THRESHOLD: UpperCAmelCase_ : Optional[int] = (1 - t) * va + t * va else: UpperCAmelCase_ : Any = np.arccos(__lowercase ) UpperCAmelCase_ : Optional[Any] = np.sin(__lowercase ) UpperCAmelCase_ : Optional[int] = theta_a * t UpperCAmelCase_ : Optional[Any] = np.sin(__lowercase ) UpperCAmelCase_ : Any = np.sin(theta_a - theta_t ) / sin_theta_a UpperCAmelCase_ : List[str] = sin_theta_t / sin_theta_a UpperCAmelCase_ : Tuple = sa * va + sa * va if inputs_are_torch: UpperCAmelCase_ : Dict = torch.from_numpy(__lowercase ).to(__lowercase ) return va def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : str = F.normalize(__lowercase , dim=-1 ) UpperCAmelCase_ : Optional[int] = F.normalize(__lowercase , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def snake_case_ ( __lowercase , __lowercase ): for param in model.parameters(): UpperCAmelCase_ : List[Any] = value class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : AutoencoderKL , __snake_case : CLIPTextModel , __snake_case : CLIPModel , __snake_case : CLIPTokenizer , __snake_case : UNetaDConditionModel , __snake_case : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , __snake_case : CLIPFeatureExtractor , __snake_case : int=None , __snake_case : str=None , __snake_case : Any=None , ): '''simple docstring''' super().__init__() self.register_modules( vae=__snake_case , text_encoder=__snake_case , clip_model=__snake_case , tokenizer=__snake_case , unet=__snake_case , scheduler=__snake_case , feature_extractor=__snake_case , coca_model=__snake_case , coca_tokenizer=__snake_case , coca_transform=__snake_case , ) UpperCAmelCase_ : Any = ( feature_extractor.size if isinstance(feature_extractor.size , __snake_case ) else feature_extractor.size['''shortest_edge'''] ) UpperCAmelCase_ : Optional[Any] = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , __snake_case ) set_requires_grad(self.clip_model , __snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.enable_attention_slicing(__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' set_requires_grad(self.vae , __snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' set_requires_grad(self.vae , __snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' set_requires_grad(self.unet , __snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' set_requires_grad(self.unet , __snake_case ) def _lowerCamelCase ( self : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' # get the original timestep using init_timestep UpperCAmelCase_ : Optional[int] = min(int(num_inference_steps * strength ) , __snake_case ) UpperCAmelCase_ : str = max(num_inference_steps - init_timestep , 0 ) UpperCAmelCase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : Optional[Any]=None ): '''simple docstring''' if not isinstance(__snake_case , torch.Tensor ): raise ValueError(f'''`image` has to be of type `torch.Tensor` but is {type(__snake_case )}''' ) UpperCAmelCase_ : str = image.to(device=__snake_case , dtype=__snake_case ) if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : int = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__snake_case ) ] UpperCAmelCase_ : str = torch.cat(__snake_case , dim=0 ) else: UpperCAmelCase_ : Optional[Any] = self.vae.encode(__snake_case ).latent_dist.sample(__snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ : str = 0.18_215 * init_latents UpperCAmelCase_ : Tuple = init_latents.repeat_interleave(__snake_case , dim=0 ) UpperCAmelCase_ : Optional[int] = randn_tensor(init_latents.shape , generator=__snake_case , device=__snake_case , dtype=__snake_case ) # get latents UpperCAmelCase_ : Union[str, Any] = self.scheduler.add_noise(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[Any] = init_latents return latents def _lowerCamelCase ( self : str , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Dict = self.coca_transform(__snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCAmelCase_ : str = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCAmelCase_ : Dict = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('''<end_of_text>''' )[0].replace('''<start_of_text>''' , '''''' ).rstrip(''' .,''' ) def _lowerCamelCase ( self : Optional[int] , __snake_case : List[Any] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.feature_extractor.preprocess(__snake_case ) UpperCAmelCase_ : List[str] = torch.from_numpy(clip_image_input['''pixel_values'''][0] ).unsqueeze(0 ).to(self.device ).half() UpperCAmelCase_ : Optional[Any] = self.clip_model.get_image_features(__snake_case ) UpperCAmelCase_ : Union[str, Any] = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Union[str, Any] = image_embeddings_clip.repeat_interleave(__snake_case , dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : int , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = latents.detach().requires_grad_() UpperCAmelCase_ : List[str] = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual UpperCAmelCase_ : Union[str, Any] = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCAmelCase_ : Any = self.scheduler.alphas_cumprod[timestep] UpperCAmelCase_ : Union[str, Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : List[str] = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCAmelCase_ : Optional[int] = torch.sqrt(__snake_case ) UpperCAmelCase_ : List[str] = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , __snake_case ): UpperCAmelCase_ : Optional[int] = self.scheduler.sigmas[index] UpperCAmelCase_ : Tuple = latents - sigma * noise_pred else: raise ValueError(f'''scheduler type {type(self.scheduler )} not supported''' ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ : Union[str, Any] = 1 / 0.18_215 * sample UpperCAmelCase_ : Optional[Any] = self.vae.decode(__snake_case ).sample UpperCAmelCase_ : List[str] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Optional[Any] = transforms.Resize(self.feature_extractor_size )(__snake_case ) UpperCAmelCase_ : int = self.normalize(__snake_case ).to(latents.dtype ) UpperCAmelCase_ : Optional[int] = self.clip_model.get_image_features(__snake_case ) UpperCAmelCase_ : str = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = spherical_dist_loss(__snake_case , __snake_case ).mean() * clip_guidance_scale UpperCAmelCase_ : Dict = -torch.autograd.grad(__snake_case , __snake_case )[0] if isinstance(self.scheduler , __snake_case ): UpperCAmelCase_ : int = latents.detach() + grads * (sigma**2) UpperCAmelCase_ : List[Any] = noise_pred_original else: UpperCAmelCase_ : Optional[int] = noise_pred_original - torch.sqrt(__snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : List[Any] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Union[torch.FloatTensor, PIL.Image.Image] , __snake_case : Optional[str] = None , __snake_case : Optional[str] = None , __snake_case : Optional[int] = 512 , __snake_case : Optional[int] = 512 , __snake_case : float = 0.6 , __snake_case : Optional[int] = 50 , __snake_case : Optional[float] = 7.5 , __snake_case : Optional[int] = 1 , __snake_case : float = 0.0 , __snake_case : Optional[float] = 100 , __snake_case : Optional[torch.Generator] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , __snake_case : float = 0.8 , __snake_case : float = 0.1 , __snake_case : float = 0.1 , ): '''simple docstring''' if isinstance(__snake_case , __snake_case ) and len(__snake_case ) != batch_size: raise ValueError(f'''You have passed {batch_size} batch_size, but only {len(__snake_case )} generators.''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if isinstance(__snake_case , torch.Generator ) and batch_size > 1: UpperCAmelCase_ : Dict = [generator] + [None] * (batch_size - 1) UpperCAmelCase_ : Optional[int] = [ ('''model''', self.coca_model is None), ('''tokenizer''', self.coca_tokenizer is None), ('''transform''', self.coca_transform is None), ] UpperCAmelCase_ : Union[str, Any] = [x[0] for x in coca_is_none if x[1]] UpperCAmelCase_ : Any = ''', '''.join(__snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(__snake_case ): raise ValueError( f'''Content prompt is None and CoCa [{coca_is_none_str}] is None.''' f'''Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase_ : Tuple = self.get_image_description(__snake_case ) if style_prompt is None: if len(__snake_case ): raise ValueError( f'''Style prompt is None and CoCa [{coca_is_none_str}] is None.''' f''' Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.''' ) UpperCAmelCase_ : Optional[Any] = self.get_image_description(__snake_case ) # get prompt text embeddings for content and style UpperCAmelCase_ : Optional[Any] = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ : Tuple = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase_ : Any = self.tokenizer( __snake_case , padding='''max_length''' , max_length=self.tokenizer.model_max_length , truncation=__snake_case , return_tensors='''pt''' , ) UpperCAmelCase_ : int = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCAmelCase_ : List[Any] = slerp(__snake_case , __snake_case , __snake_case ) # duplicate text embeddings for each generation per prompt UpperCAmelCase_ : List[str] = text_embeddings.repeat_interleave(__snake_case , dim=0 ) # set timesteps UpperCAmelCase_ : Optional[int] = '''offset''' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCAmelCase_ : Optional[Any] = {} if accepts_offset: UpperCAmelCase_ : List[str] = 1 self.scheduler.set_timesteps(__snake_case , **__snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.get_timesteps(__snake_case , __snake_case , self.device ) UpperCAmelCase_ : Optional[int] = timesteps[:1].repeat(__snake_case ) # Preprocess image UpperCAmelCase_ : Optional[Any] = preprocess(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : int = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) UpperCAmelCase_ : Union[str, Any] = preprocess(__snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : Tuple = self.prepare_latents( __snake_case , __snake_case , __snake_case , text_embeddings.dtype , self.device , __snake_case ) UpperCAmelCase_ : List[str] = slerp(__snake_case , __snake_case , __snake_case ) if clip_guidance_scale > 0: UpperCAmelCase_ : Any = self.get_clip_image_embeddings(__snake_case , __snake_case ) UpperCAmelCase_ : Tuple = self.get_clip_image_embeddings(__snake_case , __snake_case ) UpperCAmelCase_ : Union[str, Any] = slerp( __snake_case , __snake_case , __snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ : int = content_text_input.input_ids.shape[-1] UpperCAmelCase_ : Optional[Any] = self.tokenizer([''''''] , padding='''max_length''' , max_length=__snake_case , return_tensors='''pt''' ) UpperCAmelCase_ : List[str] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCAmelCase_ : int = uncond_embeddings.repeat_interleave(__snake_case , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCAmelCase_ : int = torch.randn(__snake_case , generator=__snake_case , device='''cpu''' , dtype=__snake_case ).to( self.device ) else: UpperCAmelCase_ : Dict = torch.randn(__snake_case , generator=__snake_case , device=self.device , dtype=__snake_case ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase_ : Dict = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ : str = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ : List[str] = {} if accepts_eta: UpperCAmelCase_ : Tuple = eta # check if the scheduler accepts generator UpperCAmelCase_ : int = '''generator''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCAmelCase_ : Dict = generator with self.progress_bar(total=__snake_case ): for i, t in enumerate(__snake_case ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : int = self.scheduler.scale_model_input(__snake_case , __snake_case ) # predict the noise residual UpperCAmelCase_ : Optional[Any] = self.unet(__snake_case , __snake_case , encoder_hidden_states=__snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = noise_pred.chunk(2 ) UpperCAmelCase_ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCAmelCase_ : Dict = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.cond_fn( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(__snake_case , __snake_case , __snake_case , **__snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCAmelCase_ : Union[str, Any] = 1 / 0.18_215 * latents UpperCAmelCase_ : Optional[Any] = self.vae.decode(__snake_case ).sample UpperCAmelCase_ : Tuple = (image / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Dict = self.numpy_to_pil(__snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=__snake_case , nsfw_content_detected=__snake_case )
641
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/resolve/main/config.json', 'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/config.json', 'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json', 'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json', 'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/config.json', 'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Any = 'bloom' A_ : List[Any] = ['past_key_values'] A_ : str = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : str , __snake_case : str=250_880 , __snake_case : Union[str, Any]=64 , __snake_case : Optional[int]=2 , __snake_case : List[Any]=8 , __snake_case : Any=1E-5 , __snake_case : List[Any]=0.02 , __snake_case : int=True , __snake_case : int=1 , __snake_case : Optional[Any]=2 , __snake_case : Optional[Any]=False , __snake_case : Optional[Any]=0.0 , __snake_case : str=0.0 , __snake_case : Any=1 , __snake_case : List[Any]=False , **__snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : List[str] = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Tuple = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : Any = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : List[Any] = n_layer UpperCAmelCase_ : Optional[Any] = n_head UpperCAmelCase_ : Optional[Any] = layer_norm_epsilon UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : int = use_cache UpperCAmelCase_ : str = pretraining_tp UpperCAmelCase_ : Union[str, Any] = apply_residual_connection_post_layernorm UpperCAmelCase_ : Tuple = hidden_dropout UpperCAmelCase_ : int = attention_dropout UpperCAmelCase_ : Union[str, Any] = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Tuple = slow_but_exact super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[Any] = version.parse('1.12' ) def __init__( self : List[str] , __snake_case : PretrainedConfig , __snake_case : str = "default" , __snake_case : List[PatchingSpec] = None , __snake_case : bool = False , ): '''simple docstring''' super().__init__(__snake_case , task=__snake_case , patching_specs=__snake_case , use_past=__snake_case ) if not getattr(self._config , '''pad_token_id''' , __snake_case ): # TODO: how to do that better? UpperCAmelCase_ : Dict = 0 @property def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(__snake_case , direction='''inputs''' , inverted_values_shape=__snake_case ) UpperCAmelCase_ : List[Any] = {0: '''batch''', 1: '''past_sequence + sequence'''} else: UpperCAmelCase_ : str = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' return self._config.n_layer @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return self._config.n_head @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return 1E-3 def _lowerCamelCase ( self : Union[str, Any] , __snake_case : "PreTrainedTokenizer" , __snake_case : int = -1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional["TensorType"] = None , ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = super(__snake_case , self ).generate_dummy_inputs( __snake_case , batch_size=__snake_case , seq_length=__snake_case , is_pair=__snake_case , framework=__snake_case ) # We need to order the input in the way they appears in the forward() UpperCAmelCase_ : List[Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch UpperCAmelCase_ , UpperCAmelCase_ : Any = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values UpperCAmelCase_ : Tuple = seqlen + 2 UpperCAmelCase_ : Optional[Any] = self._config.hidden_size // self.num_attention_heads UpperCAmelCase_ : List[str] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCAmelCase_ : Optional[Any] = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCAmelCase_ : Union[str, Any] = [ (torch.zeros(__snake_case ), torch.zeros(__snake_case )) for _ in range(self.num_layers ) ] UpperCAmelCase_ : Tuple = common_inputs['''attention_mask'''] if self.use_past: UpperCAmelCase_ : Optional[int] = ordered_inputs['''attention_mask'''].dtype UpperCAmelCase_ : Tuple = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__snake_case , __snake_case , dtype=__snake_case )] , dim=1 ) return ordered_inputs @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return 13
641
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
1
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : List[str] = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCAmelCase__: '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : int ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) UpperCAmelCase_ : Dict = img UpperCAmelCase_ : Any = img.shape[1] UpperCAmelCase_ : List[Any] = img.shape[0] UpperCAmelCase_ : Optional[int] = dst_width UpperCAmelCase_ : Any = dst_height UpperCAmelCase_ : Dict = self.src_w / self.dst_w UpperCAmelCase_ : Union[str, Any] = self.src_h / self.dst_h UpperCAmelCase_ : Union[str, Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase_ : Dict = self.img[self.get_y(__snake_case )][self.get_x(__snake_case )] def _lowerCamelCase ( self : Optional[int] , __snake_case : int ): '''simple docstring''' return int(self.ratio_x * x ) def _lowerCamelCase ( self : int , __snake_case : int ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": __UpperCamelCase , __UpperCamelCase : Tuple = 800, 600 __UpperCamelCase : Optional[Any] = imread('image_data/lena.jpg', 1) __UpperCamelCase : str = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
641
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = VQModel A_ : Optional[int] = 'sample' @property def _lowerCamelCase ( self : List[Any] , __snake_case : Union[str, Any]=(32, 32) ): '''simple docstring''' UpperCAmelCase_ : int = 4 UpperCAmelCase_ : List[str] = 3 UpperCAmelCase_ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__snake_case ) return {"sample": image} @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return (3, 32, 32) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return (3, 32, 32) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } UpperCAmelCase_ : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def _lowerCamelCase ( self : int ): '''simple docstring''' pass def _lowerCamelCase ( self : Tuple ): '''simple docstring''' pass def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(__snake_case ) UpperCAmelCase_ : Dict = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(__snake_case ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase_ : Union[str, Any] = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase_ : List[Any] = image.to(__snake_case ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(__snake_case ).sample UpperCAmelCase_ : Tuple = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase_ : Dict = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(__snake_case , __snake_case , atol=1E-3 ) )
641
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
641
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
1
import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowerCAmelCase__( _lowerCamelCase ): '''simple docstring''' A_ : Optional[int] = 4_2 A_ : Optional[Any] = None def snake_case_ ( __lowercase , __lowercase=0.9_9_9 , __lowercase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__lowercase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__lowercase ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) UpperCAmelCase_ : int = [] for i in range(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_ : List[str] = i / num_diffusion_timesteps UpperCAmelCase_ : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) / alpha_bar_fn(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) return torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) class lowerCAmelCase__( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' A_ : Tuple = 1 @register_to_config def __init__( self : int , __snake_case : Any = 1_000 , __snake_case : Tuple = 0.0_001 , __snake_case : Tuple = 0.02 , __snake_case : Tuple = "linear" , __snake_case : Dict = None , __snake_case : Optional[int] = True , __snake_case : Optional[int] = True , __snake_case : List[Any] = 0 , __snake_case : int = "epsilon" , __snake_case : Tuple = 1.0 , **__snake_case : Dict , ): '''simple docstring''' if kwargs.get('''set_alpha_to_one''' , A__ ) is not None: UpperCAmelCase_ : List[str] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , A__ , standard_warn=A__ ) UpperCAmelCase_ : Union[str, Any] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: UpperCAmelCase_ : List[Any] = torch.tensor(A__ , dtype=torch.floataa ) elif beta_schedule == "linear": UpperCAmelCase_ : int = torch.linspace(A__ , A__ , A__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCAmelCase_ : Any = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , A__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCAmelCase_ : List[str] = betas_for_alpha_bar(A__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) UpperCAmelCase_ : Any = 1.0 - self.betas UpperCAmelCase_ : List[str] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. UpperCAmelCase_ : Any = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution UpperCAmelCase_ : Dict = 1.0 # setable values UpperCAmelCase_ : int = None UpperCAmelCase_ : List[str] = torch.from_numpy(np.arange(0 , A__ ).copy().astype(np.intaa ) ) def _lowerCamelCase ( self : Dict , __snake_case : Any , __snake_case : Union[str, Any] = None ): '''simple docstring''' return sample def _lowerCamelCase ( self : Any , __snake_case : Any , __snake_case : Optional[Any] = None ): '''simple docstring''' if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) UpperCAmelCase_ : str = num_inference_steps UpperCAmelCase_ : List[Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCAmelCase_ : Any = (np.arange(0 , A__ ) * step_ratio).round().copy().astype(np.intaa ) UpperCAmelCase_ : Optional[int] = torch.from_numpy(A__ ).to(A__ ) self.timesteps += self.config.steps_offset def _lowerCamelCase ( self : Any , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : Union[str, Any] = 0.0 , __snake_case : Union[str, Any] = False , __snake_case : Optional[Any] = None , __snake_case : Union[str, Any] = True , ): '''simple docstring''' # 1. get previous step value (=t+1) UpperCAmelCase_ : Optional[int] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process UpperCAmelCase_ : Any = self.alphas_cumprod[timestep] UpperCAmelCase_ : List[Any] = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) UpperCAmelCase_ : Union[str, Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase_ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 UpperCAmelCase_ : Dict = model_output elif self.config.prediction_type == "sample": UpperCAmelCase_ : Tuple = model_output UpperCAmelCase_ : Tuple = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": UpperCAmelCase_ : Any = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output UpperCAmelCase_ : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: UpperCAmelCase_ : List[Any] = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : str = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCAmelCase_ : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=A__ , pred_original_sample=A__ ) def __len__( self : Dict ): '''simple docstring''' return self.config.num_train_timesteps
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __UpperCamelCase : Tuple = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def snake_case_ ( __lowercase ): UpperCAmelCase_ : str = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', '''decoder.output_projection.weight''', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( __lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = emb.weight.shape UpperCAmelCase_ : int = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = emb.weight.data return lin_layer def snake_case_ ( __lowercase , __lowercase="facebook/mbart-large-en-ro" , __lowercase=False , __lowercase=False ): UpperCAmelCase_ : Optional[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model'''] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase_ : Any = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: UpperCAmelCase_ : Tuple = '''relu''' UpperCAmelCase_ : List[str] = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase_ : Optional[int] = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: UpperCAmelCase_ : Dict = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') __UpperCamelCase : Dict = parser.parse_args() __UpperCamelCase : Any = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase__( _SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ : Dict = "swinv2" A_ : int = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[str] , __snake_case : Tuple=224 , __snake_case : Optional[Any]=4 , __snake_case : Optional[int]=3 , __snake_case : Union[str, Any]=96 , __snake_case : Dict=[2, 2, 6, 2] , __snake_case : str=[3, 6, 12, 24] , __snake_case : Any=7 , __snake_case : Tuple=4.0 , __snake_case : Tuple=True , __snake_case : List[Any]=0.0 , __snake_case : Optional[int]=0.0 , __snake_case : Optional[int]=0.1 , __snake_case : str="gelu" , __snake_case : List[Any]=False , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : str=32 , **__snake_case : Tuple , ): '''simple docstring''' super().__init__(**A_ ) UpperCAmelCase_ : Any = image_size UpperCAmelCase_ : str = patch_size UpperCAmelCase_ : List[Any] = num_channels UpperCAmelCase_ : List[Any] = embed_dim UpperCAmelCase_ : List[Any] = depths UpperCAmelCase_ : Optional[Any] = len(A_ ) UpperCAmelCase_ : Optional[Any] = num_heads UpperCAmelCase_ : List[str] = window_size UpperCAmelCase_ : Dict = mlp_ratio UpperCAmelCase_ : Tuple = qkv_bias UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = drop_path_rate UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Dict = use_absolute_embeddings UpperCAmelCase_ : Any = layer_norm_eps UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCAmelCase_ : Tuple = int(embed_dim * 2 ** (len(A_ ) - 1) ) UpperCAmelCase_ : Any = (0, 0, 0, 0)
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
def snake_case_ ( __lowercase , __lowercase ): _enforce_args(_lowercase , _lowercase ) if n == 0: return 0 UpperCAmelCase_ : List[Any] = float('''-inf''' ) for i in range(1 , n + 1 ): UpperCAmelCase_ : int = max( _lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , _lowercase ) ) return max_revue def snake_case_ ( __lowercase , __lowercase ): _enforce_args(_lowercase , _lowercase ) UpperCAmelCase_ : int = [float('''-inf''' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_lowercase , _lowercase , _lowercase ) def snake_case_ ( __lowercase , __lowercase , __lowercase ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCAmelCase_ : int = float('''-inf''' ) for i in range(1 , n + 1 ): UpperCAmelCase_ : List[str] = max( _lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _lowercase , _lowercase ) , ) UpperCAmelCase_ : List[str] = max_revenue return max_rev[n] def snake_case_ ( __lowercase , __lowercase ): _enforce_args(_lowercase , _lowercase ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCAmelCase_ : Any = [float('''-inf''' ) for _ in range(n + 1 )] UpperCAmelCase_ : List[str] = 0 for i in range(1 , n + 1 ): UpperCAmelCase_ : Tuple = max_rev[i] for j in range(1 , i + 1 ): UpperCAmelCase_ : Optional[int] = max(_lowercase , prices[j - 1] + max_rev[i - j] ) UpperCAmelCase_ : Union[str, Any] = max_revenue_i return max_rev[n] def snake_case_ ( __lowercase , __lowercase ): if n < 0: UpperCAmelCase_ : int = F'''n must be greater than or equal to 0. Got n = {n}''' raise ValueError(_lowercase ) if n > len(_lowercase ): UpperCAmelCase_ : Any = ( 'Each integral piece of rod must have a corresponding price. ' F'''Got n = {n} but length of prices = {len(_lowercase )}''' ) raise ValueError(_lowercase ) def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = [6, 1_0, 1_2, 1_5, 2_0, 2_3] UpperCAmelCase_ : Optional[int] = len(_lowercase ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCAmelCase_ : int = 3_6 UpperCAmelCase_ : Optional[int] = top_down_cut_rod(_lowercase , _lowercase ) UpperCAmelCase_ : List[Any] = bottom_up_cut_rod(_lowercase , _lowercase ) UpperCAmelCase_ : List[str] = naive_cut_rod_recursive(_lowercase , _lowercase ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def snake_case_ ( __lowercase ): UpperCAmelCase_ : Optional[int] = 3_8_4 if "tiny" in model_name: UpperCAmelCase_ : str = [3, 3, 9, 3] UpperCAmelCase_ : Optional[int] = [9_6, 1_9_2, 3_8_4, 7_6_8] if "small" in model_name: UpperCAmelCase_ : Union[str, Any] = [3, 3, 2_7, 3] UpperCAmelCase_ : Any = [9_6, 1_9_2, 3_8_4, 7_6_8] if "base" in model_name: UpperCAmelCase_ : List[Any] = [3, 3, 2_7, 3] UpperCAmelCase_ : Optional[int] = [1_2_8, 2_5_6, 5_1_2, 1_0_2_4] UpperCAmelCase_ : Optional[int] = 5_1_2 if "large" in model_name: UpperCAmelCase_ : Optional[int] = [3, 3, 2_7, 3] UpperCAmelCase_ : Optional[Any] = [1_9_2, 3_8_4, 7_6_8, 1_5_3_6] UpperCAmelCase_ : Optional[Any] = 7_6_8 if "xlarge" in model_name: UpperCAmelCase_ : List[Any] = [3, 3, 2_7, 3] UpperCAmelCase_ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] UpperCAmelCase_ : int = 1_0_2_4 # set label information UpperCAmelCase_ : Optional[Any] = 1_5_0 UpperCAmelCase_ : int = "huggingface/label-files" UpperCAmelCase_ : Dict = "ade20k-id2label.json" UpperCAmelCase_ : Optional[int] = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : List[str] = {int(_A ): v for k, v in idalabel.items()} UpperCAmelCase_ : Optional[int] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Dict = ConvNextConfig( depths=_A , hidden_sizes=_A , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) UpperCAmelCase_ : Optional[Any] = UperNetConfig( backbone_config=_A , auxiliary_in_channels=_A , num_labels=_A , idalabel=_A , labelaid=_A , ) return config def snake_case_ ( __lowercase ): UpperCAmelCase_ : int = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = dct.pop(_A ) UpperCAmelCase_ : Dict = val def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Union[str, Any] = { "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } UpperCAmelCase_ : Union[str, Any] = model_name_to_url[model_name] UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' )["state_dict"] UpperCAmelCase_ : Dict = get_upernet_config(_A ) UpperCAmelCase_ : Dict = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCAmelCase_ : Optional[int] = state_dict.pop(_A ) if "bn" in key: UpperCAmelCase_ : Optional[int] = key.replace('''bn''' , '''batch_norm''' ) UpperCAmelCase_ : List[str] = val # rename keys UpperCAmelCase_ : int = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) model.load_state_dict(_A ) # verify on image UpperCAmelCase_ : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" UpperCAmelCase_ : List[Any] = Image.open(requests.get(_A , stream=_A ).raw ).convert('''RGB''' ) UpperCAmelCase_ : Tuple = SegformerImageProcessor() UpperCAmelCase_ : List[Any] = processor(_A , return_tensors='''pt''' ).pixel_values with torch.no_grad(): UpperCAmelCase_ : Optional[int] = model(_A ) if model_name == "upernet-convnext-tiny": UpperCAmelCase_ : Optional[int] = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": UpperCAmelCase_ : Tuple = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": UpperCAmelCase_ : str = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": UpperCAmelCase_ : Union[str, Any] = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": UpperCAmelCase_ : Tuple = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_A ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_A ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = image.size UpperCAmelCase_ : List[Any] = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 UpperCAmelCase_ : Union[str, Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) UpperCAmelCase_ : List[Any] = np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_5_5.0 UpperCAmelCase_ : Any = image[None].transpose(0 , 3 , 1 , 2 ) UpperCAmelCase_ : Dict = torch.from_numpy(lowerCamelCase_ ) return 2.0 * image - 1.0 class lowerCAmelCase__( __lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any] , __snake_case : VQModel , __snake_case : UNetaDModel , __snake_case : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): '''simple docstring''' super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self : Optional[Any] , __snake_case : Union[torch.Tensor, PIL.Image.Image] = None , __snake_case : Optional[int] = 1 , __snake_case : Optional[int] = 100 , __snake_case : Optional[float] = 0.0 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , ): '''simple docstring''' if isinstance(UpperCAmelCase_ , PIL.Image.Image ): UpperCAmelCase_ : List[str] = 1 elif isinstance(UpperCAmelCase_ , torch.Tensor ): UpperCAmelCase_ : Any = image.shape[0] else: raise ValueError(f'''`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase_ )}''' ) if isinstance(UpperCAmelCase_ , PIL.Image.Image ): UpperCAmelCase_ : str = preprocess(UpperCAmelCase_ ) UpperCAmelCase_ : Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCAmelCase_ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCAmelCase_ : int = next(self.unet.parameters() ).dtype UpperCAmelCase_ : Union[str, Any] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = image.to(device=self.device , dtype=UpperCAmelCase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device ) UpperCAmelCase_ : List[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ : Tuple = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ : List[Any] = {} if accepts_eta: UpperCAmelCase_ : Tuple = eta for t in self.progress_bar(UpperCAmelCase_ ): # concat latents and low resolution image in the channel dimension. UpperCAmelCase_ : Union[str, Any] = torch.cat([latents, image] , dim=1 ) UpperCAmelCase_ : Optional[Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual UpperCAmelCase_ : Union[str, Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : List[str] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # decode the image latents with the VQVAE UpperCAmelCase_ : Dict = self.vqvae.decode(UpperCAmelCase_ ).sample UpperCAmelCase_ : List[Any] = torch.clamp(UpperCAmelCase_ , -1.0 , 1.0 ) UpperCAmelCase_ : Dict = image / 2 + 0.5 UpperCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : Union[str, Any] , __snake_case : List[str]=13 , __snake_case : List[Any]=7 , __snake_case : List[Any]=True , __snake_case : List[str]=True , __snake_case : str=True , __snake_case : Optional[Any]=True , __snake_case : Union[str, Any]=99 , __snake_case : Union[str, Any]=64 , __snake_case : Dict=32 , __snake_case : Tuple=5 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]=37 , __snake_case : Tuple="gelu" , __snake_case : int=0.1 , __snake_case : List[Any]=0.1 , __snake_case : str=512 , __snake_case : int=16 , __snake_case : Any=2 , __snake_case : Optional[int]=0.02 , __snake_case : Tuple=3 , __snake_case : Any=4 , __snake_case : Dict=None , ): '''simple docstring''' UpperCAmelCase_ : str = parent UpperCAmelCase_ : Optional[int] = batch_size UpperCAmelCase_ : Tuple = seq_length UpperCAmelCase_ : str = is_training UpperCAmelCase_ : Tuple = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : int = use_labels UpperCAmelCase_ : Tuple = vocab_size UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Any = embedding_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[Any] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : int = type_sequence_label_size UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : List[str] = num_choices UpperCAmelCase_ : Dict = scope def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : List[Any] = None if self.use_labels: UpperCAmelCase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self : Any ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self : Tuple , __snake_case : Dict , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[int] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = MegatronBertModel(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : Tuple = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase ) UpperCAmelCase_ : List[str] = model(_lowercase , token_type_ids=_lowercase ) UpperCAmelCase_ : List[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MegatronBertForMaskedLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Dict , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Dict = MegatronBertForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MegatronBertForNextSentencePrediction(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : Dict = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : int , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = MegatronBertForPreTraining(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , next_sentence_label=_lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self : Tuple , __snake_case : List[str] , __snake_case : int , __snake_case : Tuple , __snake_case : str , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MegatronBertForQuestionAnswering(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : List[str] = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , start_positions=_lowercase , end_positions=_lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.num_labels UpperCAmelCase_ : Optional[int] = MegatronBertForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : str = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = MegatronBertForTokenClassification(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : Optional[int] = model(_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : List[Any] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : List[str] , __snake_case : Tuple , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = self.num_choices UpperCAmelCase_ : Tuple = MegatronBertForMultipleChoice(config=_lowercase ) model.to(_lowercase ) model.eval() UpperCAmelCase_ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Tuple = model( _lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , labels=_lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.prepare_config_and_inputs() ( UpperCAmelCase_ ) : Tuple = config_and_inputs UpperCAmelCase_ : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) A_ : List[str] = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) A_ : Any = True # test_resize_embeddings = False A_ : List[str] = False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Dict=False ): '''simple docstring''' UpperCAmelCase_ : Any = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class in get_values(_lowercase ): UpperCAmelCase_ : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_lowercase ) UpperCAmelCase_ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_lowercase ) return inputs_dict def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = MegatronBertModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*_lowercase ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*_lowercase ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*_lowercase ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*_lowercase ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*_lowercase ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*_lowercase ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*_lowercase ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*_lowercase ) def snake_case_ ( __lowercase ): return torch.tensor( __lowercase , dtype=torch.long , device=__lowercase , ) __UpperCamelCase : Any = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 'nvidia/megatron-bert-uncased-345m' if "MYDIR" in os.environ: UpperCAmelCase_ : Optional[Any] = os.path.join(os.environ['''MYDIR'''] , _lowercase ) UpperCAmelCase_ : List[str] = MegatronBertModel.from_pretrained(_lowercase ) model.to(_lowercase ) model.half() UpperCAmelCase_ : Tuple = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(_lowercase )[0] UpperCAmelCase_ : int = torch.Size((1, 9, 1_024) ) self.assertEqual(output.shape , _lowercase ) UpperCAmelCase_ : Union[str, Any] = [-0.6_040, -0.2_517, -0.1_025, 0.3_420, -0.6_758, -0.0_017, -0.1_089, -0.1_990, 0.5_728] for ii in range(3 ): for jj in range(3 ): UpperCAmelCase_ : int = output[0, ii, jj] UpperCAmelCase_ : Any = expected[3 * ii + jj] UpperCAmelCase_ : int = 'ii={} jj={} a={} b={}'.format(_lowercase , _lowercase , _lowercase , _lowercase ) self.assertTrue(math.isclose(_lowercase , _lowercase , rel_tol=_lowercase , abs_tol=_lowercase ) , msg=_lowercase )
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
def snake_case_ ( __lowercase , __lowercase , __lowercase = 0 , __lowercase = 0 ): UpperCAmelCase_ : List[Any] = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase__( snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def _lowerCamelCase ( self : Optional[Any] , __snake_case : Tuple=0 ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = np.random.RandomState(_lowerCAmelCase ) UpperCAmelCase_ : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : str = self.get_dummy_inputs() UpperCAmelCase_ : str = pipe(**_lowerCAmelCase ).images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Optional[int] = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = self.get_dummy_inputs() UpperCAmelCase_ : int = pipe(**_lowerCAmelCase ).images UpperCAmelCase_ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Tuple = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : Tuple = self.get_dummy_inputs() UpperCAmelCase_ : Union[str, Any] = pipe(**_lowerCAmelCase ).images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Optional[Any] = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : Dict = self.get_dummy_inputs() UpperCAmelCase_ : Union[str, Any] = pipe(**_lowerCAmelCase ).images UpperCAmelCase_ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Union[str, Any] = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : int = self.get_dummy_inputs() UpperCAmelCase_ : int = pipe(**_lowerCAmelCase ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : Optional[int] = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) UpperCAmelCase_ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : List[str] = self.get_dummy_inputs() UpperCAmelCase_ : Tuple = pipe(**_lowerCAmelCase ).images UpperCAmelCase_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) UpperCAmelCase_ : List[str] = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : List[Any] = self.get_dummy_inputs() UpperCAmelCase_ : str = 3 * [inputs['''prompt''']] # forward UpperCAmelCase_ : Tuple = pipe(**_lowerCAmelCase ) UpperCAmelCase_ : List[str] = output.images[0, -3:, -3:, -1] UpperCAmelCase_ : Optional[Any] = self.get_dummy_inputs() UpperCAmelCase_ : str = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase_ : int = pipe.tokenizer( _lowerCAmelCase , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='''np''' , ) UpperCAmelCase_ : List[str] = text_inputs['''input_ids'''] UpperCAmelCase_ : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] UpperCAmelCase_ : Union[str, Any] = prompt_embeds # forward UpperCAmelCase_ : Union[str, Any] = pipe(**_lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : int = self.get_dummy_inputs() UpperCAmelCase_ : Tuple = 3 * ['''this is a negative prompt'''] UpperCAmelCase_ : int = negative_prompt UpperCAmelCase_ : Union[str, Any] = 3 * [inputs['''prompt''']] # forward UpperCAmelCase_ : Optional[Any] = pipe(**_lowerCAmelCase ) UpperCAmelCase_ : Dict = output.images[0, -3:, -3:, -1] UpperCAmelCase_ : str = self.get_dummy_inputs() UpperCAmelCase_ : str = 3 * [inputs.pop('''prompt''' )] UpperCAmelCase_ : Any = [] for p in [prompt, negative_prompt]: UpperCAmelCase_ : Optional[int] = pipe.tokenizer( _lowerCAmelCase , padding='''max_length''' , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='''np''' , ) UpperCAmelCase_ : Union[str, Any] = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = embeds # forward UpperCAmelCase_ : str = pipe(**_lowerCAmelCase ) UpperCAmelCase_ : List[str] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self : Any ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ort.SessionOptions() UpperCAmelCase_ : Optional[int] = False return options def _lowerCamelCase ( self : int ): '''simple docstring''' # using the PNDM scheduler by default UpperCAmelCase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) UpperCAmelCase_ : Optional[int] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='''np''' ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : List[str] = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = DDIMScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : List[str] = '''open neural network exchange''' UpperCAmelCase_ : Any = np.random.RandomState(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type='''np''' ) UpperCAmelCase_ : Tuple = output.images UpperCAmelCase_ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Any = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) UpperCAmelCase_ : Dict = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : str = '''open neural network exchange''' UpperCAmelCase_ : Optional[Any] = np.random.RandomState(0 ) UpperCAmelCase_ : Optional[Any] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type='''np''' ) UpperCAmelCase_ : int = output.images UpperCAmelCase_ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : Any = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = 0 def test_callback_fn(__snake_case : Tuple , __snake_case : Any , __snake_case : Optional[Any] ) -> None: UpperCAmelCase_ : Optional[Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ : Tuple = latents[0, -3:, -3:, -1] UpperCAmelCase_ : List[Any] = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) UpperCAmelCase_ : Tuple = latents[0, -3:, -3:, -1] UpperCAmelCase_ : Any = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : int = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = '''Andromeda galaxy in a bottle''' UpperCAmelCase_ : Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = OnnxStableDiffusionPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None UpperCAmelCase_ : Union[str, Any] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCAmelCase_ : Optional[int] = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
import sys from collections import defaultdict class lowerCAmelCase__: '''simple docstring''' def __init__( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [] def _lowerCamelCase ( self : List[str] , __snake_case : Any ): '''simple docstring''' return self.node_position[vertex] def _lowerCamelCase ( self : Dict , __snake_case : List[str] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = pos def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : List[Any] ): '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCAmelCase_ : int = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCAmelCase_ : List[Any] = 2 * start + 1 else: UpperCAmelCase_ : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCAmelCase_ : Union[str, Any] = heap[smallest_child], positions[smallest_child] UpperCAmelCase_ : List[str] = ( heap[start], positions[start], ) UpperCAmelCase_ : Union[str, Any] = temp, tempa UpperCAmelCase_ : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase_ ) self.top_to_bottom(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Optional[int] , __snake_case : List[Any] , __snake_case : Any , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = position[index] while index != 0: UpperCAmelCase_ : List[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCAmelCase_ : Union[str, Any] = heap[parent] UpperCAmelCase_ : Dict = position[parent] self.set_position(position[parent] , UpperCamelCase_ ) else: UpperCAmelCase_ : Dict = val UpperCAmelCase_ : List[str] = temp self.set_position(UpperCamelCase_ , UpperCamelCase_ ) break UpperCAmelCase_ : List[str] = parent else: UpperCAmelCase_ : List[str] = val UpperCAmelCase_ : Union[str, Any] = temp self.set_position(UpperCamelCase_ , 0 ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = len(UpperCamelCase_ ) // 2 - 1 for i in range(UpperCamelCase_ , -1 , -1 ): self.top_to_bottom(UpperCamelCase_ , UpperCamelCase_ , len(UpperCamelCase_ ) , UpperCamelCase_ ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : int , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = positions[0] UpperCAmelCase_ : Tuple = sys.maxsize self.top_to_bottom(UpperCamelCase_ , 0 , len(UpperCamelCase_ ) , UpperCamelCase_ ) return temp def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = Heap() UpperCAmelCase_ : Tuple = [0] * len(lowerCamelCase__ ) UpperCAmelCase_ : Optional[int] = [-1] * len(lowerCamelCase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCAmelCase_ : Tuple = [] # Heap of Distance of vertices from their neighboring vertex UpperCAmelCase_ : Dict = [] for vertex in range(len(lowerCamelCase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowerCamelCase__ ) heap.node_position.append(lowerCamelCase__ ) UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : int = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : int = distance heap.heapify(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(1 , len(lowerCamelCase__ ) ): UpperCAmelCase_ : str = heap.delete_minimum(lowerCamelCase__ , lowerCamelCase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCAmelCase_ : Dict = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowerCamelCase__ )] ): UpperCAmelCase_ : List[str] = distance heap.bottom_to_top( lowerCamelCase__ , heap.get_position(lowerCamelCase__ ) , lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase_ : List[str] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase : int = int(input('Enter number of edges: ').strip()) __UpperCamelCase : Tuple = defaultdict(list) for _ in range(edges_number): __UpperCamelCase : Dict = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf __UpperCamelCase : int = logging.get_logger(__name__) @dataclass class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Tuple , **__snake_case : Optional[int] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ : Tuple = deprecated_arg[3:] UpperCAmelCase_ : Tuple = not kwargs.pop(__A ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) UpperCAmelCase_ : Dict = kwargs.pop('''tpu_name''' , self.tpu_name ) UpperCAmelCase_ : List[Any] = kwargs.pop('''device_idx''' , self.device_idx ) UpperCAmelCase_ : Optional[int] = kwargs.pop('''eager_mode''' , self.eager_mode ) UpperCAmelCase_ : Optional[Any] = kwargs.pop('''use_xla''' , self.use_xla ) super().__init__(**__A ) A_ : List[Any] = field( default=snake_case__ , metadata={'help': 'Name of TPU'} , ) A_ : Optional[Any] = field( default=0 , metadata={'help': 'CPU / GPU device index. Defaults to 0.'} , ) A_ : str = field(default=snake_case__ , metadata={'help': 'Benchmark models in eager model.'} ) A_ : Optional[Any] = field( default=snake_case__ , metadata={ 'help': 'Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.' } , ) @cached_property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' requires_backends(self , ['''tf'''] ) UpperCAmelCase_ : Any = None if self.tpu: try: if self.tpu_name: UpperCAmelCase_ : Tuple = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: UpperCAmelCase_ : Optional[int] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCAmelCase_ : Tuple = None return tpu @cached_property def _lowerCamelCase ( self : Any ): '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) UpperCAmelCase_ : int = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , '''GPU''' ) UpperCAmelCase_ : Tuple = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , '''GPU''' ) # disable GPU UpperCAmelCase_ : Optional[int] = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def _lowerCamelCase ( self : str ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_tpu is not None @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return self._setup_strategy @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' requires_backends(self , ['''tf'''] ) return tf.config.list_physical_devices('''GPU''' ) @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' requires_backends(self , ['''tf'''] ) if self.cuda: return len(self.gpu_list ) return 0 @property def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' return self.n_gpu > 0
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : str = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowerCAmelCase__( UpperCamelCase_ ): '''simple docstring''' A_ : Union[str, Any] = """data2vec-audio""" def __init__( self : str , __snake_case : Optional[int]=32 , __snake_case : Tuple=768 , __snake_case : Optional[int]=12 , __snake_case : Dict=12 , __snake_case : List[Any]=3_072 , __snake_case : List[str]="gelu" , __snake_case : Optional[int]=0.1 , __snake_case : Dict=0.1 , __snake_case : str=0.1 , __snake_case : List[str]=0.0 , __snake_case : int=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : Optional[Any]=0.02 , __snake_case : int=1E-5 , __snake_case : List[Any]="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , __snake_case : Tuple=False , __snake_case : Any=16 , __snake_case : Optional[int]=19 , __snake_case : Optional[int]=5 , __snake_case : List[str]=0.05 , __snake_case : Union[str, Any]=10 , __snake_case : Union[str, Any]=2 , __snake_case : List[str]=0.0 , __snake_case : Union[str, Any]=10 , __snake_case : List[Any]=0 , __snake_case : Tuple="sum" , __snake_case : str=False , __snake_case : Any=False , __snake_case : List[str]=256 , __snake_case : List[Any]=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Dict=(1, 2, 3, 1, 1) , __snake_case : Tuple=512 , __snake_case : Tuple=0 , __snake_case : Any=1 , __snake_case : Union[str, Any]=2 , __snake_case : Optional[int]=False , __snake_case : Union[str, Any]=3 , __snake_case : Tuple=2 , __snake_case : Optional[Any]=3 , __snake_case : Tuple=None , **__snake_case : Union[str, Any] , ): '''simple docstring''' super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) UpperCAmelCase_ : int = hidden_size UpperCAmelCase_ : Any = feat_extract_activation UpperCAmelCase_ : Dict = list(_a ) UpperCAmelCase_ : int = list(_a ) UpperCAmelCase_ : str = list(_a ) UpperCAmelCase_ : str = conv_bias UpperCAmelCase_ : Optional[int] = num_conv_pos_embeddings UpperCAmelCase_ : List[str] = num_conv_pos_embedding_groups UpperCAmelCase_ : List[str] = conv_pos_kernel_size UpperCAmelCase_ : Tuple = len(self.conv_dim ) UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : int = intermediate_size UpperCAmelCase_ : List[str] = hidden_act UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Tuple = hidden_dropout UpperCAmelCase_ : Optional[Any] = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : int = feat_proj_dropout UpperCAmelCase_ : List[Any] = final_dropout UpperCAmelCase_ : Tuple = layerdrop UpperCAmelCase_ : Optional[int] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Tuple = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = mask_time_prob UpperCAmelCase_ : Any = mask_time_length UpperCAmelCase_ : List[str] = mask_time_min_masks UpperCAmelCase_ : List[Any] = mask_feature_prob UpperCAmelCase_ : Tuple = mask_feature_length UpperCAmelCase_ : Union[str, Any] = mask_feature_min_masks # ctc loss UpperCAmelCase_ : Dict = ctc_loss_reduction UpperCAmelCase_ : List[Any] = ctc_zero_infinity # adapter UpperCAmelCase_ : int = add_adapter UpperCAmelCase_ : List[str] = adapter_kernel_size UpperCAmelCase_ : List[Any] = adapter_stride UpperCAmelCase_ : Union[str, Any] = num_adapter_layers UpperCAmelCase_ : Dict = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Tuple = list(_a ) UpperCAmelCase_ : Optional[Any] = list(_a ) UpperCAmelCase_ : Optional[Any] = list(_a ) UpperCAmelCase_ : Dict = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return math.prod(self.conv_stride )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import torch def snake_case_ ( ): if torch.cuda.is_available(): UpperCAmelCase_ : List[str] = torch.cuda.device_count() else: UpperCAmelCase_ : List[Any] = 0 print(F'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' import argparse from collections import defaultdict def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = F'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(lowerCAmelCase__ , '''r''' ) as f: UpperCAmelCase_ : Union[str, Any] = f.readlines() UpperCAmelCase_ : Optional[Any] = F'''class {class_name}(''' UpperCAmelCase_ : int = F'''{4 * ' '}def {test_name}(''' UpperCAmelCase_ : List[Any] = F'''{8 * ' '}{correct_line.split()[0]}''' UpperCAmelCase_ : Tuple = F'''{1_6 * ' '}{correct_line.split()[0]}''' UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : str = False UpperCAmelCase_ : str = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Any = [] for line in lines: if line.startswith(lowerCAmelCase__ ): UpperCAmelCase_ : Any = True elif in_class and line.startswith(lowerCAmelCase__ ): UpperCAmelCase_ : Optional[int] = True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): UpperCAmelCase_ : int = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_ : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_ : int = True if in_class and in_func and in_line and insert_line: new_lines.append(F'''{spaces * ' '}{correct_line}''' ) UpperCAmelCase_ : Optional[int] = False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''w''' ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def snake_case_ ( __lowercase , __lowercase=None ): if fail is not None: with open(lowerCAmelCase__ , '''r''' ) as f: UpperCAmelCase_ : List[Any] = {l.strip() for l in f.readlines()} else: UpperCAmelCase_ : Tuple = None with open(lowerCAmelCase__ , '''r''' ) as f: UpperCAmelCase_ : str = f.readlines() UpperCAmelCase_ : Tuple = defaultdict(lowerCAmelCase__ ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = line.split(''';''' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __UpperCamelCase : int = parser.parse_args() main(args.correct_filename, args.fail_filename)
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
from __future__ import annotations __UpperCamelCase : Optional[int] = "Muhammad Umer Farooq" __UpperCamelCase : Optional[Any] = "MIT" __UpperCamelCase : Any = "1.0.0" __UpperCamelCase : Tuple = "Muhammad Umer Farooq" __UpperCamelCase : Union[str, Any] = "contact@muhammadumerfarooq.me" __UpperCamelCase : Union[str, Any] = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class lowerCAmelCase__( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Union[str, Any] , __snake_case : str ): '''simple docstring''' super().__init__() UpperCAmelCase_ : list[str] = [] UpperCAmelCase_ : Any = domain def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : list[tuple[str, str | None]] ): '''simple docstring''' if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: UpperCAmelCase_ : List[Any] = parse.urljoin(self.domain , _UpperCamelCase ) self.urls.append(_UpperCamelCase ) def snake_case_ ( __lowercase ): return ".".join(get_sub_domain_name(__A ).split('''.''' )[-2:] ) def snake_case_ ( __lowercase ): return parse.urlparse(__A ).netloc def snake_case_ ( __lowercase = "https://github.com" ): UpperCAmelCase_ : int = get_domain_name(__A ) # Initialize the parser UpperCAmelCase_ : Union[str, Any] = Parser(__A ) try: # Open URL UpperCAmelCase_ : Optional[int] = requests.get(__A ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through UpperCAmelCase_ : Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: UpperCAmelCase_ : Any = requests.get(__A ) # Get the valid email. UpperCAmelCase_ : Optional[int] = re.findall('''[a-zA-Z0-9]+@''' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__A ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__A ) if __name__ == "__main__": __UpperCamelCase : Dict = emails_from_url('https://github.com') print(F'{len(emails)} emails found:') print('\n'.join(sorted(emails)))
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
from math import isqrt def snake_case_ ( __lowercase ): return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCamelCase ) + 1 ) ) def snake_case_ ( __lowercase = 1_0**6 ): UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Union[str, Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'{solution() = }')
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) __UpperCamelCase : Any = logging.getLogger(__name__) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = git.Repo(search_parent_directories=_lowerCamelCase ) UpperCAmelCase_ : Dict = { "repo_id": str(_lowerCamelCase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), } with open(os.path.join(_lowerCamelCase , '''git_log.json''' ) , '''w''' ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=4 ) def snake_case_ ( __lowercase ): if params.n_gpu <= 0: UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Tuple = -1 UpperCAmelCase_ : int = True UpperCAmelCase_ : Tuple = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 UpperCAmelCase_ : Tuple = int(os.environ['''WORLD_SIZE'''] ) UpperCAmelCase_ : Dict = int(os.environ['''N_GPU_NODE'''] ) UpperCAmelCase_ : Optional[Any] = int(os.environ['''RANK'''] ) # number of nodes / node ID UpperCAmelCase_ : Optional[Any] = params.world_size // params.n_gpu_per_node UpperCAmelCase_ : Optional[int] = params.global_rank // params.n_gpu_per_node UpperCAmelCase_ : List[Any] = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Any = 0 UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode UpperCAmelCase_ : Any = params.node_id == 0 and params.local_rank == 0 UpperCAmelCase_ : Union[str, Any] = params.n_nodes > 1 # summary UpperCAmelCase_ : Optional[int] = F'''--- Global rank: {params.global_rank} - ''' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def snake_case_ ( __lowercase ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel __UpperCamelCase : List[str] = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8000, "sample_size": 13_1072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, } def snake_case_ ( __lowercase : List[str] , __lowercase : Any ): return torch.atana(a_ , a_ ) / math.pi * 2 def snake_case_ ( __lowercase : List[str] ): UpperCAmelCase_ : List[str] = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase_ : Tuple = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(a_ , a_ ) class lowerCAmelCase__( _UpperCAmelCase ): '''simple docstring''' pass class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Tuple , __snake_case : Tuple ): '''simple docstring''' super().__init__() UpperCAmelCase_ : Optional[Any] = DiffusionAttnUnetaD(lowerCamelCase_ , n_attn_layers=4 ) UpperCAmelCase_ : int = deepcopy(self.diffusion ) UpperCAmelCase_ : List[str] = torch.quasirandom.SobolEngine(1 , scramble=lowerCamelCase_ ) def snake_case_ ( __lowercase : Tuple ): UpperCAmelCase_ : int = MODELS_MAP[model_name]['''url'''] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' __UpperCamelCase : str = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } __UpperCamelCase : Optional[Any] = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } __UpperCamelCase : Optional[int] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } __UpperCamelCase : Union[str, Any] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } __UpperCamelCase : Dict = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } __UpperCamelCase : List[Any] = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def snake_case_ ( __lowercase : Dict ): if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def snake_case_ ( __lowercase : str ): for key, value in ATTN_MAP.items(): if name.startswith(a_ ) and not isinstance(a_ , a_ ): return name.replace(a_ , a_ ) elif name.startswith(a_ ): return [name.replace(a_ , a_ ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def snake_case_ ( __lowercase : Dict , __lowercase : Optional[Any]=1_3 ): UpperCAmelCase_ : Tuple = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) UpperCAmelCase_ : Tuple = 0 if string.startswith('''net.3.''' ): depth += 1 UpperCAmelCase_ : Dict = string[6:] elif string.startswith('''net.''' ): UpperCAmelCase_ : Dict = string[4:] while string.startswith('''main.7.''' ): depth += 1 UpperCAmelCase_ : List[str] = string[7:] if string.startswith('''main.''' ): UpperCAmelCase_ : str = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase_ : Any = string[:2] UpperCAmelCase_ : List[str] = string[2:] else: UpperCAmelCase_ : List[str] = string[0] UpperCAmelCase_ : Optional[Any] = string[1:] if depth == max_depth: UpperCAmelCase_ : Tuple = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase_ : Optional[Any] = '''mid_block''' elif depth > 0 and int(a_ ) < 7: UpperCAmelCase_ : str = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase_ : Any = F'''down_blocks.{depth}''' elif depth > 0 and int(a_ ) > 7: UpperCAmelCase_ : Tuple = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase_ : List[Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: UpperCAmelCase_ : Dict = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase_ : Any = F'''up_blocks.{max_depth - 1}''' if int(a_ ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) UpperCAmelCase_ : int = string_left[1:] if "resnets" in new_layer: UpperCAmelCase_ : List[str] = convert_resconv_naming(a_ ) elif "attentions" in new_layer: UpperCAmelCase_ : Tuple = convert_attn_naming(a_ ) UpperCAmelCase_ : str = new_string_left if not isinstance(a_ , a_ ): UpperCAmelCase_ : int = prefix + '''.''' + new_layer + '''.''' + string_left else: UpperCAmelCase_ : List[Any] = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def snake_case_ ( __lowercase : Tuple ): UpperCAmelCase_ : Optional[int] = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase_ : Optional[int] = rename(a_ ) # check if we need to transform from Conv => Linear for attention if isinstance(a_ , a_ ): UpperCAmelCase_ : Union[str, Any] = transform_conv_attns(a_ , a_ , a_ ) else: UpperCAmelCase_ : Dict = v return new_state_dict def snake_case_ ( __lowercase : Any , __lowercase : Tuple , __lowercase : List[Any] ): if len(a_ ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase_ : Dict = v[:, :, 0] else: # bias UpperCAmelCase_ : Dict = v else: # qkv matrices UpperCAmelCase_ : List[Any] = v.shape[0] UpperCAmelCase_ : Tuple = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase_ : int = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase_ : List[str] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def snake_case_ ( __lowercase : Dict ): UpperCAmelCase_ : List[str] = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase_ : List[Any] = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' UpperCAmelCase_ : Tuple = download(a_ ) UpperCAmelCase_ : Union[str, Any] = MODELS_MAP[model_name]['''sample_rate'''] UpperCAmelCase_ : Optional[Any] = MODELS_MAP[model_name]['''sample_size'''] UpperCAmelCase_ : int = Object() UpperCAmelCase_ : int = sample_size UpperCAmelCase_ : Optional[int] = sample_rate UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = UNetaDModel(sample_size=a_ , sample_rate=a_ ) UpperCAmelCase_ : Optional[int] = diffusers_model.state_dict() UpperCAmelCase_ : int = DiffusionUncond(a_ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=a_ )['''state_dict'''] ) UpperCAmelCase_ : Tuple = orig_model.diffusion_ema.eval() UpperCAmelCase_ : Optional[Any] = orig_model.state_dict() UpperCAmelCase_ : List[str] = rename_orig_weights(a_ ) UpperCAmelCase_ : List[str] = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase_ : str = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(a_ ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith('''kernel''' ) for k in list(a_ ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": UpperCAmelCase_ : str = value.squeeze() UpperCAmelCase_ : Dict = value diffusers_model.load_state_dict(a_ ) UpperCAmelCase_ : Tuple = 1_0_0 UpperCAmelCase_ : int = 3_3 UpperCAmelCase_ : Optional[int] = IPNDMScheduler(num_train_timesteps=a_ ) UpperCAmelCase_ : Tuple = torch.manual_seed(a_ ) UpperCAmelCase_ : List[str] = torch.randn([1, 2, config.sample_size] , generator=a_ ).to(a_ ) UpperCAmelCase_ : Tuple = torch.linspace(1 , 0 , steps + 1 , device=a_ )[:-1] UpperCAmelCase_ : str = get_crash_schedule(a_ ) UpperCAmelCase_ : Optional[Any] = DanceDiffusionPipeline(unet=a_ , scheduler=a_ ) UpperCAmelCase_ : Union[str, Any] = torch.manual_seed(3_3 ) UpperCAmelCase_ : str = pipe(num_inference_steps=a_ , generator=a_ ).audios UpperCAmelCase_ : str = sampling.iplms_sample(a_ , a_ , a_ , {} ) UpperCAmelCase_ : int = generated.clamp(-1 , 1 ) UpperCAmelCase_ : Dict = (generated - audio).abs().sum() UpperCAmelCase_ : Dict = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , a_ ) print('''Diff max''' , a_ ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') __UpperCamelCase : Dict = parser.parse_args() main(args)
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : int = tempfile.mkdtemp() UpperCAmelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCAmelCase_ : Dict = { '''do_resize''': True, '''size''': {'''height''': 224, '''width''': 224}, '''do_center_crop''': True, '''crop_size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.48_145_466, 0.4_578_275, 0.40_821_073], '''image_std''': [0.26_862_954, 0.26_130_258, 0.27_577_711], '''do_convert_rgb''': True, } UpperCAmelCase_ : List[str] = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase ( self : Tuple , **__snake_case : Any ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _lowerCamelCase ( self : str , **__snake_case : str ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _lowerCamelCase ( self : str , **__snake_case : Any ): '''simple docstring''' return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase_ : Any = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Dict = self.get_rust_tokenizer() UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase ) UpperCAmelCase_ : Optional[int] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase ) self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Dict = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) UpperCAmelCase_ : Optional[int] = self.get_image_processor(do_normalize=__UpperCamelCase ) UpperCAmelCase_ : Any = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__UpperCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.get_image_processor() UpperCAmelCase_ : List[Any] = self.get_tokenizer() UpperCAmelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCAmelCase_ : str = self.prepare_image_inputs() UpperCAmelCase_ : int = image_processor(__UpperCamelCase , return_tensors='''np''' ) UpperCAmelCase_ : List[str] = processor(images=__UpperCamelCase , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : str = self.get_image_processor() UpperCAmelCase_ : Any = self.get_tokenizer() UpperCAmelCase_ : str = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCAmelCase_ : int = '''Alexandra,T-shirt的价格是15便士。''' UpperCAmelCase_ : Optional[Any] = processor(text=__UpperCamelCase ) UpperCAmelCase_ : Any = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.get_image_processor() UpperCAmelCase_ : Dict = self.get_tokenizer() UpperCAmelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCAmelCase_ : Optional[int] = '''Alexandra,T-shirt的价格是15便士。''' UpperCAmelCase_ : Optional[int] = self.prepare_image_inputs() UpperCAmelCase_ : List[str] = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCamelCase ): processor() def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.get_image_processor() UpperCAmelCase_ : str = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCAmelCase_ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase_ : Union[str, Any] = processor.batch_decode(__UpperCamelCase ) UpperCAmelCase_ : List[Any] = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Dict = self.get_image_processor() UpperCAmelCase_ : Optional[Any] = self.get_tokenizer() UpperCAmelCase_ : Any = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = '''Alexandra,T-shirt的价格是15便士。''' UpperCAmelCase_ : int = self.prepare_image_inputs() UpperCAmelCase_ : int = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Dict = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } __UpperCamelCase : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def snake_case_ ( __lowercase ): UpperCAmelCase_ : Dict = {} with open(__lowercase , '''r''' ) as file: for line_number, line in enumerate(__lowercase ): UpperCAmelCase_ : Dict = line.strip() if line: UpperCAmelCase_ : Optional[Any] = line.split() UpperCAmelCase_ : List[str] = line_number UpperCAmelCase_ : Optional[Any] = words[0] UpperCAmelCase_ : Union[str, Any] = value return result def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): for attribute in key.split('''.''' ): UpperCAmelCase_ : List[str] = getattr(__lowercase , __lowercase ) UpperCAmelCase_ : List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowercase ): UpperCAmelCase_ : List[str] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase_ : str = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase_ : Dict = getattr(__lowercase , __lowercase ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase_ : Tuple = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase_ : Union[str, Any] = getattr(__lowercase , __lowercase ) UpperCAmelCase_ : int = shape_pointer.shape # let's reduce dimension UpperCAmelCase_ : Tuple = value[0] else: UpperCAmelCase_ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ : List[str] = value elif weight_type == "weight_g": UpperCAmelCase_ : Optional[Any] = value elif weight_type == "weight_v": UpperCAmelCase_ : Any = value elif weight_type == "bias": UpperCAmelCase_ : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase_ : str = getattr(__lowercase , __lowercase ) UpperCAmelCase_ : str = value else: UpperCAmelCase_ : List[Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowercase ): UpperCAmelCase_ : Optional[Any] = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase_ : Any = '''param''' if weight_type is not None and weight_type != "param": UpperCAmelCase_ : Any = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase_ : int = '''.'''.join([key, hf_param_name] ) else: UpperCAmelCase_ : List[Any] = key UpperCAmelCase_ : List[Any] = value if '''lm_head''' in full_key else value[0] __UpperCamelCase : Optional[int] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None ): UpperCAmelCase_ : Union[str, Any] = False for key, mapped_key in MAPPING.items(): UpperCAmelCase_ : Any = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase_ : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase_ : Tuple = name.split(__lowercase )[0].split('''.''' )[-2] UpperCAmelCase_ : Dict = mapped_key.replace('''*''' , __lowercase ) if "weight_g" in name: UpperCAmelCase_ : Any = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ : Dict = '''weight_v''' elif "bias" in name: UpperCAmelCase_ : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase_ : List[Any] = '''weight''' else: UpperCAmelCase_ : Any = None if hf_dict is not None: rename_dict(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) else: set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return is_used return is_used def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : str = [] UpperCAmelCase_ : int = fairseq_model.state_dict() UpperCAmelCase_ : List[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase_ : Any = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase_ : List[Any] = True else: UpperCAmelCase_ : Dict = load_wavaveca_layer(__lowercase , __lowercase , __lowercase ) if not is_used: unused_weights.append(__lowercase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ : List[str] = name.split('''.''' ) UpperCAmelCase_ : int = int(items[0] ) UpperCAmelCase_ : Dict = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase_ : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowercase ) @torch.no_grad() def snake_case_ ( __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase=True , __lowercase=False ): if config_path is not None: UpperCAmelCase_ : Any = WavaVecaConfig.from_pretrained(__lowercase ) else: UpperCAmelCase_ : int = WavaVecaConfig() if is_seq_class: UpperCAmelCase_ : str = read_txt_into_dict(__lowercase ) UpperCAmelCase_ : Any = idalabel UpperCAmelCase_ : Union[str, Any] = WavaVecaForSequenceClassification(__lowercase ) UpperCAmelCase_ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) feature_extractor.save_pretrained(__lowercase ) elif is_finetuned: if dict_path: UpperCAmelCase_ : Any = Dictionary.load(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase_ : Union[str, Any] = target_dict.pad_index UpperCAmelCase_ : List[str] = target_dict.bos_index UpperCAmelCase_ : Optional[Any] = target_dict.eos_index UpperCAmelCase_ : Tuple = len(target_dict.symbols ) UpperCAmelCase_ : List[str] = os.path.join(__lowercase , '''vocab.json''' ) if not os.path.isdir(__lowercase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__lowercase ) ) return os.makedirs(__lowercase , exist_ok=__lowercase ) UpperCAmelCase_ : Dict = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Any = 1 with open(__lowercase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__lowercase , __lowercase ) UpperCAmelCase_ : Optional[Any] = WavaVecaCTCTokenizer( __lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__lowercase , ) UpperCAmelCase_ : List[str] = True if config.feat_extract_norm == '''layer''' else False UpperCAmelCase_ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) UpperCAmelCase_ : List[str] = WavaVecaProcessor(feature_extractor=__lowercase , tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) UpperCAmelCase_ : Tuple = WavaVecaForCTC(__lowercase ) else: UpperCAmelCase_ : Dict = WavaVecaForPreTraining(__lowercase ) if is_finetuned or is_seq_class: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase_ : List[str] = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase_ : List[str] = fairseq.tasks.setup_task(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowercase ) UpperCAmelCase_ : List[Any] = model[0].eval() recursively_load_weights(__lowercase , __lowercase , not is_finetuned ) hf_wavavec.save_pretrained(__lowercase ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
from __future__ import annotations def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : List[str] = sorted(numsa + numsa ) UpperCAmelCase_ : Dict = divmod(len(__UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : int = [float(x) for x in input('Enter the elements of first array: ').split()] __UpperCamelCase : Dict = [float(x) for x in input('Enter the elements of second array: ').split()] print(F'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
import copy import re class lowerCAmelCase__: '''simple docstring''' A_ : Tuple = '''hp''' A_ : Optional[Any] = {} A_ : Optional[Any] = None @classmethod def _lowerCamelCase ( cls : List[str] , __snake_case : Union[str, Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : int = prefix UpperCAmelCase_ : List[Any] = defaults cls.build_naming_info() @staticmethod def _lowerCamelCase ( __snake_case : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' if len(A_ ) == 0: return "" UpperCAmelCase_ : Union[str, Any] = None if any(char.isdigit() for char in word ): raise Exception(f'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(A_ ) + 1 ): UpperCAmelCase_ : List[Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCAmelCase_ : str = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__snake_case : int ): UpperCAmelCase_ : Tuple = '''''' while integer != 0: UpperCAmelCase_ : Dict = chr(ord('''A''' ) + integer % 10 ) + s integer //= 10 return s UpperCAmelCase_ : List[str] = 0 while True: UpperCAmelCase_ : Optional[int] = word + '''#''' + int_to_alphabetic(A_ ) if sword in info["reverse_short_word"]: continue else: UpperCAmelCase_ : Union[str, Any] = sword break UpperCAmelCase_ : Any = short_word UpperCAmelCase_ : List[str] = word return short_word @staticmethod def _lowerCamelCase ( __snake_case : Any , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Tuple = param_name.split('''_''' ) UpperCAmelCase_ : Any = [TrialShortNamer.shortname_for_word(A_ , A_ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCAmelCase_ : int = ['''''', '''_'''] for separator in separators: UpperCAmelCase_ : Optional[int] = separator.join(A_ ) if shortname not in info["reverse_short_param"]: UpperCAmelCase_ : int = shortname UpperCAmelCase_ : List[Any] = param_name return shortname return param_name @staticmethod def _lowerCamelCase ( __snake_case : List[Any] , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Any = TrialShortNamer.shortname_for_key(A_ , A_ ) UpperCAmelCase_ : Any = short_name UpperCAmelCase_ : int = param_name @classmethod def _lowerCamelCase ( cls : Any ): '''simple docstring''' if cls.NAMING_INFO is not None: return UpperCAmelCase_ : Union[str, Any] = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } UpperCAmelCase_ : List[str] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(A_ , A_ ) UpperCAmelCase_ : Optional[Any] = info @classmethod def _lowerCamelCase ( cls : Any , __snake_case : List[str] ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None UpperCAmelCase_ : Tuple = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCAmelCase_ : str = cls.NAMING_INFO['''short_param'''][k] if isinstance(A_ , A_ ): UpperCAmelCase_ : Optional[int] = 1 if v else 0 UpperCAmelCase_ : Dict = '''''' if isinstance(A_ , (int, float) ) else '''-''' UpperCAmelCase_ : Dict = f'''{key}{sep}{v}''' name.append(A_ ) return "_".join(A_ ) @classmethod def _lowerCamelCase ( cls : Any , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCAmelCase_ : Tuple = [] else: UpperCAmelCase_ : Union[str, Any] = repr.split('''_''' ) UpperCAmelCase_ : Tuple = {} for value in values: if "-" in value: UpperCAmelCase_ , UpperCAmelCase_ : Dict = value.split('''-''' ) else: UpperCAmelCase_ : Any = re.sub('''[0-9.]''' , '''''' , A_ ) UpperCAmelCase_ : Dict = float(re.sub('''[^0-9.]''' , '''''' , A_ ) ) UpperCAmelCase_ : Optional[Any] = cls.NAMING_INFO['''reverse_short_param'''][p_k] UpperCAmelCase_ : Dict = p_v for k in cls.DEFAULTS: if k not in parameters: UpperCAmelCase_ : str = cls.DEFAULTS[k] return parameters
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger() @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : nn.Module A_ : List[nn.Module] = field(default_factory=lowercase__ ) A_ : list = field(default_factory=lowercase__ ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Dict = len(list(m.modules() ) ) == 1 or isinstance(__snake_case , nn.Convad ) or isinstance(__snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self : str , __snake_case : Any ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self : Any ): '''simple docstring''' # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : nn.Module A_ : nn.Module A_ : int = 1 A_ : List = field(default_factory=lowercase__ ) A_ : List = field(default_factory=lowercase__ ) A_ : bool = True def __call__( self : Dict , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = Tracker(self.dest )(__snake_case ).parametrized UpperCAmelCase_ : int = Tracker(self.src )(__snake_case ).parametrized UpperCAmelCase_ : Optional[int] = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip , __snake_case ) ) UpperCAmelCase_ : Tuple = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip , __snake_case ) ) if len(__snake_case ) != len(__snake_case ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__snake_case )} operations while''' f''' destination module has {len(__snake_case )}.''' ) for dest_m, src_m in zip(__snake_case , __snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __snake_case : Optional[int] ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = [] # - get the stem feature_blocks.append(('''conv1''', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block''' ), f'''Unexpected layer name {k}''' UpperCAmelCase_ : int = len(__snake_case ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) UpperCAmelCase_ : Union[str, Any] = nn.ModuleDict(__snake_case ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Dict ): '''simple docstring''' return get_trunk_forward_outputs( __snake_case , out_feat_keys=__snake_case , feature_blocks=self._feature_blocks , ) class lowerCAmelCase__( lowercase__ ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Tuple = x.split('''-''' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[int] , __snake_case : str ): '''simple docstring''' # default to timm! if x not in self: UpperCAmelCase_ : Any = self.convert_name_to_timm(__snake_case ) UpperCAmelCase_ : Union[str, Any] = partial(lambda: (timm.create_model(__snake_case , pretrained=__snake_case ).eval(), None) ) else: UpperCAmelCase_ : Optional[Any] = super().__getitem__(__snake_case ) return val class lowerCAmelCase__( lowercase__ ): '''simple docstring''' def __getitem__( self : Union[str, Any] , __snake_case : List[str] ): '''simple docstring''' if "seer" in x and "in1k" not in x: UpperCAmelCase_ : int = RegNetModel else: UpperCAmelCase_ : int = RegNetForImageClassification return val def snake_case_ ( __lowercase , __lowercase , __lowercase ): for from_key, to_key in keys: UpperCAmelCase_ : Dict = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ): print(F'''Converting {name}...''' ) with torch.no_grad(): UpperCAmelCase_ , UpperCAmelCase_ : Any = from_model_func() UpperCAmelCase_ : Dict = our_model_func(__SCREAMING_SNAKE_CASE ).eval() UpperCAmelCase_ : Tuple = ModuleTransfer(src=__SCREAMING_SNAKE_CASE , dest=__SCREAMING_SNAKE_CASE , raise_if_mismatch=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__SCREAMING_SNAKE_CASE ) if from_state_dict is not None: UpperCAmelCase_ : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCAmelCase_ : Any = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] UpperCAmelCase_ : List[Any] = manually_copy_vissl_head(__SCREAMING_SNAKE_CASE , our_model.state_dict() , __SCREAMING_SNAKE_CASE ) our_model.load_state_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = our_model(__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = ( our_outputs.logits if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else our_outputs.last_hidden_state ) UpperCAmelCase_ : Dict = from_model(__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = from_output[-1] if type(__SCREAMING_SNAKE_CASE ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCAmelCase_ : Tuple = our_outputs.hidden_states[-1] assert torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase_ : Tuple = 2_2_4 if '''seer''' not in name else 3_8_4 # we can use the convnext one UpperCAmelCase_ : int = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__SCREAMING_SNAKE_CASE ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__SCREAMING_SNAKE_CASE , ) print(F'''Pushed {name}''' ) def snake_case_ ( __lowercase , __lowercase = None , __lowercase = True ): UpperCAmelCase_ : List[Any] = '''imagenet-1k-id2label.json''' UpperCAmelCase_ : Union[str, Any] = 1_0_0_0 UpperCAmelCase_ : int = (1, num_labels) UpperCAmelCase_ : int = '''huggingface/label-files''' UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : List[Any] = json.load(open(cached_download(hf_hub_url(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase_ : str = {int(__SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Tuple = partial(__SCREAMING_SNAKE_CASE , num_labels=__SCREAMING_SNAKE_CASE , idalabel=__SCREAMING_SNAKE_CASE , labelaid=__SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } UpperCAmelCase_ : str = NameToOurModelFuncMap() UpperCAmelCase_ : Any = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase , __lowercase ) -> Tuple[nn.Module, Dict]: UpperCAmelCase_ : Tuple = torch.hub.load_state_dict_from_url(__SCREAMING_SNAKE_CASE , model_dir=str(__SCREAMING_SNAKE_CASE ) , map_location='''cpu''' ) UpperCAmelCase_ : List[Any] = model_func() # check if we have a head, if yes add it UpperCAmelCase_ : Optional[int] = files['''classy_state_dict''']['''base_model''']['''model'''] UpperCAmelCase_ : Any = model_state_dict['''trunk'''] model.load_state_dict(__SCREAMING_SNAKE_CASE ) return model.eval(), model_state_dict["heads"] # pretrained UpperCAmelCase_ : List[Any] = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Optional[int] = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Union[str, Any] = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Any = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned UpperCAmelCase_ : int = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : Union[str, Any] = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) UpperCAmelCase_ : int = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) UpperCAmelCase_ : Optional[Any] = partial( __SCREAMING_SNAKE_CASE , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __SCREAMING_SNAKE_CASE , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) return config, expected_shape if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) __UpperCamelCase : Dict = parser.parse_args() __UpperCamelCase : Union[str, Any] = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for part_id in partition_order: UpperCAmelCase_ : List[str] = df.where(F'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(__lowercase ): expected_row_ids_and_row_dicts.append((F'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): UpperCAmelCase_ : List[Any] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : Optional[int] = spark.range(1_0_0 ).repartition(1 ) UpperCAmelCase_ : int = Spark(__lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=1_6 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 5_0 @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): UpperCAmelCase_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : Optional[Any] = spark.range(1_0 ).repartition(2 ) UpperCAmelCase_ : Optional[Any] = [1, 0] UpperCAmelCase_ : Union[str, Any] = _generate_iterable_examples(__lowercase , __lowercase ) # Reverse the partitions. UpperCAmelCase_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowercase , __lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): UpperCAmelCase_ : List[str] = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : int = spark.range(1_0 ).repartition(1 ) UpperCAmelCase_ : Tuple = SparkExamplesIterable(__lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(__lowercase ): assert row_id == F'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): UpperCAmelCase_ : Dict = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : List[Any] = spark.range(3_0 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('''numpy.random.Generator''' ) as generator_mock: UpperCAmelCase_ : Union[str, Any] = lambda __lowercase : x.reverse() UpperCAmelCase_ : int = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowercase , [2, 1, 0] ) UpperCAmelCase_ : str = SparkExamplesIterable(__lowercase ).shuffle_data_sources(__lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : int = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): UpperCAmelCase_ : str = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : str = spark.range(2_0 ).repartition(4 ) # Partitions 0 and 2 UpperCAmelCase_ : Optional[int] = SparkExamplesIterable(__lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : Union[str, Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : List[str] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCAmelCase_ : List[str] = SparkExamplesIterable(__lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCAmelCase_ : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(__lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(__lowercase ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def snake_case_ ( ): UpperCAmelCase_ : Any = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate() UpperCAmelCase_ : int = spark.range(1_0_0 ).repartition(1 ) UpperCAmelCase_ : Union[str, Any] = Spark(__lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_0_0
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowerCAmelCase__( UpperCamelCase_ ): '''simple docstring''' @slow @require_torch def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' , '''prajjwal1/bert-tiny''' ) UpperCAmelCase_ : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ : Any = bertabert.config.encoder.vocab_size UpperCAmelCase_ : List[str] = tokenizer.sep_token_id UpperCAmelCase_ : Any = tokenizer.cls_token_id UpperCAmelCase_ : Tuple = 128 UpperCAmelCase_ : str = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''train[:1%]''' ) UpperCAmelCase_ : List[str] = datasets.load_dataset('''cnn_dailymail''' , '''3.0.0''' , split='''validation[:1%]''' ) UpperCAmelCase_ : Optional[int] = train_dataset.select(range(32 ) ) UpperCAmelCase_ : Tuple = val_dataset.select(range(16 ) ) UpperCAmelCase_ : List[str] = 4 def _map_to_encoder_decoder_inputs(__snake_case : Optional[int] ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase_ : Dict = tokenizer(batch['''article'''] , padding='''max_length''' , truncation=__A , max_length=512 ) UpperCAmelCase_ : List[str] = tokenizer(batch['''highlights'''] , padding='''max_length''' , truncation=__A , max_length=128 ) UpperCAmelCase_ : str = inputs.input_ids UpperCAmelCase_ : int = inputs.attention_mask UpperCAmelCase_ : Tuple = outputs.input_ids UpperCAmelCase_ : Dict = outputs.input_ids.copy() UpperCAmelCase_ : Optional[Any] = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] UpperCAmelCase_ : List[Any] = outputs.attention_mask assert all(len(__A ) == 512 for x in inputs.input_ids ) assert all(len(__A ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__snake_case : Union[str, Any] ): UpperCAmelCase_ : Dict = pred.label_ids UpperCAmelCase_ : Any = pred.predictions # all unnecessary tokens are removed UpperCAmelCase_ : str = tokenizer.batch_decode(__A , skip_special_tokens=__A ) UpperCAmelCase_ : Any = tokenizer.batch_decode(__A , skip_special_tokens=__A ) UpperCAmelCase_ : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__A ) )] ) / len(__A ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase_ : Tuple = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=['''article''', '''highlights'''] , ) train_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) # same for validation dataset UpperCAmelCase_ : int = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__A , batch_size=__A , remove_columns=['''article''', '''highlights'''] , ) val_dataset.set_format( type='''torch''' , columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] , ) UpperCAmelCase_ : Dict = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : List[str] = SeqaSeqTrainingArguments( output_dir=__A , per_device_train_batch_size=__A , per_device_eval_batch_size=__A , predict_with_generate=__A , evaluation_strategy='''steps''' , do_train=__A , do_eval=__A , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCAmelCase_ : Dict = SeqaSeqTrainer( model=__A , args=__A , compute_metrics=_compute_metrics , train_dataset=__A , eval_dataset=__A , tokenizer=__A , ) # start training trainer.train()
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
from random import randint from tempfile import TemporaryFile import numpy as np def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 0 if start < end: UpperCAmelCase_ : Union[str, Any] = randint(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase_ : str = a[end] UpperCAmelCase_ : List[str] = a[pivot] UpperCAmelCase_ : Tuple = temp UpperCAmelCase_ : int = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Optional[int] = randint(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase_ : List[Any] = a[end] UpperCAmelCase_ : Optional[int] = a[pivot] UpperCAmelCase_ : List[Any] = temp UpperCAmelCase_ : Union[str, Any] = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ : Optional[int] = new_pivot_index + 1 UpperCAmelCase_ : Optional[Any] = a[new_pivot_index] UpperCAmelCase_ : Tuple = a[index] UpperCAmelCase_ : Any = temp UpperCAmelCase_ : List[Any] = a[new_pivot_index + 1] UpperCAmelCase_ : Dict = a[end] UpperCAmelCase_ : Optional[Any] = temp return new_pivot_index + 1, count __UpperCamelCase : str = TemporaryFile() __UpperCamelCase : List[Any] = 100 # 1000 elements are to be sorted __UpperCamelCase : Dict = 0, 1 # mean and standard deviation __UpperCamelCase : str = np.random.normal(mu, sigma, p) np.save(outfile, X) print('The array is') print(X) outfile.seek(0) # using the same array __UpperCamelCase : Tuple = np.load(outfile) __UpperCamelCase : int = len(M) - 1 __UpperCamelCase : Tuple = _in_place_quick_sort(M, 0, r) print( 'No of Comparisons for 100 elements selected from a standard normal distribution' 'is :' ) print(z)
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_5_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'pytorch', 'script': 'run_ddp.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.7, 'eval_loss': 0.6}, }, { 'framework': 'tensorflow', 'script': 'run_tf_dist.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.p3.16xlarge', 'results': {'train_runtime': 6_0_0, 'eval_accuracy': 0.6, 'eval_loss': 0.7}, }, ] ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : List[str] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=_a , ) assert hasattr(self , '''env''' ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : str = f'''{self.env.base_job_name}-{instance_count}-{'ddp' if 'ddp' in self.script else 'smd'}''' # distributed data settings UpperCAmelCase_ : Dict = {"""smdistributed""": {"""dataparallel""": {"""enabled""": True}}} if self.script != """run_ddp.py""" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_a , instance_count=_a , instance_type=self.instance_type , debugger_hook_config=_a , hyperparameters={**self.env.distributed_hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_a , py_version='''py36''' , ) def _lowerCamelCase ( self : Tuple , __snake_case : Tuple ): '''simple docstring''' TrainingJobAnalytics(_a ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def _lowerCamelCase ( self : Any , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.create_estimator(_a ) # run training estimator.fit() # result dataframe UpperCAmelCase_ : Optional[int] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCAmelCase_ : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) UpperCAmelCase_ : List[Any] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCAmelCase_ : List[str] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , _a )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : Optional[int] = { 'configuration_efficientnet': [ 'EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientNetConfig', 'EfficientNetOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['EfficientNetImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientNetForImageClassification', 'EfficientNetModel', 'EfficientNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets __UpperCamelCase : List[Any] = '\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n' __UpperCamelCase : Optional[int] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n' __UpperCamelCase : List[Any] = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/ROUGE_(metric)''', '''https://github.com/google-research/google-research/tree/master/rouge''', ] , ) def _lowerCamelCase ( self : int , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str]=None , __snake_case : List[str]=True , __snake_case : List[Any]=False ): '''simple docstring''' if rouge_types is None: UpperCAmelCase_ : str = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum'''] UpperCAmelCase_ : Dict = rouge_scorer.RougeScorer(rouge_types=__lowerCAmelCase , use_stemmer=__lowerCAmelCase ) if use_aggregator: UpperCAmelCase_ : List[str] = scoring.BootstrapAggregator() else: UpperCAmelCase_ : Tuple = [] for ref, pred in zip(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase_ : Union[str, Any] = scorer.score(__lowerCAmelCase , __lowerCAmelCase ) if use_aggregator: aggregator.add_scores(__lowerCAmelCase ) else: scores.append(__lowerCAmelCase ) if use_aggregator: UpperCAmelCase_ : str = aggregator.aggregate() else: UpperCAmelCase_ : Any = {} for key in scores[0]: UpperCAmelCase_ : Tuple = [score[key] for score in scores] return result
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCAmelCase__( _UpperCAmelCase ): '''simple docstring''' A_ : Optional[Any] = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) A_ : List[str] = 'CIDAS/clipseg-rd64-refined' A_ : Union[str, Any] = 'image_segmenter' A_ : Union[str, Any] = CLIPSegForImageSegmentation A_ : Any = ['image', 'text'] A_ : Any = ['image'] def __init__( self : Any , *__snake_case : Optional[int] , **__snake_case : int ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*lowercase_ , **lowercase_ ) def _lowerCamelCase ( self : Optional[int] , __snake_case : "Image" , __snake_case : str ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=lowercase_ , return_tensors='''pt''' ) def _lowerCamelCase ( self : Any , __snake_case : Dict ): '''simple docstring''' with torch.no_grad(): UpperCAmelCase_ : Optional[Any] = self.model(**lowercase_ ).logits return logits def _lowerCamelCase ( self : Optional[int] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = outputs.cpu().detach().numpy() UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
708
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __UpperCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = 'token-classification' def __init__( self : Any , __snake_case : Optional[Any] ): '''simple docstring''' if type(__snake_case ) == dict: UpperCAmelCase_ : Tuple = Namespace(**__snake_case ) UpperCAmelCase_ : Dict = import_module('''tasks''' ) try: UpperCAmelCase_ : int = getattr(__snake_case , hparams.task_type ) UpperCAmelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) UpperCAmelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) UpperCAmelCase_ : Dict = CrossEntropyLoss().ignore_index super().__init__(__snake_case , len(self.labels ) , self.mode ) def _lowerCamelCase ( self : Optional[int] , **__snake_case : Optional[Any] ): '''simple docstring''' return self.model(**__snake_case ) def _lowerCamelCase ( self : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Union[str, Any] = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : str = self(**__snake_case ) UpperCAmelCase_ : Any = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCAmelCase_ : Optional[Any] = self._feature_file(__snake_case ) if os.path.exists(__snake_case ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Any = torch.load(__snake_case ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) UpperCAmelCase_ : Optional[Any] = self.token_classification_task.read_examples_from_file(args.data_dir , __snake_case ) UpperCAmelCase_ : List[str] = self.token_classification_task.convert_examples_to_features( __snake_case , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__snake_case , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , __snake_case ) torch.save(__snake_case , __snake_case ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int , __snake_case : bool = False ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._feature_file(__snake_case ) logger.info('''Loading features from cached file %s''' , __snake_case ) UpperCAmelCase_ : Optional[int] = torch.load(__snake_case ) UpperCAmelCase_ : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCAmelCase_ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCAmelCase_ : Any = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCAmelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCAmelCase_ : int = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__snake_case , __snake_case , __snake_case , __snake_case ) , batch_size=__snake_case ) def _lowerCamelCase ( self : List[Any] , __snake_case : Dict , __snake_case : Union[str, Any] ): '''simple docstring''' """Compute validation""" "" UpperCAmelCase_ : str = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": UpperCAmelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCAmelCase_ : int = self(**__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : int = outputs[:2] UpperCAmelCase_ : Optional[int] = logits.detach().cpu().numpy() UpperCAmelCase_ : List[Any] = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self : List[str] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = torch.stack([x['''val_loss'''] for x in outputs] ).mean() UpperCAmelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Any = np.argmax(__snake_case , axis=2 ) UpperCAmelCase_ : int = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) UpperCAmelCase_ : Tuple = dict(enumerate(self.labels ) ) UpperCAmelCase_ : Union[str, Any] = [[] for _ in range(out_label_ids.shape[0] )] UpperCAmelCase_ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCAmelCase_ : Union[str, Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(__snake_case , __snake_case ), '''precision''': precision_score(__snake_case , __snake_case ), '''recall''': recall_score(__snake_case , __snake_case ), '''f1''': fa_score(__snake_case , __snake_case ), } UpperCAmelCase_ : str = dict(results.items() ) UpperCAmelCase_ : List[Any] = results return ret, preds_list, out_label_list def _lowerCamelCase ( self : List[str] , __snake_case : int ): '''simple docstring''' # when stable UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = self._eval_end(__snake_case ) UpperCAmelCase_ : int = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self : List[Any] , __snake_case : Tuple ): '''simple docstring''' # updating to test_epoch_end instead of deprecated test_end UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self._eval_end(__snake_case ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCAmelCase_ : Optional[Any] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __snake_case : str , __snake_case : Optional[int] ): '''simple docstring''' # Add NER specific options BaseTransformer.add_model_specific_args(__snake_case , __snake_case ) parser.add_argument( '''--task_type''' , default='''NER''' , type=__snake_case , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=__snake_case , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=__snake_case , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=__snake_case , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __UpperCamelCase : Dict = NERTransformer.add_model_specific_args(parser, os.getcwd()) __UpperCamelCase : Tuple = parser.parse_args() __UpperCamelCase : Optional[Any] = NERTransformer(args) __UpperCamelCase : int = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __UpperCamelCase : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) __UpperCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
641
0
from __future__ import annotations from collections import namedtuple def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = namedtuple('''result''' , '''name value''' ) if (voltage, current, power).count(0 ) != 1: raise ValueError('''Only one argument must be 0''' ) elif power < 0: raise ValueError( '''Power cannot be negative in any electrical/electronics system''' ) elif voltage == 0: return result('''voltage''' , power / current ) elif current == 0: return result('''current''' , power / voltage ) elif power == 0: return result('''power''' , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
709
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'encoder-decoder' A_ : Optional[int] = True def __init__( self : Dict , **__snake_case : Union[str, Any] ): '''simple docstring''' super().__init__(**__snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCAmelCase_ : int = kwargs.pop('''encoder''' ) UpperCAmelCase_ : List[Any] = encoder_config.pop('''model_type''' ) UpperCAmelCase_ : int = kwargs.pop('''decoder''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Optional[int] = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : List[Any] = True @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : Union[str, Any] ): '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) UpperCAmelCase_ : Dict = True UpperCAmelCase_ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Tuple = self.encoder.to_dict() UpperCAmelCase_ : Tuple = self.decoder.to_dict() UpperCAmelCase_ : Tuple = self.__class__.model_type return output
641
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __UpperCamelCase : List[str] = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase__( UpperCAmelCase__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self : Dict , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : bool = True , __snake_case : Union[int, float] = 1 / 255 , __snake_case : bool = True , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = True , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = size if size is not None else {'''shortest_edge''': 224} UpperCAmelCase_ : List[Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) UpperCAmelCase_ : List[str] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} UpperCAmelCase_ : Optional[Any] = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase , param_name='''crop_size''' ) UpperCAmelCase_ : int = do_resize UpperCAmelCase_ : List[str] = size UpperCAmelCase_ : Tuple = resample UpperCAmelCase_ : Optional[int] = do_center_crop UpperCAmelCase_ : List[str] = crop_size UpperCAmelCase_ : Any = do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor UpperCAmelCase_ : Dict = do_normalize UpperCAmelCase_ : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCAmelCase_ : str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCAmelCase_ : str = do_convert_rgb def _lowerCamelCase ( self : int , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BICUBIC , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : int = get_size_dict(__lowerCAmelCase , default_to_square=__lowerCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCAmelCase_ : Optional[Any] = get_resize_output_image_size(__lowerCAmelCase , size=size['''shortest_edge'''] , default_to_square=__lowerCAmelCase ) return resize(__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : str = get_size_dict(__lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__lowerCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self : int , __snake_case : np.ndarray , __snake_case : Union[int, float] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ): '''simple docstring''' return rescale(__lowerCAmelCase , scale=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self : Any , __snake_case : np.ndarray , __snake_case : Union[float, List[float]] , __snake_case : Union[float, List[float]] , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : int , ): '''simple docstring''' return normalize(__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase , data_format=__lowerCAmelCase , **__lowerCAmelCase ) def _lowerCamelCase ( self : List[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : int = None , __snake_case : bool = None , __snake_case : float = None , __snake_case : bool = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : Optional[Union[float, List[float]]] = None , __snake_case : bool = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[ChannelDimension] = ChannelDimension.FIRST , **__snake_case : Tuple , ): '''simple docstring''' UpperCAmelCase_ : Any = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = size if size is not None else self.size UpperCAmelCase_ : Union[str, Any] = get_size_dict(__lowerCAmelCase , param_name='''size''' , default_to_square=__lowerCAmelCase ) UpperCAmelCase_ : Optional[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Union[str, Any] = get_size_dict(__lowerCAmelCase , param_name='''crop_size''' , default_to_square=__lowerCAmelCase ) UpperCAmelCase_ : str = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[Any] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : str = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCAmelCase_ : str = make_list_of_images(__lowerCAmelCase ) if not valid_images(__lowerCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCAmelCase_ : Optional[int] = [convert_to_rgb(__lowerCAmelCase ) for image in images] # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[int] = [to_numpy_array(__lowerCAmelCase ) for image in images] if do_resize: UpperCAmelCase_ : List[str] = [self.resize(image=__lowerCAmelCase , size=__lowerCAmelCase , resample=__lowerCAmelCase ) for image in images] if do_center_crop: UpperCAmelCase_ : List[Any] = [self.center_crop(image=__lowerCAmelCase , size=__lowerCAmelCase ) for image in images] if do_rescale: UpperCAmelCase_ : Optional[int] = [self.rescale(image=__lowerCAmelCase , scale=__lowerCAmelCase ) for image in images] if do_normalize: UpperCAmelCase_ : Tuple = [self.normalize(image=__lowerCAmelCase , mean=__lowerCAmelCase , std=__lowerCAmelCase ) for image in images] UpperCAmelCase_ : List[str] = [to_channel_dimension_format(__lowerCAmelCase , __lowerCAmelCase ) for image in images] UpperCAmelCase_ : Dict = {'''pixel_values''': images} return BatchFeature(data=__lowerCAmelCase , tensor_type=__lowerCAmelCase )
710
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def snake_case_ ( ): UpperCAmelCase_ : int = '''https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png''' UpperCAmelCase_ : Dict = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ).convert('''RGB''' ) return image def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[str] = [] # fmt: off # vision encoder rename_keys.append(('''visual_encoder.cls_token''', '''vision_model.embeddings.class_embedding''') ) rename_keys.append(('''visual_encoder.pos_embed''', '''vision_model.embeddings.position_embedding''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.weight''', '''vision_model.embeddings.patch_embedding.weight''') ) rename_keys.append(('''visual_encoder.patch_embed.proj.bias''', '''vision_model.embeddings.patch_embedding.bias''') ) rename_keys.append(('''ln_vision.weight''', '''vision_model.post_layernorm.weight''') ) rename_keys.append(('''ln_vision.bias''', '''vision_model.post_layernorm.bias''') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.weight''', '''qformer.layernorm.weight''') ) rename_keys.append(('''Qformer.bert.embeddings.LayerNorm.bias''', '''qformer.layernorm.bias''') ) # fmt: on return rename_keys def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Any = dct.pop(__lowercase ) UpperCAmelCase_ : Optional[Any] = val def snake_case_ ( __lowercase , __lowercase ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCAmelCase_ : Optional[int] = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCAmelCase_ : Any = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCAmelCase_ : int = torch.cat((q_bias, torch.zeros_like(__lowercase , requires_grad=__lowercase ), v_bias) ) UpperCAmelCase_ : List[str] = qkv_bias def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = 3_6_4 if '''coco''' in model_name else 2_2_4 UpperCAmelCase_ : Any = BlipaVisionConfig(image_size=__lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCAmelCase_ : Any = OPTConfig.from_pretrained('''facebook/opt-2.7b''' , eos_token_id=__lowercase ).to_dict() elif "opt-6.7b" in model_name: UpperCAmelCase_ : List[str] = OPTConfig.from_pretrained('''facebook/opt-6.7b''' , eos_token_id=__lowercase ).to_dict() elif "t5-xl" in model_name: UpperCAmelCase_ : List[str] = TaConfig.from_pretrained('''google/flan-t5-xl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCAmelCase_ : Any = TaConfig.from_pretrained('''google/flan-t5-xxl''' , dense_act_fn='''gelu''' , bos_token_id=1 ).to_dict() UpperCAmelCase_ : List[Any] = BlipaConfig(vision_config=__lowercase , text_config=__lowercase ) return config, image_size @torch.no_grad() def snake_case_ ( __lowercase , __lowercase=None , __lowercase=False ): UpperCAmelCase_ : List[Any] = ( AutoTokenizer.from_pretrained('''facebook/opt-2.7b''' ) if '''opt''' in model_name else AutoTokenizer.from_pretrained('''google/flan-t5-xl''' ) ) UpperCAmelCase_ : List[str] = tokenizer('''\n''' , add_special_tokens=__lowercase ).input_ids[0] UpperCAmelCase_ , UpperCAmelCase_ : str = get_blipa_config(__lowercase , eos_token_id=__lowercase ) UpperCAmelCase_ : List[Any] = BlipaForConditionalGeneration(__lowercase ).eval() UpperCAmelCase_ : Tuple = { '''blip2-opt-2.7b''': ('''blip2_opt''', '''pretrain_opt2.7b'''), '''blip2-opt-6.7b''': ('''blip2_opt''', '''pretrain_opt6.7b'''), '''blip2-opt-2.7b-coco''': ('''blip2_opt''', '''caption_coco_opt2.7b'''), '''blip2-opt-6.7b-coco''': ('''blip2_opt''', '''caption_coco_opt6.7b'''), '''blip2-flan-t5-xl''': ('''blip2_t5''', '''pretrain_flant5xl'''), '''blip2-flan-t5-xl-coco''': ('''blip2_t5''', '''caption_coco_flant5xl'''), '''blip2-flan-t5-xxl''': ('''blip2_t5''', '''pretrain_flant5xxl'''), } UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = model_name_to_original[model_name] # load original model print('''Loading original model...''' ) UpperCAmelCase_ : int = '''cuda''' if torch.cuda.is_available() else '''cpu''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = load_model_and_preprocess( name=__lowercase , model_type=__lowercase , is_eval=__lowercase , device=__lowercase ) original_model.eval() print('''Done!''' ) # update state dict keys UpperCAmelCase_ : Optional[Any] = original_model.state_dict() UpperCAmelCase_ : List[Any] = create_rename_keys(__lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__lowercase ) if key.startswith('''Qformer.bert''' ): UpperCAmelCase_ : Tuple = key.replace('''Qformer.bert''' , '''qformer''' ) if "attention.self" in key: UpperCAmelCase_ : Optional[Any] = key.replace('''self''' , '''attention''' ) if "opt_proj" in key: UpperCAmelCase_ : Any = key.replace('''opt_proj''' , '''language_projection''' ) if "t5_proj" in key: UpperCAmelCase_ : Tuple = key.replace('''t5_proj''' , '''language_projection''' ) if key.startswith('''opt''' ): UpperCAmelCase_ : Any = key.replace('''opt''' , '''language''' ) if key.startswith('''t5''' ): UpperCAmelCase_ : Optional[Any] = key.replace('''t5''' , '''language''' ) UpperCAmelCase_ : List[str] = val # read in qv biases read_in_q_v_bias(__lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = hf_model.load_state_dict(__lowercase , strict=__lowercase ) assert len(__lowercase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCAmelCase_ : str = load_demo_image() UpperCAmelCase_ : Any = vis_processors['''eval'''](__lowercase ).unsqueeze(0 ).to(__lowercase ) UpperCAmelCase_ : Optional[Any] = tokenizer(['''\n'''] , return_tensors='''pt''' ).input_ids.to(__lowercase ) # create processor UpperCAmelCase_ : Optional[int] = BlipImageProcessor( size={'''height''': image_size, '''width''': image_size} , image_mean=__lowercase , image_std=__lowercase ) UpperCAmelCase_ : Tuple = BlipaProcessor(image_processor=__lowercase , tokenizer=__lowercase ) UpperCAmelCase_ : str = processor(images=__lowercase , return_tensors='''pt''' ).pixel_values.to(__lowercase ) # make sure processor creates exact same pixel values assert torch.allclose(__lowercase , __lowercase ) original_model.to(__lowercase ) hf_model.to(__lowercase ) with torch.no_grad(): if "opt" in model_name: UpperCAmelCase_ : Tuple = original_model({'''image''': original_pixel_values, '''text_input''': ['''''']} ).logits UpperCAmelCase_ : Optional[int] = hf_model(__lowercase , __lowercase ).logits else: UpperCAmelCase_ : int = original_model( {'''image''': original_pixel_values, '''text_input''': ['''\n'''], '''text_output''': ['''\n''']} ).logits UpperCAmelCase_ : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_0_0 ) UpperCAmelCase_ : int = hf_model(__lowercase , __lowercase , labels=__lowercase ).logits assert original_logits.shape == logits.shape print('''First values of original logits:''' , original_logits[0, :3, :3] ) print('''First values of HF logits:''' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCAmelCase_ : Tuple = torch.tensor( [[-4_1.5_8_5_0, -4.4_4_4_0, -8.9_9_2_2], [-4_7.4_3_2_2, -5.9_1_4_3, -1.7_3_4_0]] , device=__lowercase ) assert torch.allclose(logits[0, :3, :3] , __lowercase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCAmelCase_ : Tuple = torch.tensor( [[-5_7.0_1_0_9, -9.8_9_6_7, -1_2.6_2_8_0], [-6_8.6_5_7_8, -1_2.7_1_9_1, -1_0.5_0_6_5]] , device=__lowercase ) else: # cast to same type UpperCAmelCase_ : Optional[int] = logits.dtype assert torch.allclose(original_logits.to(__lowercase ) , __lowercase , atol=1e-2 ) print('''Looks ok!''' ) print('''Generating a caption...''' ) UpperCAmelCase_ : Union[str, Any] = '''''' UpperCAmelCase_ : Optional[Any] = tokenizer(__lowercase , return_tensors='''pt''' ).input_ids.to(__lowercase ) UpperCAmelCase_ : int = original_model.generate({'''image''': original_pixel_values} ) UpperCAmelCase_ : Optional[int] = hf_model.generate( __lowercase , __lowercase , do_sample=__lowercase , num_beams=5 , max_length=3_0 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('''Original generation:''' , __lowercase ) UpperCAmelCase_ : Tuple = input_ids.shape[1] UpperCAmelCase_ : str = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__lowercase ) UpperCAmelCase_ : Optional[int] = [text.strip() for text in output_text] print('''HF generation:''' , __lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__lowercase ) hf_model.save_pretrained(__lowercase ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __UpperCamelCase : List[Any] = argparse.ArgumentParser() __UpperCamelCase : Optional[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) __UpperCamelCase : int = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def snake_case_ ( __lowercase ): if not is_accelerate_available(): return method UpperCAmelCase_ : List[str] = version.parse(accelerate.__version__ ).base_version if version.parse(_snake_case ) < version.parse('''0.17.0''' ): return method def wrapper(self , *__lowercase , **__lowercase ): if hasattr(self , '''_hf_hook''' ) and hasattr(self._hf_hook , '''pre_forward''' ): self._hf_hook.pre_forward(self ) return method(self , *_snake_case , **_snake_case ) return wrapper
711
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def snake_case_ ( __lowercase , __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : int = multiprocessing.Manager() UpperCAmelCase_ : Union[str, Any] = manager.list() UpperCAmelCase_ : int = multiprocessing.Process(target=__lowercase , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil UpperCAmelCase_ : str = shutil.rmtree UpperCAmelCase_ : Tuple = os.rmdir UpperCAmelCase_ : Dict = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: UpperCAmelCase_ : Optional[int] = {} with swallow_io(): with time_limit(__lowercase ): exec(__lowercase , __lowercase ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. UpperCAmelCase_ : Optional[int] = rmtree UpperCAmelCase_ : Optional[Any] = rmdir UpperCAmelCase_ : Optional[Any] = chdir @contextlib.contextmanager def snake_case_ ( __lowercase ): def signal_handler(__lowercase , __lowercase ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , __lowercase ) signal.signal(signal.SIGALRM , __lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def snake_case_ ( ): UpperCAmelCase_ : Optional[Any] = WriteOnlyStringIO() with contextlib.redirect_stdout(__lowercase ): with contextlib.redirect_stderr(__lowercase ): with redirect_stdin(__lowercase ): yield @contextlib.contextmanager def snake_case_ ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(__lowercase ): yield dirname class lowerCAmelCase__( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase__( io.StringIO ): '''simple docstring''' def _lowerCamelCase ( self : Dict , *__snake_case : List[Any] , **__snake_case : int ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Dict , *__snake_case : int , **__snake_case : Any ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : int , *__snake_case : List[str] , **__snake_case : Optional[Any] ): '''simple docstring''' raise OSError def _lowerCamelCase ( self : Union[str, Any] , *__snake_case : Optional[Any] , **__snake_case : List[Any] ): '''simple docstring''' return False class lowerCAmelCase__( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ : Optional[Any] = 'stdin' @contextlib.contextmanager def snake_case_ ( __lowercase ): if root == ".": yield return UpperCAmelCase_ : Tuple = os.getcwd() os.chdir(__lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(__lowercase ) def snake_case_ ( __lowercase=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins UpperCAmelCase_ : Any = None UpperCAmelCase_ : Any = None import os UpperCAmelCase_ : Union[str, Any] = '''1''' UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Any = None import shutil UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Dict = None UpperCAmelCase_ : Tuple = None import subprocess UpperCAmelCase_ : Dict = None # type: ignore UpperCAmelCase_ : Union[str, Any] = None import sys UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = None
641
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( UpperCamelCase_ ): '''simple docstring''' A_ : Union[str, Any] = 'unispeech-sat' def __init__( self : str , __snake_case : Optional[Any]=32 , __snake_case : Union[str, Any]=768 , __snake_case : Union[str, Any]=12 , __snake_case : Optional[Any]=12 , __snake_case : str=3_072 , __snake_case : Any="gelu" , __snake_case : Dict=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[Any]=0.0 , __snake_case : int=0.0 , __snake_case : Union[str, Any]=0.1 , __snake_case : List[Any]=0.1 , __snake_case : Optional[int]=0.02 , __snake_case : str=1E-5 , __snake_case : int="group" , __snake_case : List[Any]="gelu" , __snake_case : Tuple=(512, 512, 512, 512, 512, 512, 512) , __snake_case : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , __snake_case : str=False , __snake_case : List[Any]=128 , __snake_case : Union[str, Any]=16 , __snake_case : int=False , __snake_case : Union[str, Any]=True , __snake_case : Dict=0.05 , __snake_case : Any=10 , __snake_case : Optional[Any]=2 , __snake_case : List[str]=0.0 , __snake_case : int=10 , __snake_case : Optional[Any]=0 , __snake_case : List[str]=320 , __snake_case : Dict=2 , __snake_case : str=0.1 , __snake_case : Any=100 , __snake_case : Union[str, Any]=256 , __snake_case : str=256 , __snake_case : List[Any]=0.1 , __snake_case : Dict="mean" , __snake_case : Dict=False , __snake_case : List[str]=False , __snake_case : str=256 , __snake_case : Optional[int]=(512, 512, 512, 512, 1_500) , __snake_case : Optional[Any]=(5, 3, 3, 1, 1) , __snake_case : Tuple=(1, 2, 3, 1, 1) , __snake_case : Any=512 , __snake_case : List[str]=0 , __snake_case : Tuple=1 , __snake_case : Tuple=2 , __snake_case : List[str]=504 , **__snake_case : List[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Tuple = feat_extract_norm UpperCAmelCase_ : Any = feat_extract_activation UpperCAmelCase_ : Dict = list(UpperCamelCase__ ) UpperCAmelCase_ : List[str] = list(UpperCamelCase__ ) UpperCAmelCase_ : Dict = list(UpperCamelCase__ ) UpperCAmelCase_ : List[Any] = conv_bias UpperCAmelCase_ : Dict = num_conv_pos_embeddings UpperCAmelCase_ : Optional[int] = num_conv_pos_embedding_groups UpperCAmelCase_ : int = len(self.conv_dim ) UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : Any = hidden_act UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Tuple = hidden_dropout UpperCAmelCase_ : List[Any] = attention_dropout UpperCAmelCase_ : Dict = activation_dropout UpperCAmelCase_ : Any = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : Optional[int] = layerdrop UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : List[str] = num_clusters UpperCAmelCase_ : str = do_stable_layer_norm UpperCAmelCase_ : Optional[int] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : str = apply_spec_augment UpperCAmelCase_ : List[str] = mask_time_prob UpperCAmelCase_ : Optional[int] = mask_time_length UpperCAmelCase_ : int = mask_time_min_masks UpperCAmelCase_ : Optional[int] = mask_feature_prob UpperCAmelCase_ : Optional[Any] = mask_feature_length UpperCAmelCase_ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Dict = num_codevectors_per_group UpperCAmelCase_ : str = num_codevector_groups UpperCAmelCase_ : Optional[Any] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : Any = num_negatives UpperCAmelCase_ : Optional[Any] = codevector_dim UpperCAmelCase_ : Union[str, Any] = proj_codevector_dim UpperCAmelCase_ : Optional[int] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Optional[Any] = ctc_loss_reduction UpperCAmelCase_ : Tuple = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : int = list(UpperCamelCase__ ) UpperCAmelCase_ : int = list(UpperCamelCase__ ) UpperCAmelCase_ : Union[str, Any] = list(UpperCamelCase__ ) UpperCAmelCase_ : Any = xvector_output_dim @property def _lowerCamelCase ( self : str ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
712
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Any = { 'tiiuae/falcon-40b': 'https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json', 'tiiuae/falcon-7b': 'https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'falcon' A_ : int = ['past_key_values'] def __init__( self : Optional[Any] , __snake_case : Tuple=65_024 , __snake_case : List[str]=4_544 , __snake_case : Optional[Any]=32 , __snake_case : Any=71 , __snake_case : str=1E-5 , __snake_case : List[str]=0.02 , __snake_case : List[Any]=True , __snake_case : Dict=0.0 , __snake_case : Optional[Any]=0.0 , __snake_case : Any=None , __snake_case : List[Any]=False , __snake_case : Dict=False , __snake_case : Optional[int]=True , __snake_case : List[Any]=True , __snake_case : Optional[Any]=False , __snake_case : Dict=11 , __snake_case : List[str]=11 , **__snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : int = vocab_size # Backward compatibility with n_embed kwarg UpperCAmelCase_ : Union[str, Any] = kwargs.pop('''n_embed''' , __snake_case ) UpperCAmelCase_ : str = hidden_size if n_embed is None else n_embed UpperCAmelCase_ : Tuple = num_hidden_layers UpperCAmelCase_ : Tuple = num_attention_heads UpperCAmelCase_ : Optional[int] = layer_norm_epsilon UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Optional[int] = use_cache UpperCAmelCase_ : List[Any] = hidden_dropout UpperCAmelCase_ : Any = attention_dropout UpperCAmelCase_ : Tuple = bos_token_id UpperCAmelCase_ : List[Any] = eos_token_id UpperCAmelCase_ : Any = num_attention_heads if num_kv_heads is None else num_kv_heads UpperCAmelCase_ : Optional[int] = alibi UpperCAmelCase_ : Dict = new_decoder_architecture UpperCAmelCase_ : List[Any] = multi_query # Ignored when new_decoder_architecture is True UpperCAmelCase_ : Tuple = parallel_attn UpperCAmelCase_ : List[Any] = bias super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' return not self.alibi
641
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __UpperCamelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__( snake_case__ ): '''simple docstring''' def __init__( self : Tuple , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : List[str] , __snake_case : str , __snake_case : Dict , __snake_case : List[str] , ): '''simple docstring''' super().__init__() self.register_modules( vae=_SCREAMING_SNAKE_CASE , text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE , ) def _lowerCamelCase ( self : Dict , __snake_case : Optional[Any] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase_ : Any = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_SCREAMING_SNAKE_CASE ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' self.enable_attention_slicing(_SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self : Union[str, Any] , __snake_case : List[str] , __snake_case : List[str] = 512 , __snake_case : Tuple = 512 , __snake_case : Union[str, Any] = 50 , __snake_case : Any = 7.5 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : int = 0.0 , __snake_case : Optional[int] = None , __snake_case : List[Any] = None , __snake_case : Union[str, Any] = "pil" , __snake_case : int = True , __snake_case : Dict = None , __snake_case : Tuple = 1 , __snake_case : Union[str, Any] = None , **__snake_case : Union[str, Any] , ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(_SCREAMING_SNAKE_CASE )}.''' ) # get prompt text embeddings UpperCAmelCase_ : Tuple = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) UpperCAmelCase_ : int = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCAmelCase_ : str = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCAmelCase_ : Dict = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: UpperCAmelCase_ : List[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = text_embeddings.shape UpperCAmelCase_ : Optional[int] = text_embeddings.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) UpperCAmelCase_ : Optional[int] = text_embeddings.view(bs_embed * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCAmelCase_ : str = 42 if negative_prompt is None: UpperCAmelCase_ : Tuple = [''''''] elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=''' f''' {type(_SCREAMING_SNAKE_CASE )}.''' ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' ''' the batch size of `prompt`.''' ) else: UpperCAmelCase_ : Dict = negative_prompt UpperCAmelCase_ : Dict = text_input_ids.shape[-1] UpperCAmelCase_ : Optional[Any] = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='''max_length''' , max_length=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) UpperCAmelCase_ : str = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCAmelCase_ : List[str] = uncond_embeddings.shape[1] UpperCAmelCase_ : Dict = uncond_embeddings.repeat(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1 ) UpperCAmelCase_ : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase_ : Optional[Any] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCAmelCase_ : Optional[int] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) UpperCAmelCase_ : str = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) UpperCAmelCase_ : str = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps UpperCAmelCase_ : List[str] = torch.randn( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device='''cpu''' , dtype=_SCREAMING_SNAKE_CASE ).to(self.device ) UpperCAmelCase_ : Union[str, Any] = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device='''cpu''' , dtype=_SCREAMING_SNAKE_CASE ).to( self.device ) else: UpperCAmelCase_ : str = torch.randn( _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = torch.randn(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=self.device , dtype=_SCREAMING_SNAKE_CASE ) else: if latents_reference.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) UpperCAmelCase_ : Optional[int] = latents_reference.to(self.device ) UpperCAmelCase_ : List[str] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images UpperCAmelCase_ : Optional[Any] = (latents_shape[3] - latents_shape_reference[3]) // 2 UpperCAmelCase_ : Dict = (latents_shape[2] - latents_shape_reference[2]) // 2 UpperCAmelCase_ : Dict = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx UpperCAmelCase_ : List[str] = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy UpperCAmelCase_ : Tuple = 0 if dx < 0 else dx UpperCAmelCase_ : Tuple = 0 if dy < 0 else dy UpperCAmelCase_ : List[Any] = max(-dx , 0 ) UpperCAmelCase_ : List[Any] = max(-dy , 0 ) # import pdb # pdb.set_trace() UpperCAmelCase_ : Optional[Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand UpperCAmelCase_ : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCAmelCase_ : Any = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCAmelCase_ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCAmelCase_ : Dict = {} if accepts_eta: UpperCAmelCase_ : Optional[Any] = eta for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase_ : Any = self.scheduler.scale_model_input(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # predict the noise residual UpperCAmelCase_ : List[Any] = self.unet(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE ).sample # perform guidance if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred.chunk(2 ) UpperCAmelCase_ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ : Optional[int] = self.scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = 1 / 0.18_215 * latents UpperCAmelCase_ : List[str] = self.vae.decode(_SCREAMING_SNAKE_CASE ).sample UpperCAmelCase_ : int = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: UpperCAmelCase_ : str = self.feature_extractor(self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) , return_tensors='''pt''' ).to( self.device ) UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.safety_checker( images=_SCREAMING_SNAKE_CASE , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: UpperCAmelCase_ : List[str] = None if output_type == "pil": UpperCAmelCase_ : Any = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=_SCREAMING_SNAKE_CASE , nsfw_content_detected=_SCREAMING_SNAKE_CASE )
713
def snake_case_ ( __lowercase ): return " ".join( ''''''.join(word[::-1] ) if len(__lowercase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
641
0
'''simple docstring''' class lowerCAmelCase__: '''simple docstring''' def __init__( self : Optional[int] , __snake_case : list ): '''simple docstring''' UpperCAmelCase_ : Tuple = set_counts UpperCAmelCase_ : Union[str, Any] = max(__snake_case ) UpperCAmelCase_ : List[Any] = len(__snake_case ) UpperCAmelCase_ : Optional[Any] = [1] * num_sets UpperCAmelCase_ : Union[str, Any] = list(range(__snake_case ) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.get_parent(__snake_case ) UpperCAmelCase_ : Union[str, Any] = self.get_parent(__snake_case ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Union[str, Any] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCAmelCase_ : Any = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : List[str] = src_parent UpperCAmelCase_ : Union[str, Any] = self.set_counts[src_parent] UpperCAmelCase_ : Tuple = max(self.max_set , __snake_case ) return True def _lowerCamelCase ( self : Dict , __snake_case : int ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set UpperCAmelCase_ : Any = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
714
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCamelCase : str = 'true' def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=1_6 ): set_seed(4_2 ) UpperCAmelCase_ : Optional[int] = RegressionModel() UpperCAmelCase_ : Optional[int] = deepcopy(__lowercase ) UpperCAmelCase_ : Union[str, Any] = RegressionDataset(length=__lowercase ) UpperCAmelCase_ : Any = DataLoader(__lowercase , batch_size=__lowercase ) model.to(accelerator.device ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.prepare(__lowercase , __lowercase ) return model, ddp_model, dataloader def snake_case_ ( __lowercase , __lowercase=False ): UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) UpperCAmelCase_ : List[Any] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(__lowercase ): UpperCAmelCase_ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase ) return outputs with accelerator.main_process_first(): UpperCAmelCase_ : List[str] = dataset.map( __lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) UpperCAmelCase_ : Any = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowercase ): if use_longest: return tokenizer.pad(__lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__lowercase , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__lowercase , shuffle=__lowercase , collate_fn=__lowercase , batch_size=1_6 ) def snake_case_ ( __lowercase , __lowercase ): UpperCAmelCase_ : Optional[int] = Accelerator(dispatch_batches=__lowercase , split_batches=__lowercase ) UpperCAmelCase_ : int = get_dataloader(__lowercase , not dispatch_batches ) UpperCAmelCase_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Any = accelerator.prepare(__lowercase , __lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Dict = [] for batch in dataloader: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = batch.values() with torch.no_grad(): UpperCAmelCase_ : List[Any] = model(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) UpperCAmelCase_ , UpperCAmelCase_ : Any = [], [] for logit, targ in logits_and_targets: logits.append(__lowercase ) targs.append(__lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = torch.cat(__lowercase ), torch.cat(__lowercase ) return logits, targs def snake_case_ ( __lowercase , __lowercase=8_2 , __lowercase=False , __lowercase=False , __lowercase=1_6 ): UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = get_basic_setup(__lowercase , __lowercase , __lowercase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = generate_predictions(__lowercase , __lowercase , __lowercase ) assert ( len(__lowercase ) == num_samples ), F'''Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__lowercase )}''' def snake_case_ ( __lowercase = False , __lowercase = False ): UpperCAmelCase_ : Optional[Any] = evaluate.load('''glue''' , '''mrpc''' ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = get_mrpc_setup(__lowercase , __lowercase ) # First do baseline UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = setup['''no'''] model.to(__lowercase ) model.eval() for batch in dataloader: batch.to(__lowercase ) with torch.inference_mode(): UpperCAmelCase_ : str = model(**__lowercase ) UpperCAmelCase_ : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__lowercase , references=batch['''labels'''] ) UpperCAmelCase_ : Optional[int] = metric.compute() # Then do distributed UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): UpperCAmelCase_ : Optional[int] = model(**__lowercase ) UpperCAmelCase_ : int = outputs.logits.argmax(dim=-1 ) UpperCAmelCase_ : Optional[int] = batch['''labels'''] UpperCAmelCase_ , UpperCAmelCase_ : Tuple = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__lowercase , references=__lowercase ) UpperCAmelCase_ : Dict = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'''Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n''' def snake_case_ ( ): UpperCAmelCase_ : str = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`''' ) test_mrpc(__lowercase , __lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: UpperCAmelCase_ : Optional[Any] = Accelerator(split_batches=__lowercase , dispatch_batches=__lowercase ) if accelerator.is_local_main_process: print(F'''With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99''' ) test_torch_metrics(__lowercase , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) UpperCAmelCase_ : List[Any] = Accelerator() test_torch_metrics(__lowercase , 5_1_2 ) accelerator.state._reset_state() def snake_case_ ( __lowercase ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
641
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : Tuple = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : int = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } __UpperCamelCase : List[str] = { 'allenai/led-base-16384': 1_6384, } class lowerCAmelCase__( lowercase__ ): '''simple docstring''' A_ : int = VOCAB_FILES_NAMES A_ : Any = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = LEDTokenizer A_ : Tuple = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , __snake_case : Optional[Any]=None , __snake_case : Dict=None , __snake_case : Tuple=None , __snake_case : Union[str, Any]="replace" , __snake_case : Tuple="<s>" , __snake_case : Optional[Any]="</s>" , __snake_case : Tuple="</s>" , __snake_case : List[str]="<s>" , __snake_case : Tuple="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Dict="<mask>" , __snake_case : Any=False , __snake_case : Any=True , **__snake_case : List[Any] , ): '''simple docstring''' super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) UpperCAmelCase_ : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: UpperCAmelCase_ : int = getattr(__lowercase , pre_tok_state.pop('''type''' ) ) UpperCAmelCase_ : Tuple = add_prefix_space UpperCAmelCase_ : List[Any] = pre_tok_class(**__lowercase ) UpperCAmelCase_ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_ : Tuple = '''post_processor''' UpperCAmelCase_ : str = getattr(self.backend_tokenizer , __lowercase , __lowercase ) if tokenizer_component_instance: UpperCAmelCase_ : List[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ : List[str] = tuple(state['''sep'''] ) if "cls" in state: UpperCAmelCase_ : Tuple = tuple(state['''cls'''] ) UpperCAmelCase_ : Tuple = False if state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: UpperCAmelCase_ : str = add_prefix_space UpperCAmelCase_ : Union[str, Any] = True if state.get('''trim_offsets''' , __lowercase ) != trim_offsets: UpperCAmelCase_ : int = trim_offsets UpperCAmelCase_ : Union[str, Any] = True if changes_to_apply: UpperCAmelCase_ : str = getattr(__lowercase , state.pop('''type''' ) ) UpperCAmelCase_ : Optional[Any] = component_class(**__lowercase ) setattr(self.backend_tokenizer , __lowercase , __lowercase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self : str ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self : Optional[int] , __snake_case : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else value UpperCAmelCase_ : List[str] = value def _lowerCamelCase ( self : Any , *__snake_case : List[Any] , **__snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = kwargs.get('''is_split_into_words''' , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def _lowerCamelCase ( self : int , *__snake_case : Union[str, Any] , **__snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = kwargs.get('''is_split_into_words''' , __lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__lowercase , **__lowercase ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ : List[str] = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def _lowerCamelCase ( self : List[str] , __snake_case : int , __snake_case : Optional[int]=None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : int , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [self.sep_token_id] UpperCAmelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , __snake_case : Optional[int] = None , __snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = super()._pad( encoded_inputs=__lowercase , max_length=__lowercase , padding_strategy=__lowercase , pad_to_multiple_of=__lowercase , return_attention_mask=__lowercase , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase_ : Any = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase_ : str = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase_ : Union[str, Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(__lowercase ) if needs_to_be_padded: UpperCAmelCase_ : Any = len(__lowercase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase_ : Dict = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase_ : Dict = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
715
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCamelCase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys __UpperCamelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
__UpperCamelCase : dict[str, float] = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355_818, } def snake_case_ ( __lowercase , __lowercase , __lowercase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCAmelCase_ : List[Any] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(_lowerCAmelCase )}''' ) raise ValueError(_lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
716
import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase__: '''simple docstring''' def __init__( self : List[str] , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : str = data UpperCAmelCase_ : List[Any] = [0X67_45_23_01, 0Xef_cd_ab_89, 0X98_ba_dc_fe, 0X10_32_54_76, 0Xc3_d2_e1_f0] @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : Dict ): '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0Xff_ff_ff_ff def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) UpperCAmelCase_ : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def _lowerCamelCase ( self : Dict , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Any = list(struct.unpack('''>16L''' , __snake_case ) ) + [0] * 64 for i in range(16 , 80 ): UpperCAmelCase_ : str = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.padding() UpperCAmelCase_ : str = self.split_blocks() for block in self.blocks: UpperCAmelCase_ : Any = self.expand_block(__snake_case ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCAmelCase_ : Optional[Any] = (b & c) | ((~b) & d) UpperCAmelCase_ : Optional[Any] = 0X5a_82_79_99 elif 20 <= i < 40: UpperCAmelCase_ : List[Any] = b ^ c ^ d UpperCAmelCase_ : str = 0X6e_d9_eb_a1 elif 40 <= i < 60: UpperCAmelCase_ : str = (b & c) | (b & d) | (c & d) UpperCAmelCase_ : Optional[int] = 0X8f_1b_bc_dc elif 60 <= i < 80: UpperCAmelCase_ : Union[str, Any] = b ^ c ^ d UpperCAmelCase_ : Dict = 0Xca_62_c1_d6 UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = ( self.rotate(__snake_case , 5 ) + f + e + k + expanded_block[i] & 0Xff_ff_ff_ff, a, self.rotate(__snake_case , 30 ), c, d, ) UpperCAmelCase_ : Optional[Any] = ( self.h[0] + a & 0Xff_ff_ff_ff, self.h[1] + b & 0Xff_ff_ff_ff, self.h[2] + c & 0Xff_ff_ff_ff, self.h[3] + d & 0Xff_ff_ff_ff, self.h[4] + e & 0Xff_ff_ff_ff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case_ ( ): UpperCAmelCase_ : Tuple = B'''Test String''' assert SHAaHash(__lowercase ).final_hash() == hashlib.shaa(__lowercase ).hexdigest() # noqa: S324 def snake_case_ ( ): UpperCAmelCase_ : int = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) UpperCAmelCase_ : List[Any] = parser.parse_args() UpperCAmelCase_ : Optional[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: UpperCAmelCase_ : List[str] = f.read() else: UpperCAmelCase_ : Tuple = bytes(__lowercase , '''utf-8''' ) print(SHAaHash(__lowercase ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
641
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : Optional[Any] , __snake_case : int=2 , __snake_case : Optional[Any]=3 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]=2 , __snake_case : str=7 , __snake_case : Optional[Any]=True , __snake_case : int=True , __snake_case : List[Any]=True , __snake_case : Optional[int]=True , __snake_case : Tuple=99 , __snake_case : Any=36 , __snake_case : Dict=3 , __snake_case : List[Any]=4 , __snake_case : Optional[Any]=37 , __snake_case : str="gelu" , __snake_case : str=0.1 , __snake_case : Any=0.1 , __snake_case : Tuple=512 , __snake_case : Tuple=16 , __snake_case : str=2 , __snake_case : str=0.02 , __snake_case : Dict=6 , __snake_case : int=6 , __snake_case : List[str]=3 , __snake_case : Optional[Any]=4 , __snake_case : Tuple=None , __snake_case : Union[str, Any]=1_000 , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Tuple = image_size UpperCAmelCase_ : Optional[int] = patch_size UpperCAmelCase_ : List[str] = text_seq_length UpperCAmelCase_ : Dict = is_training UpperCAmelCase_ : Union[str, Any] = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : List[str] = use_labels UpperCAmelCase_ : str = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : List[str] = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : List[str] = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = coordinate_size UpperCAmelCase_ : int = shape_size UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : str = scope UpperCAmelCase_ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) UpperCAmelCase_ : List[Any] = text_seq_length UpperCAmelCase_ : str = (image_size // patch_size) ** 2 + 1 UpperCAmelCase_ : str = self.text_seq_length + self.image_seq_length def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: UpperCAmelCase_ : int = bbox[i, j, 3] UpperCAmelCase_ : Any = bbox[i, j, 1] UpperCAmelCase_ : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: UpperCAmelCase_ : Dict = bbox[i, j, 2] UpperCAmelCase_ : Dict = bbox[i, j, 0] UpperCAmelCase_ : Union[str, Any] = t UpperCAmelCase_ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : List[Any] = None if self.use_input_mask: UpperCAmelCase_ : List[str] = random_attention_mask([self.batch_size, self.text_seq_length] ) UpperCAmelCase_ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) UpperCAmelCase_ : Optional[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _lowerCamelCase ( self : Any , __snake_case : Dict , __snake_case : Tuple , __snake_case : Dict , __snake_case : str , __snake_case : int , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = LayoutLMvaModel(config=__snake_case ) model.to(__snake_case ) model.eval() # text + image UpperCAmelCase_ : Dict = model(__snake_case , pixel_values=__snake_case ) UpperCAmelCase_ : str = model( __snake_case , bbox=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ : str = model(__snake_case , bbox=__snake_case , pixel_values=__snake_case , token_type_ids=__snake_case ) UpperCAmelCase_ : Tuple = model(__snake_case , bbox=__snake_case , pixel_values=__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only UpperCAmelCase_ : Optional[Any] = model(__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only UpperCAmelCase_ : Dict = model(pixel_values=__snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.num_labels UpperCAmelCase_ : Any = LayoutLMvaForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( __snake_case , bbox=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Any , __snake_case : Dict , __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : int = self.num_labels UpperCAmelCase_ : Any = LayoutLMvaForTokenClassification(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : str = model( __snake_case , bbox=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _lowerCamelCase ( self : str , __snake_case : Tuple , __snake_case : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = LayoutLMvaForQuestionAnswering(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : str = model( __snake_case , bbox=__snake_case , pixel_values=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , start_positions=__snake_case , end_positions=__snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = False A_ : List[Any] = False A_ : Optional[Any] = False A_ : Optional[int] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) A_ : List[str] = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _lowerCamelCase ( self : List[str] , __snake_case : int , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : int , __snake_case : Any ): '''simple docstring''' # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = LayoutLMvaModelTester(self ) UpperCAmelCase_ : Optional[int] = ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[Any] , __snake_case : Tuple=False ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = copy.deepcopy(__snake_case ) if model_class in get_values(__snake_case ): UpperCAmelCase_ : int = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__snake_case , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__snake_case ): UpperCAmelCase_ : int = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) elif model_class in get_values(__snake_case ): UpperCAmelCase_ : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) elif model_class in [ *get_values(__snake_case ), ]: UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) elif model_class in [ *get_values(__snake_case ), ]: UpperCAmelCase_ : Tuple = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__snake_case , ) return inputs_dict def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_ : Any = type self.model_tester.create_and_check_model(*__snake_case ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__snake_case ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__snake_case ) @slow def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : int = LayoutLMvaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( ): UpperCAmelCase_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self : int ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=__snake_case ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(__snake_case ) UpperCAmelCase_ : Optional[int] = self.default_image_processor UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : Optional[int] = image_processor(images=__snake_case , return_tensors='''pt''' ).pixel_values.to(__snake_case ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([[1, 2]] ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass UpperCAmelCase_ : Dict = model( input_ids=input_ids.to(__snake_case ) , bbox=bbox.to(__snake_case ) , pixel_values=pixel_values.to(__snake_case ) , ) # verify the logits UpperCAmelCase_ : str = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __snake_case ) UpperCAmelCase_ : int = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1E-4 ) )
717
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = 'timesformer' def __init__( self : int , __snake_case : Any=224 , __snake_case : str=16 , __snake_case : Any=3 , __snake_case : List[Any]=8 , __snake_case : Dict=768 , __snake_case : Dict=12 , __snake_case : Tuple=12 , __snake_case : Dict=3_072 , __snake_case : str="gelu" , __snake_case : Union[str, Any]=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.02 , __snake_case : Optional[Any]=1E-6 , __snake_case : List[Any]=True , __snake_case : List[str]="divided_space_time" , __snake_case : Optional[int]=0 , **__snake_case : Dict , ): '''simple docstring''' super().__init__(**__snake_case ) UpperCAmelCase_ : Optional[int] = image_size UpperCAmelCase_ : Optional[Any] = patch_size UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : int = num_frames UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : List[str] = layer_norm_eps UpperCAmelCase_ : str = qkv_bias UpperCAmelCase_ : Dict = attention_type UpperCAmelCase_ : str = drop_path_rate
641
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Any = { 'configuration_deberta': ['DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DebertaConfig', 'DebertaOnnxConfig'], 'tokenization_deberta': ['DebertaTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = ['DebertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = [ 'DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'DebertaForMaskedLM', 'DebertaForQuestionAnswering', 'DebertaForSequenceClassification', 'DebertaForTokenClassification', 'DebertaModel', 'DebertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ 'TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDebertaForMaskedLM', 'TFDebertaForQuestionAnswering', 'TFDebertaForSequenceClassification', 'TFDebertaForTokenClassification', 'TFDebertaModel', 'TFDebertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
718
import math import qiskit def snake_case_ ( __lowercase = 1 , __lowercase = 1 , __lowercase = 1 ): if ( isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) or isinstance(__lowercase , __lowercase ) ): raise TypeError('''inputs must be integers.''' ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('''inputs must be positive.''' ) if ( (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != input_a) or (math.floor(__lowercase ) != carry_in) ): raise ValueError('''inputs must be exact integers.''' ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('''inputs must be less or equal to 2.''' ) # build registers UpperCAmelCase_ : Any = qiskit.QuantumRegister(4 , '''qr''' ) UpperCAmelCase_ : List[str] = qiskit.ClassicalRegister(2 , '''cr''' ) # list the entries UpperCAmelCase_ : Any = [input_a, input_a, carry_in] UpperCAmelCase_ : Dict = qiskit.QuantumCircuit(__lowercase , __lowercase ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(__lowercase ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(__lowercase ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(__lowercase ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , __lowercase ) # measure the last two qbits UpperCAmelCase_ : Optional[int] = qiskit.Aer.get_backend('''aer_simulator''' ) UpperCAmelCase_ : List[str] = qiskit.execute(__lowercase , __lowercase , shots=1_0_0_0 ) return job.result().get_counts(__lowercase ) if __name__ == "__main__": print(F'Total sum count for state is: {quantum_full_adder(1, 1, 1)}')
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) __UpperCamelCase : Dict = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[str] = 'gpt_bigcode' A_ : Optional[Any] = ['past_key_values'] A_ : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : int , __snake_case : Dict=50_257 , __snake_case : List[str]=1_024 , __snake_case : Dict=768 , __snake_case : Optional[int]=12 , __snake_case : str=12 , __snake_case : List[str]=None , __snake_case : List[str]="gelu_pytorch_tanh" , __snake_case : Optional[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[Any]=0.1 , __snake_case : List[str]=1E-5 , __snake_case : Dict=0.02 , __snake_case : Optional[int]=True , __snake_case : Tuple=True , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=50_256 , __snake_case : Optional[Any]=True , __snake_case : Optional[Any]=True , __snake_case : List[Any]=True , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : int = n_positions UpperCAmelCase_ : Any = n_embd UpperCAmelCase_ : Union[str, Any] = n_layer UpperCAmelCase_ : List[str] = n_head UpperCAmelCase_ : List[Any] = n_inner UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : str = resid_pdrop UpperCAmelCase_ : Optional[Any] = embd_pdrop UpperCAmelCase_ : str = attn_pdrop UpperCAmelCase_ : Any = layer_norm_epsilon UpperCAmelCase_ : List[str] = initializer_range UpperCAmelCase_ : Optional[int] = scale_attn_weights UpperCAmelCase_ : Union[str, Any] = use_cache UpperCAmelCase_ : Dict = attention_softmax_in_fpaa UpperCAmelCase_ : Union[str, Any] = scale_attention_softmax_in_fpaa UpperCAmelCase_ : Optional[int] = multi_query UpperCAmelCase_ : Optional[Any] = bos_token_id UpperCAmelCase_ : Tuple = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
641
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : str = {} class lowerCAmelCase__( __lowercase ): '''simple docstring''' A_ : Tuple = '''llama''' A_ : Dict = ['''past_key_values'''] def __init__( self : Optional[Any] , __snake_case : Union[str, Any]=32_000 , __snake_case : Optional[Any]=4_096 , __snake_case : List[Any]=11_008 , __snake_case : List[str]=32 , __snake_case : List[Any]=32 , __snake_case : List[Any]=None , __snake_case : int="silu" , __snake_case : List[Any]=2_048 , __snake_case : List[str]=0.02 , __snake_case : Optional[int]=1E-6 , __snake_case : Any=True , __snake_case : Optional[Any]=0 , __snake_case : List[str]=1 , __snake_case : int=2 , __snake_case : List[str]=1 , __snake_case : List[Any]=False , __snake_case : str=None , **__snake_case : List[Any] , ): '''simple docstring''' UpperCAmelCase_ : Dict = vocab_size UpperCAmelCase_ : Union[str, Any] = max_position_embeddings UpperCAmelCase_ : Tuple = hidden_size UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Union[str, Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCAmelCase_ : Optional[int] = num_attention_heads UpperCAmelCase_ : int = num_key_value_heads UpperCAmelCase_ : Optional[int] = hidden_act UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : List[Any] = rms_norm_eps UpperCAmelCase_ : List[Any] = pretraining_tp UpperCAmelCase_ : str = use_cache UpperCAmelCase_ : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def _lowerCamelCase ( self : str ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f'''got {self.rope_scaling}''' ) UpperCAmelCase_ : Tuple = self.rope_scaling.get('''type''' , __a ) UpperCAmelCase_ : str = self.rope_scaling.get('''factor''' , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
720
import fire from utils import calculate_rouge, save_json def snake_case_ ( __lowercase , __lowercase , __lowercase=None , **__lowercase ): UpperCAmelCase_ : Tuple = [x.strip() for x in open(__lowercase ).readlines()] UpperCAmelCase_ : Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] UpperCAmelCase_ : int = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
641
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : int = logging.get_logger(__name__) class lowerCAmelCase__( enum.Enum ): '''simple docstring''' A_ : Union[str, Any] = 0 A_ : Optional[int] = 1 @add_end_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'generated' def __init__( self : str , *__snake_case : Union[str, Any] , **__snake_case : Optional[int] ): '''simple docstring''' super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : List[Any]=None , __snake_case : Tuple=None , __snake_case : int=None , __snake_case : Dict=None , __snake_case : List[str]=None , __snake_case : str=None , **__snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Tuple = {} if truncation is not None: UpperCAmelCase_ : Dict = truncation UpperCAmelCase_ : Any = generate_kwargs UpperCAmelCase_ : int = {} if return_tensors is not None and return_type is None: UpperCAmelCase_ : Union[str, Any] = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCAmelCase_ : List[Any] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase_ : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase_ : List[str] = self.tokenizer.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) if len(UpperCAmelCase__ ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase_ : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowerCamelCase ( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : int ): '''simple docstring''' return True def _lowerCamelCase ( self : Optional[Any] , *__snake_case : Dict , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model.config.prefix if self.model.config.prefix is not None else '''''' if isinstance(args[0] , UpperCAmelCase__ ): if self.tokenizer.pad_token_id is None: raise ValueError('''Please make sure that the tokenizer has a pad_token_id when using a batch input''' ) UpperCAmelCase_ : List[Any] = ([prefix + arg for arg in args[0]],) UpperCAmelCase_ : int = True elif isinstance(args[0] , UpperCAmelCase__ ): UpperCAmelCase_ : List[Any] = (prefix + args[0],) UpperCAmelCase_ : Union[str, Any] = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCAmelCase_ : Dict = self.tokenizer(*UpperCAmelCase__ , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Optional[int] , *__snake_case : Dict , **__snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) if ( isinstance(args[0] , UpperCAmelCase__ ) and all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for el in args[0] ) and all(len(UpperCAmelCase__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def _lowerCamelCase ( self : int , __snake_case : Optional[Any] , __snake_case : Union[str, Any]=TruncationStrategy.DO_NOT_TRUNCATE , **__snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self._parse_and_tokenize(UpperCAmelCase__ , truncation=UpperCAmelCase__ , **UpperCAmelCase__ ) return inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Dict , **__snake_case : Any ): '''simple docstring''' if self.framework == "pt": UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = model_inputs['''input_ids'''].shape elif self.framework == "tf": UpperCAmelCase_ , UpperCAmelCase_ : Tuple = tf.shape(model_inputs['''input_ids'''] ).numpy() UpperCAmelCase_ : Dict = generate_kwargs.get('''min_length''' , self.model.config.min_length ) UpperCAmelCase_ : Optional[Any] = generate_kwargs.get('''max_length''' , self.model.config.max_length ) self.check_inputs(UpperCAmelCase__ , generate_kwargs['''min_length'''] , generate_kwargs['''max_length'''] ) UpperCAmelCase_ : Tuple = self.model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase_ : List[str] = output_ids.shape[0] if self.framework == "pt": UpperCAmelCase_ : Union[str, Any] = output_ids.reshape(UpperCAmelCase__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCAmelCase_ : int = tf.reshape(UpperCAmelCase__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _lowerCamelCase ( self : int , __snake_case : Optional[Any] , __snake_case : Optional[int]=ReturnType.TEXT , __snake_case : Dict=False ): '''simple docstring''' UpperCAmelCase_ : List[Any] = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCAmelCase_ : int = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCAmelCase_ : Dict = { f'''{self.return_name}_text''': self.tokenizer.decode( UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , ) } records.append(UpperCAmelCase__ ) return records @add_end_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[Any] = 'summary' def __call__( self : Union[str, Any] , *__snake_case : Optional[int] , **__snake_case : Union[str, Any] ): '''simple docstring''' return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ ) def _lowerCamelCase ( self : str , __snake_case : int , __snake_case : int , __snake_case : int ): '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' '''a summarization task, where outputs shorter than the input are typically wanted, you might ''' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : int = 'translation' def _lowerCamelCase ( self : List[Any] , __snake_case : int , __snake_case : int , __snake_case : int ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' '''increasing your max_length manually, e.g. translator(\'...\', max_length=400)''' ) return True def _lowerCamelCase ( self : int , *__snake_case : Optional[int] , __snake_case : Any=TruncationStrategy.DO_NOT_TRUNCATE , __snake_case : Optional[Any]=None , __snake_case : List[Any]=None ): '''simple docstring''' if getattr(self.tokenizer , '''_build_translation_inputs''' , UpperCAmelCase__ ): return self.tokenizer._build_translation_inputs( *UpperCAmelCase__ , return_tensors=self.framework , truncation=UpperCAmelCase__ , src_lang=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ ) else: return super()._parse_and_tokenize(*UpperCAmelCase__ , truncation=UpperCAmelCase__ ) def _lowerCamelCase ( self : Tuple , __snake_case : Dict=None , __snake_case : Optional[int]=None , **__snake_case : int ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = super()._sanitize_parameters(**UpperCAmelCase__ ) if src_lang is not None: UpperCAmelCase_ : Optional[Any] = src_lang if tgt_lang is not None: UpperCAmelCase_ : Tuple = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCAmelCase_ : int = kwargs.get('''task''' , self.task ) UpperCAmelCase_ : Tuple = task.split('''_''' ) if task and len(UpperCAmelCase__ ) == 4: # translation, XX, to YY UpperCAmelCase_ : int = items[1] UpperCAmelCase_ : List[Any] = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *__snake_case : List[str] , **__snake_case : Any ): '''simple docstring''' return super().__call__(*UpperCAmelCase__ , **UpperCAmelCase__ )
721
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self : int , __snake_case : List[Any] , __snake_case : List[Any]=13 , __snake_case : str=7 , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=True , __snake_case : str=True , __snake_case : Optional[int]=True , __snake_case : Optional[int]=True , __snake_case : List[str]=False , __snake_case : List[str]=False , __snake_case : Tuple=False , __snake_case : List[str]=2 , __snake_case : Optional[int]=99 , __snake_case : Tuple=0 , __snake_case : int=32 , __snake_case : Optional[int]=5 , __snake_case : str=4 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : List[str]=512 , __snake_case : Tuple=2 , __snake_case : List[Any]=0.02 , __snake_case : Any=2 , __snake_case : Optional[int]=4 , __snake_case : Optional[Any]="last" , __snake_case : Dict=True , __snake_case : Any=None , __snake_case : str=0 , ): '''simple docstring''' UpperCAmelCase_ : int = parent UpperCAmelCase_ : Optional[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : List[Any] = is_training UpperCAmelCase_ : List[Any] = use_input_lengths UpperCAmelCase_ : Dict = use_token_type_ids UpperCAmelCase_ : Union[str, Any] = use_labels UpperCAmelCase_ : int = gelu_activation UpperCAmelCase_ : str = sinusoidal_embeddings UpperCAmelCase_ : List[str] = causal UpperCAmelCase_ : Tuple = asm UpperCAmelCase_ : List[Any] = n_langs UpperCAmelCase_ : Union[str, Any] = vocab_size UpperCAmelCase_ : Any = n_special UpperCAmelCase_ : Dict = hidden_size UpperCAmelCase_ : Dict = num_hidden_layers UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : List[str] = hidden_dropout_prob UpperCAmelCase_ : Any = attention_probs_dropout_prob UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = type_sequence_label_size UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Tuple = num_labels UpperCAmelCase_ : List[Any] = num_choices UpperCAmelCase_ : Any = summary_type UpperCAmelCase_ : Optional[int] = use_proj UpperCAmelCase_ : List[str] = scope UpperCAmelCase_ : List[str] = bos_token_id def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Tuple = None if self.use_input_lengths: UpperCAmelCase_ : List[str] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : int = None if self.use_token_type_ids: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : str = None if self.use_labels: UpperCAmelCase_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase_ : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _lowerCamelCase ( self : Any ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : int , __snake_case : int , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMModel(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case , lengths=__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , langs=__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : Any = XLMWithLMHeadModel(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[Any] = model(__snake_case , token_type_ids=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self : Optional[int] , __snake_case : Tuple , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : str , __snake_case : List[str] , ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = XLMForQuestionAnsweringSimple(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Optional[int] = model(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) UpperCAmelCase_ : Optional[Any] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : Dict , __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple , __snake_case : str , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForQuestionAnswering(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : List[str] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , p_mask=__snake_case , ) UpperCAmelCase_ : Optional[Any] = model( __snake_case , start_positions=__snake_case , end_positions=__snake_case , cls_index=__snake_case , is_impossible=__snake_case , ) ((UpperCAmelCase_) , ) : Union[str, Any] = result_with_labels.to_tuple() UpperCAmelCase_ : Optional[int] = model(__snake_case , start_positions=__snake_case , end_positions=__snake_case ) ((UpperCAmelCase_) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _lowerCamelCase ( self : str , __snake_case : Dict , __snake_case : str , __snake_case : Optional[Any] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Any , ): '''simple docstring''' UpperCAmelCase_ : List[str] = XLMForSequenceClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(__snake_case ) UpperCAmelCase_ : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCamelCase ( self : Any , __snake_case : Union[str, Any] , __snake_case : Any , __snake_case : List[str] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : str , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : int , ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.num_labels UpperCAmelCase_ : Optional[int] = XLMForTokenClassification(__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : List[str] = model(__snake_case , attention_mask=__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self : List[Any] , __snake_case : str , __snake_case : List[str] , __snake_case : Any , __snake_case : Tuple , __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : Dict , __snake_case : Optional[int] , ): '''simple docstring''' UpperCAmelCase_ : int = self.num_choices UpperCAmelCase_ : int = XLMForMultipleChoice(config=__snake_case ) model.to(__snake_case ) model.eval() UpperCAmelCase_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase_ : Any = model( __snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , labels=__snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCAmelCase__( snake_case__ , snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) A_ : List[str] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable A_ : Optional[int] = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def _lowerCamelCase ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str=False ): '''simple docstring''' UpperCAmelCase_ : int = super()._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) UpperCAmelCase_ : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__snake_case ) return inputs_dict def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = XLMModelTester(self ) UpperCAmelCase_ : List[Any] = ConfigTester(self , config_class=__snake_case , emb_dim=37 ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*__snake_case ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*__snake_case ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*__snake_case ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*__snake_case ) def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*__snake_case ) def _lowerCamelCase ( self : str , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str , __snake_case : Optional[int] , __snake_case : Union[str, Any]=False , __snake_case : Optional[Any]=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_attentions in attentions] , [True] * len(__snake_case ) ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : Dict = min_length + idx + 1 UpperCAmelCase_ : List[Any] = min_length + idx + 1 UpperCAmelCase_ : Optional[int] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(__snake_case ) ) def _lowerCamelCase ( self : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Optional[int] , __snake_case : Dict , __snake_case : Any , __snake_case : Optional[Any]=False , __snake_case : str=1 ): '''simple docstring''' self.assertIsInstance(__snake_case , __snake_case ) self.assertListEqual( [isinstance(__snake_case , __snake_case ) for iter_hidden_states in hidden_states] , [True] * len(__snake_case ) , ) self.assertEqual(len(__snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(__snake_case ): # adds PAD dummy token UpperCAmelCase_ : str = min_length + idx + 1 UpperCAmelCase_ : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(__snake_case ) , ) pass @slow def _lowerCamelCase ( self : int ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = XLMModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def _lowerCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(__snake_case ) UpperCAmelCase_ : str = torch.tensor([[14, 447]] , dtype=torch.long , device=__snake_case ) # the president UpperCAmelCase_ : Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase_ : Dict = model.generate(__snake_case , do_sample=__snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , __snake_case )
641
0
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __UpperCamelCase : Dict = pd.read_csv('sample_data.csv', header=None) __UpperCamelCase : str = df.shape[:1][0] # If you're using some other dataset input the target column __UpperCamelCase : List[str] = df.iloc[:, 1:2] __UpperCamelCase : Union[str, Any] = actual_data.values.reshape(len_data, 1) __UpperCamelCase : str = MinMaxScaler().fit_transform(actual_data) __UpperCamelCase : Any = 10 __UpperCamelCase : str = 5 __UpperCamelCase : Union[str, Any] = 20 __UpperCamelCase : Optional[Any] = len_data - periods * look_back __UpperCamelCase : int = actual_data[:division] __UpperCamelCase : Optional[int] = actual_data[division - look_back :] __UpperCamelCase , __UpperCamelCase : int = [], [] __UpperCamelCase , __UpperCamelCase : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __UpperCamelCase : int = np.array(train_x) __UpperCamelCase : Optional[int] = np.array(test_x) __UpperCamelCase : Union[str, Any] = np.array([list(i.ravel()) for i in train_y]) __UpperCamelCase : Any = np.array([list(i.ravel()) for i in test_y]) __UpperCamelCase : List[Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __UpperCamelCase : int = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) __UpperCamelCase : Dict = model.predict(x_test)
700
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings __UpperCamelCase : Dict = R'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(snake_case__ ) class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Union[str, Any] = 'rag' A_ : Tuple = True def __init__( self : int , __snake_case : List[str]=None , __snake_case : List[Any]=True , __snake_case : Optional[int]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : Any=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=" / " , __snake_case : Any=" // " , __snake_case : Tuple=5 , __snake_case : Union[str, Any]=300 , __snake_case : Any=768 , __snake_case : Tuple=8 , __snake_case : int="wiki_dpr" , __snake_case : Optional[int]="train" , __snake_case : Tuple="compressed" , __snake_case : Optional[int]=None , __snake_case : List[Any]=None , __snake_case : Optional[int]=False , __snake_case : str=False , __snake_case : Dict=0.0 , __snake_case : Union[str, Any]=True , __snake_case : Union[str, Any]=False , __snake_case : str=False , __snake_case : str=False , __snake_case : Optional[Any]=True , __snake_case : int=None , **__snake_case : str , ): '''simple docstring''' super().__init__( bos_token_id=__snake_case , pad_token_id=__snake_case , eos_token_id=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , is_encoder_decoder=__snake_case , prefix=__snake_case , vocab_size=__snake_case , **__snake_case , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" UpperCAmelCase_ : Dict = kwargs.pop('''question_encoder''' ) UpperCAmelCase_ : List[Any] = question_encoder_config.pop('''model_type''' ) UpperCAmelCase_ : Any = kwargs.pop('''generator''' ) UpperCAmelCase_ : Union[str, Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig UpperCAmelCase_ : Any = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : int = AutoConfig.for_model(__snake_case , **__snake_case ) UpperCAmelCase_ : Any = reduce_loss UpperCAmelCase_ : List[Any] = label_smoothing UpperCAmelCase_ : Tuple = exclude_bos_score UpperCAmelCase_ : int = do_marginalize UpperCAmelCase_ : Tuple = title_sep UpperCAmelCase_ : Union[str, Any] = doc_sep UpperCAmelCase_ : Any = n_docs UpperCAmelCase_ : Optional[int] = max_combined_length UpperCAmelCase_ : Any = dataset UpperCAmelCase_ : List[Any] = dataset_split UpperCAmelCase_ : Union[str, Any] = index_name UpperCAmelCase_ : List[str] = retrieval_vector_size UpperCAmelCase_ : Optional[Any] = retrieval_batch_size UpperCAmelCase_ : Optional[int] = passages_path UpperCAmelCase_ : Optional[Any] = index_path UpperCAmelCase_ : List[Any] = use_dummy_dataset UpperCAmelCase_ : int = output_retrieved UpperCAmelCase_ : int = do_deduplication UpperCAmelCase_ : Optional[int] = use_cache if self.forced_eos_token_id is None: UpperCAmelCase_ : int = getattr(self.generator , '''forced_eos_token_id''' , __snake_case ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , __snake_case : PretrainedConfig , __snake_case : PretrainedConfig , **__snake_case : str ): '''simple docstring''' return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__snake_case ) def _lowerCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = copy.deepcopy(self.__dict__ ) UpperCAmelCase_ : Optional[int] = self.question_encoder.to_dict() UpperCAmelCase_ : Dict = self.generator.to_dict() UpperCAmelCase_ : Optional[Any] = self.__class__.model_type return output
641
0
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __UpperCamelCase : Optional[int] = False class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : List[str] = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) UpperCAmelCase_ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase_ : Dict = torch.manual_seed(0 ) UpperCAmelCase_ : Dict = pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images UpperCAmelCase_ : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ : int = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Union[str, Any] = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : str = { 'microsoft/unispeech-sat-base-100h-libri-ft': ( 'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json' ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : List[Any] = 'unispeech-sat' def __init__( self : int , __snake_case : Optional[int]=32 , __snake_case : Dict=768 , __snake_case : Optional[Any]=12 , __snake_case : Optional[int]=12 , __snake_case : Dict=3_072 , __snake_case : List[str]="gelu" , __snake_case : Any=0.1 , __snake_case : Tuple=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=0.0 , __snake_case : List[Any]=0.0 , __snake_case : Tuple=0.1 , __snake_case : Union[str, Any]=0.1 , __snake_case : Dict=0.02 , __snake_case : Optional[Any]=1E-5 , __snake_case : Optional[int]="group" , __snake_case : str="gelu" , __snake_case : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , __snake_case : str=(5, 2, 2, 2, 2, 2, 2) , __snake_case : Tuple=(10, 3, 3, 3, 3, 2, 2) , __snake_case : int=False , __snake_case : Optional[int]=128 , __snake_case : Any=16 , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=True , __snake_case : List[Any]=0.05 , __snake_case : Dict=10 , __snake_case : int=2 , __snake_case : Optional[Any]=0.0 , __snake_case : Optional[int]=10 , __snake_case : List[Any]=0 , __snake_case : Optional[int]=320 , __snake_case : int=2 , __snake_case : Any=0.1 , __snake_case : Optional[int]=100 , __snake_case : Tuple=256 , __snake_case : List[str]=256 , __snake_case : List[Any]=0.1 , __snake_case : Tuple="mean" , __snake_case : List[Any]=False , __snake_case : List[str]=False , __snake_case : Optional[Any]=256 , __snake_case : Tuple=(512, 512, 512, 512, 1_500) , __snake_case : Optional[int]=(5, 3, 3, 1, 1) , __snake_case : Any=(1, 2, 3, 1, 1) , __snake_case : int=512 , __snake_case : Optional[int]=0 , __snake_case : Dict=1 , __snake_case : Tuple=2 , __snake_case : Union[str, Any]=504 , **__snake_case : List[str] , ): '''simple docstring''' super().__init__(**__snake_case , pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case ) UpperCAmelCase_ : Union[str, Any] = hidden_size UpperCAmelCase_ : int = feat_extract_norm UpperCAmelCase_ : Dict = feat_extract_activation UpperCAmelCase_ : Union[str, Any] = list(__snake_case ) UpperCAmelCase_ : List[str] = list(__snake_case ) UpperCAmelCase_ : Any = list(__snake_case ) UpperCAmelCase_ : Any = conv_bias UpperCAmelCase_ : List[str] = num_conv_pos_embeddings UpperCAmelCase_ : Dict = num_conv_pos_embedding_groups UpperCAmelCase_ : Optional[int] = len(self.conv_dim ) UpperCAmelCase_ : List[str] = num_hidden_layers UpperCAmelCase_ : Dict = intermediate_size UpperCAmelCase_ : Union[str, Any] = hidden_act UpperCAmelCase_ : str = num_attention_heads UpperCAmelCase_ : Union[str, Any] = hidden_dropout UpperCAmelCase_ : List[str] = attention_dropout UpperCAmelCase_ : Optional[Any] = activation_dropout UpperCAmelCase_ : Dict = feat_proj_dropout UpperCAmelCase_ : Optional[Any] = final_dropout UpperCAmelCase_ : List[Any] = layerdrop UpperCAmelCase_ : int = layer_norm_eps UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : int = num_clusters UpperCAmelCase_ : int = do_stable_layer_norm UpperCAmelCase_ : Any = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ : int = apply_spec_augment UpperCAmelCase_ : Optional[Any] = mask_time_prob UpperCAmelCase_ : str = mask_time_length UpperCAmelCase_ : Any = mask_time_min_masks UpperCAmelCase_ : str = mask_feature_prob UpperCAmelCase_ : str = mask_feature_length UpperCAmelCase_ : Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase_ : Optional[int] = num_codevectors_per_group UpperCAmelCase_ : int = num_codevector_groups UpperCAmelCase_ : List[str] = contrastive_logits_temperature UpperCAmelCase_ : int = feat_quantizer_dropout UpperCAmelCase_ : List[str] = num_negatives UpperCAmelCase_ : Any = codevector_dim UpperCAmelCase_ : Tuple = proj_codevector_dim UpperCAmelCase_ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCAmelCase_ : Any = ctc_loss_reduction UpperCAmelCase_ : Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ : Optional[int] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Dict = list(__snake_case ) UpperCAmelCase_ : Union[str, Any] = xvector_output_dim @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
641
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Dict = 'Hello world! cécé herlolip' def snake_case_ ( __lowercase , __lowercase , __lowercase ): UpperCAmelCase_ : Optional[Any] = FairseqRobertaModel.from_pretrained(lowerCAmelCase_ ) roberta.eval() # disable dropout UpperCAmelCase_ : Optional[int] = roberta.model.encoder.sentence_encoder UpperCAmelCase_ : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCAmelCase_ : Dict = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = XLMRobertaXLForSequenceClassification(lowerCAmelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ : int = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ : Union[str, Any] = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ : str = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ : List[Any] = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ : BertLayer = model.roberta.encoder.layer[i] UpperCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] UpperCAmelCase_ : RobertaAttention = layer.attention UpperCAmelCase_ : Optional[Any] = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ : List[str] = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ : Optional[Any] = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ : int = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ : Optional[int] = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ : Any = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ : Any = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ : Optional[Any] = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ : Union[str, Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ : str = roberta_layer.final_layer_norm.weight UpperCAmelCase_ : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ : str = roberta_layer.fca.weight UpperCAmelCase_ : List[Any] = roberta_layer.fca.bias # output UpperCAmelCase_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ : Optional[int] = roberta_layer.fca.weight UpperCAmelCase_ : Any = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ : List[Any] = roberta.model.classification_heads['''mnli'''].dense.weight UpperCAmelCase_ : Tuple = roberta.model.classification_heads['''mnli'''].dense.bias UpperCAmelCase_ : int = roberta.model.classification_heads['''mnli'''].out_proj.weight UpperCAmelCase_ : Any = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head UpperCAmelCase_ : Tuple = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ : int = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ : Dict = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ : int = roberta.model.encoder.lm_head.weight UpperCAmelCase_ : Union[str, Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ : torch.Tensor = roberta.encode(lowerCAmelCase_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ : Any = model(lowerCAmelCase_ )[0] if classification_head: UpperCAmelCase_ : Any = roberta.model.classification_heads['''mnli'''](roberta.extract_features(lowerCAmelCase_ ) ) else: UpperCAmelCase_ : Any = roberta.model(lowerCAmelCase_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ : str = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase_ : List[Any] = torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(lowerCAmelCase_ ).mkdir(parents=lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
703
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def snake_case_ ( __lowercase , __lowercase ): # Load checkpoint UpperCAmelCase_ : Tuple = torch.load(__lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Optional[int] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCAmelCase_ : str = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCAmelCase_ : Tuple = v else: UpperCAmelCase_ : Union[str, Any] = v UpperCAmelCase_ : int = chkpt['''params'''] UpperCAmelCase_ : Union[str, Any] = {n: v for n, v in config.items() if not isinstance(__lowercase , (torch.FloatTensor, numpy.ndarray) )} UpperCAmelCase_ : int = chkpt['''dico_word2id'''] UpperCAmelCase_ : List[Any] = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 1_3 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ : Tuple = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(__lowercase , __lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) print(F'''Save vocab file to {pytorch_config_dump_path}''' ) with open(__lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(__lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : Dict = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
641
0
from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCAmelCase__( _UpperCAmelCase ): '''simple docstring''' A_ : List[str] = """Salesforce/blip-image-captioning-base""" A_ : List[Any] = ( """This is a tool that generates a description of an image. It takes an input named `image` which should be the """ """image to caption, and returns a text that contains the description in English.""" ) A_ : Optional[int] = """image_captioner""" A_ : Union[str, Any] = AutoModelForVisionaSeq A_ : Any = ["""image"""] A_ : Dict = ["""text"""] def __init__( self : Optional[Any] , *__snake_case : str , **__snake_case : Optional[Any] ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*lowercase__ , **lowercase__ ) def _lowerCamelCase ( self : Dict , __snake_case : List[str] ): '''simple docstring''' return self.pre_processor(images=lowercase__ , return_tensors='''pt''' ) def _lowerCamelCase ( self : Optional[Any] , __snake_case : Dict ): '''simple docstring''' return self.model.generate(**lowercase__ ) def _lowerCamelCase ( self : List[Any] , __snake_case : int ): '''simple docstring''' return self.pre_processor.batch_decode(lowercase__ , skip_special_tokens=lowercase__ )[0].strip()
704
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __UpperCamelCase : Optional[int] = None __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase : Optional[int] = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase : Optional[Any] = { 't5-small': 512, 't5-base': 512, 't5-large': 512, 't5-3b': 512, 't5-11b': 512, } class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ['input_ids', 'attention_mask'] A_ : int = TaTokenizer A_ : List[int] = [] def __init__( self : Union[str, Any] , __snake_case : Tuple=None , __snake_case : List[Any]=None , __snake_case : int="</s>" , __snake_case : List[Any]="<unk>" , __snake_case : Dict="<pad>" , __snake_case : Tuple=100 , __snake_case : int=None , **__snake_case : Any , ): '''simple docstring''' # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase_ : Optional[int] = [f'''<extra_id_{i}>''' for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens UpperCAmelCase_ : Any = len(set(filter(lambda __snake_case : bool('''extra_id_''' in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( __snake_case , tokenizer_file=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : List[str] = False if not self.vocab_file else True UpperCAmelCase_ : Union[str, Any] = extra_ids @staticmethod def _lowerCamelCase ( __snake_case : Dict , __snake_case : List[str] , __snake_case : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: UpperCAmelCase_ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , __snake_case , ) return max_model_length def _lowerCamelCase ( self : Dict , __snake_case : str , __snake_case : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ): copyfile(self.vocab_file , __snake_case ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _lowerCamelCase ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: UpperCAmelCase_ : int = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _lowerCamelCase ( self : Dict , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase_ : int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return list( set(filter(lambda __snake_case : bool(re.search(R'''<extra_id_\d+>''' , __snake_case ) ) is not None , self.additional_special_tokens ) ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(__snake_case ) for token in self.get_sentinel_tokens()]
641
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' A_ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING A_ : Optional[int] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def _lowerCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ : str = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output UpperCAmelCase_ : str = text_generator('''This is a test''' , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) UpperCAmelCase_ : Any = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( __snake_case , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) UpperCAmelCase_ : Optional[Any] = text_generator('''This is a test''' , do_sample=__snake_case , num_return_sequences=2 , return_tensors=__snake_case ) self.assertEqual( __snake_case , [ {'''generated_token_ids''': ANY(__snake_case )}, {'''generated_token_ids''': ANY(__snake_case )}, ] , ) UpperCAmelCase_ : Any = text_generator.model.config.eos_token_id UpperCAmelCase_ : Union[str, Any] = '''<pad>''' UpperCAmelCase_ : Dict = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=__snake_case , num_return_sequences=2 , batch_size=2 , return_tensors=__snake_case , ) self.assertEqual( __snake_case , [ [ {'''generated_token_ids''': ANY(__snake_case )}, {'''generated_token_ids''': ANY(__snake_case )}, ], [ {'''generated_token_ids''': ANY(__snake_case )}, {'''generated_token_ids''': ANY(__snake_case )}, ], ] , ) @require_tf def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output UpperCAmelCase_ : Optional[int] = text_generator('''This is a test''' , do_sample=__snake_case ) self.assertEqual( __snake_case , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) UpperCAmelCase_ : List[str] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def _lowerCamelCase ( self : Tuple , __snake_case : List[Any] , __snake_case : Tuple , __snake_case : Optional[int] ): '''simple docstring''' UpperCAmelCase_ : Dict = TextGenerationPipeline(model=__snake_case , tokenizer=__snake_case ) return text_generator, ["This is a test", "Another test"] def _lowerCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ : Dict = '''Hello I believe in''' UpperCAmelCase_ : Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) UpperCAmelCase_ : str = text_generator(__snake_case ) self.assertEqual( __snake_case , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) UpperCAmelCase_ : str = text_generator(__snake_case , stop_sequence=''' fe''' ) self.assertEqual(__snake_case , [{'''generated_text''': '''Hello I believe in fe'''}] ) def _lowerCamelCase ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Any ): '''simple docstring''' UpperCAmelCase_ : Any = text_generator.model UpperCAmelCase_ : int = text_generator.tokenizer UpperCAmelCase_ : Optional[Any] = text_generator('''This is a test''' ) self.assertEqual(__snake_case , [{'''generated_text''': ANY(__snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) UpperCAmelCase_ : Tuple = text_generator('''This is a test''' , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{'''generated_text''': ANY(__snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) UpperCAmelCase_ : Dict = pipeline(task='''text-generation''' , model=__snake_case , tokenizer=__snake_case , return_full_text=__snake_case ) UpperCAmelCase_ : List[Any] = text_generator('''This is a test''' ) self.assertEqual(__snake_case , [{'''generated_text''': ANY(__snake_case )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) UpperCAmelCase_ : int = text_generator('''This is a test''' , return_full_text=__snake_case ) self.assertEqual(__snake_case , [{'''generated_text''': ANY(__snake_case )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) UpperCAmelCase_ : Dict = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{'''generated_text''': ANY(__snake_case )}, {'''generated_text''': ANY(__snake_case )}], [{'''generated_text''': ANY(__snake_case )}, {'''generated_text''': ANY(__snake_case )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCAmelCase_ : Optional[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__snake_case ) self.assertEqual( __snake_case , [ [{'''generated_text''': ANY(__snake_case )}, {'''generated_text''': ANY(__snake_case )}], [{'''generated_text''': ANY(__snake_case )}, {'''generated_text''': ANY(__snake_case )}], ] , ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : Tuple = text_generator('''test''' , return_full_text=__snake_case , return_text=__snake_case ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : Tuple = text_generator('''test''' , return_full_text=__snake_case , return_tensors=__snake_case ) with self.assertRaises(__snake_case ): UpperCAmelCase_ : Tuple = text_generator('''test''' , return_text=__snake_case , return_tensors=__snake_case ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCAmelCase_ : Any = text_generator('''''' ) self.assertEqual(__snake_case , [{'''generated_text''': ANY(__snake_case )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCAmelCase_ : str = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCAmelCase_ : Dict = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) UpperCAmelCase_ : Union[str, Any] = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__snake_case ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' import torch # Classic `model_kwargs` UpperCAmelCase_ : int = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase_ : Union[str, Any] = pipe('''This is a test''' ) self.assertEqual( __snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCAmelCase_ : Optional[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCAmelCase_ : Optional[Any] = pipe('''This is a test''' ) self.assertEqual( __snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCAmelCase_ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCAmelCase_ : Any = pipe('''This is a test''' ) self.assertEqual( __snake_case , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' import torch UpperCAmelCase_ : int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def _lowerCamelCase ( self : Dict ): '''simple docstring''' import torch UpperCAmelCase_ : Dict = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=__snake_case , top_p=0.5 ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase_ : int = '''Hello world''' UpperCAmelCase_ : List[str] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": UpperCAmelCase_ : List[str] = logging.get_logger('''transformers.generation.tf_utils''' ) else: UpperCAmelCase_ : Union[str, Any] = logging.get_logger('''transformers.generation.utils''' ) UpperCAmelCase_ : List[Any] = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__snake_case ) as cl: UpperCAmelCase_ : Optional[Any] = text_generator(__snake_case , max_length=10 , max_new_tokens=1 ) self.assertIn(__snake_case , cl.out ) # The user only sets one -> no warning with CaptureLogger(__snake_case ) as cl: UpperCAmelCase_ : List[Any] = text_generator(__snake_case , max_new_tokens=1 ) self.assertNotIn(__snake_case , cl.out ) with CaptureLogger(__snake_case ) as cl: UpperCAmelCase_ : List[Any] = text_generator(__snake_case , max_length=10 ) self.assertNotIn(__snake_case , cl.out )
705
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
641
0
'''simple docstring''' from __future__ import annotations def snake_case_ ( __lowercase , __lowercase = None ): UpperCAmelCase_ : Tuple = word_bank or [] # create a table UpperCAmelCase_ : Optional[Any] = len(__lowercase ) + 1 UpperCAmelCase_ : Union[str, Any] = [] for _ in range(__lowercase ): table.append([] ) # seed value UpperCAmelCase_ : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowercase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowercase )] == word: UpperCAmelCase_ : List[Any] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowercase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowercase )]: combination.reverse() return table[len(__lowercase )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
706
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCAmelCase__( snake_case__ ): '''simple docstring''' A_ : str = ['image_processor', 'tokenizer'] A_ : int = 'LayoutLMv2ImageProcessor' A_ : str = ('LayoutXLMTokenizer', 'LayoutXLMTokenizerFast') def __init__( self : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : List[str]=None , **__snake_case : Optional[int] ): '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __snake_case , ) UpperCAmelCase_ : List[Any] = kwargs.pop('''feature_extractor''' ) UpperCAmelCase_ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__snake_case , __snake_case ) def __call__( self : List[str] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : Optional[int] , ): '''simple docstring''' # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCAmelCase_ : Tuple = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): UpperCAmelCase_ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCAmelCase_ : Any = features['''words'''] UpperCAmelCase_ : str = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values UpperCAmelCase_ : List[str] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCAmelCase_ : Optional[int] = self.get_overflowing_images(__snake_case , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCAmelCase_ : List[Any] = images return encoded_inputs def _lowerCamelCase ( self : Union[str, Any] , __snake_case : str , __snake_case : List[Any] ): '''simple docstring''' # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCAmelCase_ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def _lowerCamelCase ( self : List[Any] , *__snake_case : Optional[int] , **__snake_case : List[Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def _lowerCamelCase ( self : str , *__snake_case : Optional[Any] , **__snake_case : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , ) return self.image_processor_class @property def _lowerCamelCase ( self : Dict ): '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , ) return self.image_processor
641
0
def snake_case_ ( __lowercase ): if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence UpperCAmelCase_ : str = gray_code_sequence_string(lowercase_ ) # # convert them to integers for i in range(len(lowercase_ ) ): UpperCAmelCase_ : Union[str, Any] = int(sequence[i] , 2 ) return sequence def snake_case_ ( __lowercase ): if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCAmelCase_ : str = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCAmelCase_ : Optional[int] = gray_code_sequence_string(bit_count - 1 ) UpperCAmelCase_ : str = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): UpperCAmelCase_ : Dict = "0" + smaller_sequence[i] sequence.append(lowercase_ ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): UpperCAmelCase_ : Tuple = "1" + smaller_sequence[i] sequence.append(lowercase_ ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
707
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase__: '''simple docstring''' A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : torch.Tensor # [batch_size x 3] A_ : int A_ : int A_ : float A_ : float A_ : Tuple[int] def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Tuple ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def _lowerCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = torch.arange(self.height * self.width ) UpperCAmelCase_ : Any = torch.stack( [ pixel_indices % self.width, torch.div(__snake_case , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ : List[Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(__snake_case ) ) UpperCAmelCase_ : str = self.get_image_coords() UpperCAmelCase_ : List[str] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Tuple = self.get_camera_rays(__snake_case ) UpperCAmelCase_ : Union[str, Any] = rays.view(__snake_case , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def _lowerCamelCase ( self : Dict , __snake_case : torch.Tensor ): '''simple docstring''' UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : int = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : str = coords.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = self.resolution() UpperCAmelCase_ : Optional[Any] = self.fov() UpperCAmelCase_ : int = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[Any] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Optional[Any] = fracs.view(__snake_case , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(__snake_case , 1 , 3 ) + self.x.view(__snake_case , 1 , 3 ) * fracs[:, :, :1] + self.y.view(__snake_case , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Union[str, Any] = directions / directions.norm(dim=-1 , keepdim=__snake_case ) UpperCAmelCase_ : Optional[int] = torch.stack( [ torch.broadcast_to(self.origin.view(__snake_case , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(__snake_case , *__snake_case , 2 , 3 ) def _lowerCamelCase ( self : Any , __snake_case : int , __snake_case : int ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=__snake_case , height=__snake_case , x_fov=self.x_fov , y_fov=self.y_fov , ) def snake_case_ ( __lowercase ): UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : Tuple = np.array([np.sin(__lowercase ), np.cos(__lowercase ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : str = -z * 4 UpperCAmelCase_ : List[Any] = np.array([np.cos(__lowercase ), -np.sin(__lowercase ), 0.0] ) UpperCAmelCase_ : Tuple = np.cross(__lowercase , __lowercase ) origins.append(__lowercase ) xs.append(__lowercase ) ys.append(__lowercase ) zs.append(__lowercase ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowercase , axis=0 ) ).float() , width=__lowercase , height=__lowercase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowercase )) , )
641
0